首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaf water potentials measured with a pressure chamber   总被引:31,自引:17,他引:14       下载免费PDF全文
Boyer JS 《Plant physiology》1967,42(1):133-137
Leaf water potentials were estimated from the sum of the balancing pressure measured with a pressure chamber and the osmotic potential of the xylem sap in leafy shoots or leaves. When leaf water potentials in yew, rhododendron, and sunflower were compared with those measured with a thermocouple psychrometer known to indicate accurate values of leaf water potential, determinations were within ± 2 bars of the psychrometer measurements with sunflower and yew. In rhododendron. water potentials measured with the pressure chamber plus xylem sap were 2.5 bars less negative to 4 bars more negative than psychrometer measurements.

The discrepancies in the rhododendron measurements could be attributed, at least in part, to the filling of tissues other than xylem with xylem sap during measurements with the pressure chamber. It was concluded that, although stem characteristics may affect the measurements, pressure chamber determinations were sufficiently close to psychrometer measurements that the pressure chamber may be used for relative measurements of leaf water potentials, especially in sunflower and yew. For accurate determinations of leaf water potential, however, pressure chamber measurements must be calibrated with a thermocouple psychrometer.

  相似文献   

2.
Measurements with a pressure chamber were made of the xylem water potential of leaves, shoots and roots from bean plants (Pkaseolus vulgaris L. cv. Processor) grown with a 12 hour dark period and natural or artificial light conditions during the day. The water potentials were measured at the end of a dark period and during the light period. Measurements taken at the end of the dark period indicated normal potential gradients within the soil/plant system (leaf < shoot < root < soil), when the matric potential of soil water was relatively high (above ?0.02 bar), and the gradients then also remained normal during the day (natural light). When the soil water potential was ?1 bar or lower in the morning, however, the root xylem water potential was higher than the soil water potential; at very low soil water potentials (< ?4 bar) it remained higher during most of the day. In this case also leaf and shoot xylem water potentials were higher than the soil water potential in the early morning, although decreasing rapidly in daylight. Under artificial light, both leaf and root water potentials were higher than the soil water potential throughout the whole diurnal cycle when the latter potential was below ?4 bar. From measurements of stomatal diffusion resistance, transpiration, relative water content of leaves and of changes in the matric potential of soil water, it was concluded that when the matric potential of soil water was low, water could be taken up by the plant against a water potential gradient. Because leaf xylem water potential was always lower than root xylem water potential, the mechanism involved in the inversion of water potential gradient must be localized in the roots, and probably related to ion uptake. Symbols and abbreviations used in the text: Ψ: Plant water potential (thermocouple psychrometer); Ψx: Xylem water potential (pressure chamber); Ψs: Osmotic potential of xylem sap; Ψm: Matric potential of soil water; RWC: Relative water content.  相似文献   

3.
In situ measurement of sudden leaf water potential changes has not been performed under field conditions. A laboratory investigation involving the measurement of leaf water potential prior to and 2 to 200 minutes after excision of citrus leaves (Citrus jambhiri) showed good linear correlation (r = 0.99) between in situ leaf psychrometer and Scholander pressure chamber measurements. Following this, a field investigation was conducted which involved psychrometric measurement prior to petiole excision and 1 minute after excision. Simultaneous pressure chamber measurements were performed on neighboring leaves prior to the time of excision and then on the psychrometer leaf about 2 minutes after excision. These data indicate that within the first 2 minutes after excision, psychrometer and pressure chamber measurements were linearly correlated (r = 0.97). Under high evaporative demand conditions, the rate of water potential decrease was between 250 and 700 kilopascals in the first minute after excision. These results show that the thermocouple psychrometer can be used as a dynamic and nondestructive field technique for monitoring leaf water potential.  相似文献   

4.
Water potential gradient in a tall sequoiadendron   总被引:1,自引:0,他引:1       下载免费PDF全文
With an elevator installed in a 90-meter tall Sequoiadendron to collect the samples, xylem pressure potential measurements were made approximately every 15 meters along 60 meters of the tree's height. The measured gradient was about −0.8 bar per 10 meters of height, i.e., less than the hydrostatic gradient. Correction of the xylem pressure potential data by calibration against a thermocouple psychrometer confirmed this result. Similar gradients are described in the literature in tall conifers at times of low transpiration, although a different sampling technique was used. If the data in the present study and those supporting it are typical, they imply a re-evaluation of either the use of the pressure chamber to estimate water potential or the present theories describing water transport in tall trees.  相似文献   

5.
The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios.  相似文献   

6.
Thermocouple psychrometers are the only instruments which can measure the in situ water potential of intact leaves, and which can possibly be used to monitor leaf water potential. Unfortunately, their usefulness is limited by a number of difficulties, among them fluctuating temperatures and temperature gradients within the psychrometer, sealing of the psychrometer chamber to the leaf, shading of the leaf by the psychrometer, and resistance to water vapor diffusion by the cuticle when the stomates are closed. Using Citrus jambhiri, we have tested several psychrometer design and operational modifications and showed that in situ psychrometric measurements compared favorably with simultaneous Scholander pressure chamber measurements on neighboring leaves when the latter were corrected for the osmotic potential.  相似文献   

7.
Significantly different water relations attributes were derived for temperate conifers measured using the repeat pressurization (RP) and composite (CM) pressure–volume (PV) procedures. In the RP method, single shoots were measured 10–20 times for xylem water potential and mass during air-drying to produce each PV curve. In contrast, for CM PV curves 25–30 shoots were air-dried to relative water contents (R) ranging from 1.0 to 0.5 before being pressurized once. Aggregation of these 25–30 paired values produced single PV curves. Pinus banksiana, P. resinosa and Picea mariana, but not Pinus strobus, had lower full turgor osmotic potential, shallower slope of the linear segment of the PV curves and higher symplast fraction with the CM method. Data points along the linear segment of PV curves were obtained to lower R using the CM method. Reanalysis using similar R ranges eliminated differences between PV methods for Picea mariana but not Pinus banksiana and P. resinosa.  相似文献   

8.
Cuticular resistance to water vapour diffusion between the substomatalcavity and the sensing psychrometer junction is a problem uniqueto leaf hygrometry. This resistance is not encountered in soilor solution hygrometry. The cuticular resistance may introduceerror in the measurement of leaf water potential. Using in situleaf hygrometers, we studied the effect of abrading the cuticleof Citrus jambhiri Lushington leaves, to reduce the diffusiveresistance. Field measurements of psychrometer water potentialwere compared with Scholander pressure chamber values for adjacentleaves. Different treatments were compared by sealing pairsof psychrometers on either side of the midrib. The time forwater vapour equilibration between the leaf and the psychrometerchamber was greater than 5 h for no abrasion. For abraded leaves,the true water potential value was obtained within an hour.After equilibration, psychrometer values compared favourablywith pressure chamber values for adjacent leaves (r > 0.97).Measured water potential for unabraded leaves did not correlatewell with corresponding pressure chamber measurements. Scanning electron micrographs indicated that the damage causedby abrading leaves for 60 s using carborundum powder (60 µmdiameter) was surface localized, with numerous scratchings ofthe leaf cuticle. The coarse abrasion treatment (aluminium oxide,75 µm diameter) resulted in fewer but larger cavitiesin the epidermis, which may explain the observed variabilityin the corresponding psychrometric measurements. Key words: Leaf water potential, Cuticular resistance, Leaf abrasion, Thermocouple psychrometer  相似文献   

9.
Prediction of water relations attributes for red pine (Pinusresinosa Ait.) derived from pressure-volume (PV) curves varieddepending on which of three methods was used. The sap expressionmethod entailed the enclosure of a shoot in a pressure chamberand expression of xylem sap by applying a constant selectedpressure until sap flow ceased, at which point xylem water potentialand shoot weight were measured. A sap expression PV curve wasformed by aggregating pairs of water potential-weight measurements,each pair supplied by one of 25 shoots. The repeat pressurizationmethod involved repeatedly measuring xylem water potential andshoot weight on a single shoot drying on a laboratory bench.Repeat pressurization PV curves were constructed from data providedby a single shoot. The composite method utilized single measurementsof xylem water potential and shoot weight on 25-30 differentshoots ranging in relative water content from about 1.0 to 0.5achieved by bench drying. Composite PV curves were constructedfrom aggregate data supplied by a population of shoots. Therewas close agreement in all PV attributes generated using repeatpressurization and sap expression methods. In contrast, withthe composite PV method, there was a fundamental differencein the slope of the linear region of the PV curves, causingosmotic potentials at full turgor and turgor loss to be morenegative, and relative water content at turgor loss to be lowerand symplast fraction to be higher. Comparison of compositeand repeat pressurization PV curves over the same ranges inwater content did not eliminate differences in derived waterrelations attributes. Differences in water potential isothermsrelated to the PV procedures used suggest that prolongedor repeatedexposure to gas at high pressure may introduce errors in theestimation of water relations attributes. Key words: Pinus resinosa, pressure chamber, pressure volume, tissue water relations  相似文献   

10.
The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of −10 bars. Since most of the loss in photochemical activity occurred at water potentials below −10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves.  相似文献   

11.
Pressure probe and isopiestic psychrometer measure similar turgor   总被引:10,自引:2,他引:8       下载免费PDF全文
Turgor measured with a miniature pressure probe was compared to that measured with an isopiestic thermocouple psychrometer in mature regions of soybean (Glycine max [L.] Merr.) stems. The probe measured turgor directly in cells of intact stems whereas the psychrometer measured the water potential and osmotic potential of excised stem segments and turgor was calculated by difference. When care was taken to prevent dehydration when working with the pressure probe, and diffusive resistance and dilution errors with the psychrometer, both methods gave similar values of turgor whether the plants were dehydrating or rehydrating. This finding, together with the previously demonstrated similarity in turgor measured with the isopiestic psychrometer and a pressure chamber, indicates that the pressure probe provides accurate measurements of turgor despite the need to penetrate the cell. On the other hand, it suggests that as long as precautions are taken to obtain accurate values for the water potential and osmotic potential, turgor can be determined by isopiestic psychrometry in tissues not accessible to the pressure probe for physical reasons.  相似文献   

12.
Abstract. Sap expression, air drying and a combined technique were used to measure the water potential isotherm of Pinus ponderosa Laws, seedling shoots with the pressure chamber. Discrepancies between water relations parameters derived from these techniques can be partially explained by air entry into air drying tissues, hysteresis in the xylem water potential isotherm and dilution of apoplasmic solutes during sap expression.  相似文献   

13.
Klepper B  Barrs HD 《Plant physiology》1968,43(7):1138-1140
Thermocouple psychrometers gave lower estimates of water potential of cotton leaves than did a pressure chamber. This difference was considerable for turgid leaves, but progressively decreased for leaves with lower water potentials and fell to zero at water potentials below about −10 bars. The conductivity of washings from cotton leaves removed from the psychrometric equilibration chambers was related to the magnitude of this discrepancy in water potential, indicating that the discrepancy is due to salts on the leaf surface which make the psychrometric estimates too low. This error, which may be as great as 400 to 500%, cannot be eliminated by washing the leaves because salts may be secreted during the equilibration period. Therefore, a thermocouple psychrometer is not suitable for measuring the water potential of cotton leaves when it is above about −10 bars.  相似文献   

14.
T. McBurney 《Plant and Soil》1988,111(2):271-275
When measuring plant water potential in conditions of fluctuating temperature, commercial psychrometers exhibit large errors which are caused by a temperature difference between the reference junctions and the chamber air. A novel psychrometer capable of field use is described which incorporates an electronic device for controlling reference junction temperatures. It consists of a chamber with a thermocouple mounted in it for measuring dewpoints and another thermocouple for sensing the temperature gradients. A thermo-electric heat-pump keeps the temperature of the reference junctions the same as that of the chamber air. Good agreement was found between measurements made with this psychrometer and independent measurements made with the destructive pressure chamber method in the glasshouse and in the field under conditions of widely fluctuating temperature. Corresponding measurements with a commercial psychrometer without temperature control failed to show such agreement. Heavy thermal insulation is necessary, despite the temperature control, which can restrict the psychrometers used. Possibilities for further improvements are discussed.  相似文献   

15.
Recent developments in water status measurement techniques using the psychrometer, the pressure probe, the osmometer and pressure chamber are reviewed, and the process of cell elongation from the viewpoint of plant-water relations is discussed for plants subjected to various environmental stress conditions. Under water-deficient conditions, cell elongation of higher plants can be inhibited by interruption of water flow from the xylem to the surrounding elongating cells. The process of growth inhibition at low water potentials could be reversed by increasing the xylem water potential by means of pressure application in the root region, allowing water to flow from the xylem to the surrounding cells. This finding confirmed that a water potential field associated with growth process,i.e., the growth-induced water potential, is an important regulating factor for cell elongation other than metabolic factors. The concept of the growth-induced water potential was found to be applicable for growth retardation caused by cold stress, heat stress, nutrient deficiency and salinity stress conditions. In the present review, the fact that the cell elongation rate is primarily associated with how much water can be absorbed by elongating cells under water-deficiency, nutrient deficiency, salt stress, cold stress and heat stress conditions is suggested.  相似文献   

16.
Leaf water potential (Ψleaf) determinations were made on excised leaf samples using a commercial dew point hygrometer (Wescor Inc., Logan, Utah) and a thermocouple psychrometer operated in the isopiestic mode. With soybean leaves (Glycine max L.), there was good agreement between instruments; equilibration times were 2 to 3 hours. With cereals (Triticum aestivum L. and Hordeum vulgare L.), agreement between instruments was poor for moderately wilted leaves when 7-mm-diameter punches were used in the hygrometer and 20-mm slices were used in the psychrometer, because the Ψleaf values from the dew point hygrometer were too high. Agreement was improved by replacing the 7-mm punch samples in the hygrometer by 13-mm slices, which had a lower cut edge to volume ratio. Equilibration times for cereals were normally 6 to 8 hours. Spuriously high Ψleaf values obtained with 7-mm leaf punches may be associated with the ion release and reabsorption that occur upon tissue excision; such errors evidently depend both on the species and on tissue water status.  相似文献   

17.
The progressive changes in measured water potential and the time to equilibration was investigated forPinus elliotii varelliotii needles in thermocouple psychrometer chambers held at 15°C, 22.5°C, and 30°C. Needles at 30°C appeared to loose semi-permeable membrane integrity after 14 hours. Needles held at 22.5°C had similar problems after 48 hours while those at 15°C were not affected. time to equilibrium was shortest at 30°C and longest at 15°C.Ethanol in the chambers had the same effect on measured water potential as did >14 hours at 30°C. Needle color, chamber odor, and pattern of measured water potential suggested an anaerobic condition in the chamber was the cause of reduced membrane integrity.Journal series paper No 7187 of the Florida, Agric. Exp. Sta.At the time the work was in progress the senior author was a graduate research assistant at University of Florida.  相似文献   

18.
Abstract. Cuticular resistance to water vapour diffusion is an important aspect of thermocouple psychrometry and may introduce significant error in the measurement of leaf water potential (Ψ). The effect of the citrus (Citrus mitis Blanco) leaf cuticle on water vapour movement was studied using the times required for vapour pressure equilibration during thermocouple psychrometric measurement of Ψ. Cuticular abrasion with various carborundum powders was used to reduce the diffusive resistance of both the adaxial and abaxial leaf surfaces, and the extent of the disruption to the leaf was investigated with light and electron microscopy. Cuticular abrasion resulted in reduced equilibration times due to decreased cuticular resistance and greater water vapour movement between the leaf and the psychrometer chamber. Equilibration times were reduced from over 5 h in the unabraded control leaves to 1 h with cuticle abrasion. This was associated with the decrease in diffusive resistance with cuticular abrasion from over 55 s cm?1 to less than 8 s cm?1 for both the adaxial and abaxial leaf surfaces. Scanning electron micrographs of the abraded leaf tissue revealed considerable disruption of the stomatal ledge and of the guard cells, surface smoothing and displacement of waxes into the stomatal aperture, and damage to veins. Observations with the transmission electron microscope revealed frequent disruption of epidermal cell walls, and damage to both the cytoplasmic and vacuolar membranes.  相似文献   

19.
Temperature and growth-induced water potential   总被引:6,自引:1,他引:5  
When the steins of dark-grown soybean [Glycine max (L.) Merr.] seedlings grew rapidly at favorable temperatures in saturating humidities, a water potential of about 0·2 MPa was induced by growth ($pSo-$pSw, where $pSo is the water potential of the basal nonelongating tissue and $pSw is the water potential of the elongating tissue). If this water potential was caused by high concentrations of solute in the apoplast, as has been proposed, lowering the temperature should have little effect on the potential. On the other hand, if the water potential was caused by apoplast tensions generated by growth, then the tensions should disappear as growth is inhibited by low temperatures. We observed that the growth-induced water potential became too small to detect when growth was inhibited by temperatures as low as 13—5 °C. The disappearance was observed as a rise in apoplast water potential using a thermocouple psychrometer for intact plants, a rise in cell turgor using a miniature pressure probe and a decrease in apoplast tensions using a pressure chamber. The disappearance was not caused by a loss of solute from the apoplast because the tensions fully accounted for the growth-induced water potential at all temperatures. The results are consistent with the lack of solute measured directly in the apoplast solutions at high temperatures (Nonami & Boyer 1987). Therefore, it was concluded that little solute was present in the apoplast at any temperature, and the growth-induced water potential was associated mostly with a tension that moved water from the xylem and into the surrounding cells to meet the demand of cell enlargement.  相似文献   

20.
Relationship between leaf and xylem water potentials in rice plants   总被引:1,自引:0,他引:1  
Leaf and xylem water potentials were measured in rice plantswith and without transpiration using a thermocouple psychrometerand a pressure chamber. The leaf water potential practicallycoincided with the xylem water potential in leaves without transpiration,while the latter was 3–5 bars lower when intense transpirationwas occurring. The pressure chamber should not be used to measureleaf water potential during intense transpiration in the field.The water status in transpiring leaves is discussed. (Received March 6, 1978; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号