首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aster furcatus is a rare, self-incompatible plant with fewer than 50 known populations throughout its range. We verified self-incompatibility in A. furcatus by conducting experimental self- and cross-pollinations and by examining seed set in a small population comprised of a single clonal genet. We examined variation at 22 electrophoretic loci in 23 populations of A. furcatus from across its range in Wisconsin, Illinois, Indiana, and Missouri. Except for two rare alleles found in single individuals in three populations, all loci but one of those examined were fixed for single alleles. The only variable locus (triosephosphate isomerase, TPI-1) tended to exhibit genotype frequencies in Hardy-Weinberg equilibrium or with a slight excess of heterozygotes. Although overall gene diversity was extremely low, TPI genotype frequencies were indicative of an outcrossing plant. We examined the subpopulation genetic structure among clonal plants within one Wisconsin population in greater detail. F statistics indicated that much of the genetic variation at the polymorphic TPI locus was due to differentiation among populations. We discuss the implications of self-incompatibility and low levels of genetic variation for the evolution and conservation of Aster furcatus and other rare plants with similar breeding systems.  相似文献   

2.
In self-incompatible clonal plants, the spread of individual plants can exacerbate mate limitation to the point that it becomes a serious constraint on long-term population persistence, especially in small, isolated populations. In such species, it may be necessary to introduce new genetic material from other populations to restore seed production, a strategy termed “genetic rescue”. In this study we assess the potential pertinence of such genetic rescue in the clonal perennial plant Convolvulus lineatus L., whose populations are often highly reduced in spatial extent and are currently being fragmented by land development projects in Mediterranean France. To do so, we quantify fruit production in a range of populations of different size over four years and perform a series of hand-pollination experiments in natural populations to assess whether fruit set is limited by mate availability. We found that C. lineatus is a self-incompatible species that shows extremely low values of fruit set in natural populations and that a principal cause of this low fruit set is a lack of compatible pollen. This may be primarily due to clonal spread that causes individual populations to be comprised of patches containing one or very few incompatibility types. In small populations fragmented by human activities and which show an absence of fruit production, we thus argue that genetic rescue represents a promising conservation management strategy to avoid inevitable long-term future population decline. We discuss how best to introduce new genetic material into the study populations.  相似文献   

3.
As plant populations decrease in size, reduced seed set may contribute to their ultimate extirpation. In this study, effects of pollen quantity and compatibility relationships (quality) on seed set were investigated in a rare species (Eupatorium resinosum) and a closely related common species (E. perfoliatum). The impact of pollen quantity was studied through pollen supplementation experiments in two populations of each species. Addition of pollen increased seed set only in the smaller population of E. resinosum. Compatibility relationships (pollen quality) were investigated in a diallel crossing experiment using ten genotypes from the same populations. Plants from the smaller population of E. resinosum were found to be 40% cross-incompatible, which was higher than the larger population of E. resinosum and the two populations of E. perfoliatum, the latter showing signs of self-compatibility in some individuals. In addition the variance in number of compatible matings per individual was higher in the smaller population of E. resinosum. These results are consistent with a computer simulation model that investigated the effect of small population size on S-allele diversity. Sufficient pollination accompanied by a partial breakdown of the incompatibility system may account, in part, for the relative success of E. perfoliatum.  相似文献   

4.
Self-compatibility and adaptations to self-fertilization are often found in plant populations at the periphery of species' ranges or on islands. Self-compatibility may predominate in these environments because it provides reproductive assurance when pollinators or availability of mates limits seed production. This possibility was studied in Leavenworthia alabamica, a flowering plant endemic to the southeastern United States. Populations at the center of the species' range retain sporophytic self-incompatibility, but peripheral populations are smaller, self-compatible, and have adaptations for self-fertilization. A reciprocal-transplant experiment was designed to test whether there is pollen limitation of seed set and to examine its strength in central and peripheral populations. Self-compatible genotypes produced more fruit and 17-22% more seed than self-incompatible genotypes in all environments, suggesting that the transition to self-compatibility may be favored by natural selection in all populations inhabited by L. alabamica. Sequence analyses demonstrated that two peripheral populations have 90-100% reductions in genetic variation, consistent with the effects of small population size or historical bottlenecks. Although pollen limitation of seed set occurs in all environments, self-compatibility may evolve at the periphery in L. alabamica because the benefits of reproductive assurance are influenced by population size or bottlenecks following extinction and colonization.  相似文献   

5.
Habitat alteration can deteriorate plant-pollinator interactions and thereby increase the risk of population extinction. As part of a larger study on the effects of changes in land use on fen grassland vegetation, factors influencing the seed set of a short-lived, endangered wetland plant,Pedicularis palustris, were studied. We conducted field pollination experiments in one large and one small population. To investigate the effect of pollen source on seed set, individual flowers of caged plants were left unpollinated or were pollinated with pollen from the same flower, the same population or another population. To study pollen limitation and flower display, whole plants were subjected to pollinator exclosure, hand pollination or natural pollination. Self-compatibility was high, but differed between populations (61% and 97% of seed set after cross-pollination within populations). Cross-pollination between populations did not significantly alter seed number per capsule. Pollinator exclosure resulted in a very low seed set (<15% of natural seed set), despite high self-compatibility. The most likely explanations for high self-compatibility in combination with low autofertility are geitonogamy as reproductive assurance, selective neutrality of self-compatibility and phylogenetic constraints. Because of low autofertility, the seed set inP. palustris depends on pollinators. In the study populations, natural pollination was clearly sufficient for maximum seed production per plant, but seed set per capsule was significantly pollen-limited in the smaller population. Plants in this population also had a higher maximum percentage of simultaneously open flowers than those of the large population (31% vs. 13%), while flower longevity was generally extended without pollination. It is concluded thatP. palustris may influence pollinator behaviour and therefore the risk of pollen limitation by flower display.P. palustris showed a flexible reaction to differing pollination regimes without losses in overall seed set in the study populations.  相似文献   

6.
Self-compatibility in a naturally self-incompatible species like sweet cherry is a highly interesting trait for breeding purposes and a powerful tool with which to investigate the basis of the self-incompatible reaction in gametophytic systems. However, natural self-compatibility in sweet cherry is a very rare phenomenon. Cristobalina is a local Spanish sweet cherry cultivar that has proven to be spontaneously self-compatible. In this work, the nature of the self-compatibility in Cristobalina has been studied using genetic and molecular approaches. Pollination studies and microscopic observations of pollen tube growth were carried out to confirm the self-compatible character and the results obtained indicate that self-compatibility is caused by a failure of the pollen and not the style factor. Polymerase chain reaction (PCR) analysis of progenies derived from Cristobalina revealed that self-compatibility in this genotype is not related uniquely to one of the two pollen S alleles, but that pollen grains carrying either of the two haplotypes can overcome the incompatibility barrier. Moreover, PCR analysis and microscopic observation of pollen tube growth in progeny derived from Cristobalina also confirmed that the self-compatible descendants can carry either of the two S haplotypes of their progenitor. Isolation and sequencing of the style S-RNases and pollen SFBs revealed that the DNA sequences of these factors are the same as those described in other self-incompatible sweet cherry cultivars with the same S alleles. Possible mechanisms to explain self-compatibility in Cristobalina are discussed.  相似文献   

7.
The basis for the negative correlation between seed number and seed size was experimentally investigated in a natural population of Clintonia borealis. Clones of this species vary significantly in estimated self-compatibility (ratio of seed set with selfing to that with outcrossing) and this appears to affect the number and size of seeds set in individual flowers of each. Clones estimated to be largely self-compatible set more seeds per flower than incompatible ones under natural pollination. However, naturally pollinated flowers of self-compatible clones set smaller seeds than those of incompatible clones, and the significance of the negative relationship between seed number and size in individual flowers was removed by holding variation due to compatibility constant. Supplementing resources per flower (by reducing the number of fruits competing for resources per stem) significantly increased total seed mass but had no effect on the negative relationship between seed number per flower and seed size. In contrast, supplementing cross pollination did not significantly influence total seed mass per flower but changed the relationship between seed number and size to positive, regardless of resource level. In other words, with plentiful cross pollination maternal genets capable of setting more seeds per flower also produced heavier ones. Thus, evidence is provided that the balance between seed number and seed size in this population is regulated by the interaction of maternal self-compatibility with natural pollination.  相似文献   

8.
Small populations of self-incompatible plants may be expected to be threatened by the limitation of compatible mating partners (i.e., S-Allee effect). However, few empirical studies have explicitly tested the hypothesis of mate limitation in small populations of self-incompatible plants. To do so, we studied wild pear (Pyrus pyraster), which possesses a gametophytic self-incompatibility system. We determined the S-genotypes in complete samplings of all adult trees from 3 populations using a PCR-RFLP approach. We identified a total of 26 different S-alleles, homologous to S-alleles of other woody Rosaceae. The functionality of S-alleles and their Mendelian inheritance were verified in artificial pollination experiments and investigations of pollen tube growth. The smallest population (N = 8) harbored 9 different S-alleles and showed a mate availability of 92.9%, whereas the 2 larger populations harbored 18 and 25 S-alleles and exhibited mate availabilities of 98.4% and 99.2%, respectively. Therefore, we conclude that even small populations of gametophytic self-incompatible plants may exhibit high diversity at the S-locus and are not immediately threatened owing to reduced mate availability.  相似文献   

9.
Populations in the central part of the distribution are mostly self-incompatible and tend to be highly variable for allozymic and morphological characters; those in the north and south limits are entirely self-compatible and tend to be genetically highly uniform. Gradations in variability are observed in the intermediate regions. Flower size tends to diminish in the peripheral areas. The extensive differences in genotype observed between the north and south marginal populations are not compatible with the concept of a single origin of self-compatibility, but suggest, along with other evidence, that the substitution of different alleles resulted from differentiation in the marginal areas from older, self-incompatible stocks of the central region. The conclusions regarding patterns of genetic variation and nature of evolution of mating systems inL. hirsutum conform to a remarkable extent with those reached previously forL. pimpinellifolium, a species that is distinct in morphology and ecological preferences yet has a similar latitudinal distribution.  相似文献   

10.
We investigate mate availability in different models of multiallelic self-incompatibility systems in mutation-selection-drift balance in finite populations. Substantial differences among self-incompatibility systems occur in average mate availability, and in variances of mate availability among individual plants. These differences are most pronounced in small populations in which low mate availability may reduce seed set in some types of sporophytic self-incompatibility. In cases where the pollination system causes a restriction in the number of pollen genotypes available to an individual plant, the fecundity of that plant depends on the availability of compatible pollen, which is determined by its genotype at the incompatibility locus. This leads to an additional component of selection acting on self-incompatibility systems, which we term “fecundity selection.” Fecundity selection increases the number of alleles maintained in finite populations and increases mate availability in small populations. The strength of fecundity selection is dependent on the type of self-incompatibility. In some cases, fecundity selection markedly alters the equilibrium dynamics of self-incompatibility alleles. We discuss the population genetic consequences of mate availability and fecundity selection in the contexts of conservation management of self-incompatible plant species and experimental investigations on self-incompatibility in natural populations.  相似文献   

11.
Genetic variation was shown earlier to bereduced in smaller populations of the narrowendemic putatively self-incompatible Cochlearia bavarica. To test whether thisnegatively affects plant fitness by reducedavailability of compatible mates and byinbreeding depression, we studied effects ofpopulation size and pollination treatments oncross-compatibility and offspring fitness in 16isolated populations of this plant. After openpollination, compatibility of crosses (i.e.,whether at least one fruit developed per markedflower), fruit set of compatible crosses, andcumulative fitness (number of plants permaternal ovule) after 14 months in a commongarden were lower for plants from smallerpopulations. Throughout the study, cumulativefitness was lower after hand pollination withpollen of one donor than after open pollination(finally 73.4% lower), suggesting that severalpollen donors or single pollen donors of higherquality are involved in open pollination.Moreover, cumulative fitness was lower afterhand selfing than after hand outcrossing(finally 69.4% lower), indicating bothinbreeding depression and reduced compatibilityafter selfing. High self-compatibility(40.6%), dry stigmas, and differences in thecompatibility of 11 of 33 experimentalreciprocal crosses between plant pairsconfirmed that C. bavarica has asporophytic self-incompatibility system, as iscommon in the Brassicaceae. Our studydemonstrates, that plants in smallerpopulations of species with a sporophyticself-incompatibility system can experiencetwofold fitness reductions associated withreduced genetic variability, i.e., twofoldgenetic Allee effects: via reducedcross-compatibility and via reduced offspringfitness.  相似文献   

12.
We investigated the reproductive system of the threatened taxon Dombeya acutangula ssp. acutangula Cav. (Sterculiaceae), an endemic tree of the Mascarene archipelago (Indian Ocean). A controlled crossing experiment was performed in two natural populations located in the remnants of the low-elevation dry forest on the island of La Réunion. Active pollination, probably mainly by insects, was necessary for reproduction in this species. Individuals varied in their degree of self-sterility from 0 to 100%. Outcrossing between nearby individuals produced lower seed set than did crosses between more distant individuals within one of the two tested populations. The variation in reproductive success on selfing and in the different types of crosses could result from inbreeding depression causing embryo death, and we provide evidence that progenies from selfing have lower seed size and quality. However, for inbreeding depression to account for the dramatic variation in seed set found in our crossing experiment, the distribution of genetic load and number of lethal factors required appear unrealistic. We favour an alternative interpretation, that D. acutangula possesses an incompatibility system similar to that found in other Sterculiaceae species such as Theobroma cacao L. Such an incompatibility system allows a certain amount of selfing, and different individuals vary in their degree of self-incompatibility. The low success of crosses among close neighbours in one population suggests that there was spatial structure for incompatibility alleles in that population. This could partly explain the decline of the species in fragmented and disturbed habitats, since relatedness at incompatibility loci may increase in small or isolated population and thus reduce mate availability. Received: 2 March 1998 / Accepted: 3 August 1998  相似文献   

13.
Self-fertilization and apomixis have often been seen as alternative evolutionary strategies of flowering plants that are advantageous for colonization scenarios and in bottleneck situations. Both traits have multiple origins, but different genetic control mechanisms; possible connections between the two phenomena have long been overlooked. Most apomictic plants, however, need a fertilization of polar nuclei for normal seed development (pseudogamy). If self-pollen is used for this purpose, self-compatibility is a requirement for successful pollen tube growth. Apomictic lineages usually evolve from sexual self-incompatible outcrossing plants, but pseudogamous apomicts frequently show a breakdown of self-incompatibility. Two possible pathways may explain the evolution of SC: (1) Polyploidy not only may trigger gametophytic apomixis, but also may result in a partial breakdown of SI systems. (2) Alternatively, frequent pseudo self-compatibility (PSC) via aborted pollen may induce selfing of pseudogamous apomicts (mentor effects). Self-fertile pseudogamous genotypes will be selected for within mixed sexual–apomictic populations because of avoidance of interploidal crosses; in founder situations, SC provides reproductive assurance independent from pollinators and mating partners. SI pseudogamous genotypes will be selected against in mixed populations because of minority cytotype problems and high pollen discounting; in founder populations, SI reactions among clone mates will reduce seed set. Selection for SC genotypes will eliminate SI unless the apomict maintains a high genotypic diversity and thus a diversity of S-alleles within a population, or shifts to pollen-independent autonomous apomixis. The implications of a breakdown of SI in apomictic plants for evolutionary questions and for agricultural sciences are being discussed.  相似文献   

14.

Background and Aims

Selection may favour a partial or complete loss of self-incompatibility (SI) if it increases the reproductive output of individuals in the presence of low mate availability. The reproductive output of individuals varying in their strength of SI may also be affected by population density via its affect on the spatial structuring and number of S-alleles in populations. Modifiers increasing levels of self-compatibility can be selected when self-compatible individuals receive reproductive compensation by, for example, increasing seed set and/or when they become associated with high fitness genotypes.

Methods

The effect of variation in the strength of SI and scrub density (low versus high) on seed set, seed germination and inbreeding depression in seed germination (δgerm) was investigated in the partially self-incompatible species Flourensia cernua by analysing data from self-, cross- and open-pollinated florets.

Key Results

Examination of 100 plants in both high and low scrub densities revealed that 51% of plants were strongly self-incompatible and 49 % varied from being self-incompatible to self-compatible. Seed set after hand cross-pollination was higher than after open-pollination for self-incompatible, partially self-incompatible and self-compatible plants but was uniformly low for strongly self-incompatible plants. Strongly self-incompatible and self-incompatible plants exhibited lower seed set, seed germination and multiplicative female fitness (floral display × seed set × seed germination) in open-pollinated florets compared with partially self-incompatible and self-compatible plants. Scrub density also had an effect on seed set and inbreeding depression: in low-density scrubs seed set was higher after open-pollination and δgerm was lower.

Conclusions

These data suggest that (a) plants suffered outcross pollen limitation, (b) female fitness in partially self-incompatible and self-compatible plants is enhanced by increased mate-compatibility and (c) plants in low-density scrubs received higher quality pollen via open-pollination than plants in high-density scrubs.Key words: Flourensia cernua, population density, seed set, seed germination, female fitness, partial self-incompatibility, Mapimí Biosphere Reserve  相似文献   

15.
Recent studies of germination in natural habitats, of genetic variation within populations and of the relative proportion of vegetative and sexual reproduction in the clonal plant speciesAnemone nemorosa suggest that sexual recruitment by seeds from outcrossed flowers is important for the maintenance of this species' populations. Because published reports on its breeding system are controversial, pollination experiments were performed in five natural populations ofA. nemorosa. Differences in ovule number per flower were recorded among populations, but they were not related to obvious habitat differences. Seed/ovule-ratios were significantly higher after open pollination and artificial crossing than after either artificial or spontaneous selfing. Populations had no effect on seed/ovuleratios. Different breeding indices indicated thatA. nemorosa is mainly self-incompatible. Nevertheless, some seed set also occurred after selfing, and both artificial and spontaneous selfing exhibited higher variation in seed/ovule-ratios than open pollination and artificial crossing. Continuous variation in seed/ovule-ratios after selfing suggested that the expression and effectiveness of the self-incompatibility system ofA. nemorosa is influenced by both genetic variation and phenotypic plasticity.  相似文献   

16.
In animal‐pollinated plants, both the spatial distribution of flowering individuals and the number of flowers that an individual displays affect pollen deposition rates and female reproductive success. Heterostylous species are likely to be particularly sensitive to the contingencies of spatial distribution, as they are reproductively subdivided into distinct mating groups, which usually exhibit self‐ and intra‐morph incompatibility and differ in floral morphology. In this paper, we explore the joint effects of both spatial distribution of potential mates and floral display size on morph‐specific pollen deposition rates and seed set patterns in two natural populations of Pulmonaria officinalis, a distylous species with a weak self‐incompatibility system. Both total stigmatic pollen load and the proportion of legitimate pollen decreased with increasing spatial isolation. Legitimate (intermorph) pollen transfer was, however, asymmetric and decreased more rapidly with decreasing proximity to a compatible legitimate mating partner in the S‐morph than in the L‐morph. Total stigmatic pollen loads per flower increased with increasing floral display size, indicating that large plants are disproportionately more visited than smaller individuals. However, because legitimate pollen deposition decreased with increasing floral display size, these results also suggest that larger numbers of flowers increase the degree of geitonogamous pollination. In both the L‐ and S‐morph, seed set significantly decreased with increasing isolation from a legitimate mating partner, but in the L‐morph seed set was less dependent on the spatial distribution of the S‐morph. In addition, seed set significantly increased with floral display size in the L‐morph, but not in the S‐morph. These findings indicate that the spatial distribution of potential mates and variation in floral display size may cause morph‐specific differences in pollen deposition rates and female reproductive success.  相似文献   

17.
BACKGROUND AND AIMS: Unilateral incompatibility (UI) occurs when pollinations between species are successful in one direction but not in the other. Self-incompatible (SI) species frequently show UI with genetically related, self-compatible (SC) species, as pollen of SI species is compatible on the SC pistil, but not vice versa. Many examples of unilateral incompatibility, and all those which have been studied most intensively, are found in the Solanaceae, particularly Lycopersicon, Solanum, Nicotiana and Petunia. The genus Capsicum is evolutionarily somewhat distant from Lycopersicon and Solanum and even further removed from Nicotiana and Petunia. Unilateral incompatibility has also been reported in Capsicum; however, this is the first comprehensive study of crosses between all readily available species in the genus. METHODS: All readily available (wild and domesticated) species in the genus are used as plant material, including the three genera from the Capsicum pubescens complex plus eight other species. Pollinations were made on pot-grown plants in a glasshouse. The number of pistils pollinated per cross varied (from five to 40 pistils per plant), depending on the numbers of flowers available. Pistils were collected 24 h after pollination and fixed for 3-24 h. After staining, pistils were mounted in a drop of stain, squashed gently under a cover slip and examined microscopically under ultra-violet light for pollen tube growth. KEY RESULTS: Unilateral incompatibility is confirmed in the C. pubescens complex. Its direction conforms to that predominant in the Solanaceae and other families, i.e. pistils of self-incompatible species, or self-compatible taxa closely related to self-incompatible species, inhibit pollen tubes of self-compatible species. CONCLUSIONS: Unilateral incompatibility in Capsicum does not seem to have arisen to prevent introgression of self-compatibility into self-incompatible taxa, but as a by-product of divergence of the C. pubescens complex from the remainder of the genus.  相似文献   

18.
Six almond progenies, each the product of a cross between a self-compatible and a self-incompatible parent, were analysed for stylar ribonucleases. Proteins were extracted and separated using non-equilibrium pH gradient electrofocusing (NEPHGE), and the gels were stained for ribonuclease activity. Most seedlings showed either two principal bands, interpreted as corresponding to two incompatibility alleles, or a single band. The seedlings were also bagged in the field at flowering time to determine fruit set after selfing, and some were also examined for the growth of pollen-tubes in selfed styles using UV fluorescence microscopy. With very few exceptions, those seedlings showing single-banded zymograms were found to be self-compatible according to field and microscope studies, and those with two bands were found to be self-incompatible. We conclude that the allele for self-compatibility in almond does not code for ribonuclease activity and that the ribonuclease isoenzyme assay is a convenient technique for predicting self-compatibility in segregating progenies. A novel band in two derivatives of ’Ferrastar’ was ascribed to a new incompatibility allele, S 10 . Received: 19 January 1999 / Accepted: 30 January 1999  相似文献   

19.
The reproductive biology of four Japanese Calystegia species (Convolvulaceae) was studied to examine the effects of clonality and population structure on reproductive success. Calystegia soldanella, C. hederacea, and C. japonica are self-incompatible, while C. sepium is self-compatible but needs pollinator services for self-pollination. The showy, bisexual flowers of Calystegia offer pollen and nectar that attract many kinds of insects such as bees and syrphid flies. Clones of C. soldanella often formed mats just above the high tide line on beaches and produced a great number of seeds. Calystegia hederacea and C. japonica were distributed as patches of separate clones and often failed to transfer pollen grains among clones. Fruit and seed sets in C. hederacea and C. japonica were not limited by pollinators but by the number of compatible pollen grains. Although C. sepium clones were also distributed in patches, high and stable fecundity was achieved by self-compatibility and pollinator attraction. We suggest that self-compatibility in C. sepium has evolved under fertilization limitation caused by geitonogamy or facilitated selfing.  相似文献   

20.
As heterostyly and self incompatibility are linked in tristylous L. salicaria, all cross-compatible pollinations – those between anthers and styles of the same level – should produce viable seed. The rigor of this theory was tested using seed set and germination of cross-compatible pollinations in 18 naturalized L. salicaria populations in Minnesota/Wisconsin (n=342 genotypes; n=86 shorts, n=127 mids, and n=129 longs). Seed set for short-styled genotypes ranged from zero to 135 (36+38); mids–0–156, (53+39), and longs–0–151 (59+39). Mean seed set per capsule was not significantly different for mids and longs, but both were significantly greater than that of shorts (F=14, P<0.0001). Zero seed set frequently occurred in most compatible crosses, in contrast with theoretical expectations. The high percentage of populations deviating from normality must be due to incompatibility. An incompatibility system independent of heterostyly could cause this, where failed crosses result from matches of incompatibility specificities in pollen and pistil. This independence is questionable, however, given the non-significant difference in failed outcrosses for pooled χ2 comparing within and between populations (χ2=0.395, P>0.5). A sporophytic incompatibility model is proposed with a minimum of three specificities. Zero seed set in compatible crosses is due to the addition of alleles from L. alatum, a distylous species that forms introgressive hybrids with L. salicaria. Reduced fecundity could increase the deficiency of shorts, and significantly greater seed germination of shorts could explain the continued presence of short-styled individuals in L. salicaria populations. Received: 3 February 2000 / Accepted: 25 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号