首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 880 毫秒
1.
Examining variation in pollinator effectiveness and seed production resulting from single pollinator visits can provide a deeper understanding of how pollinators may influence reproduction in plant populations. When comparing populations, differences in the number of seeds produced from single pollinator visits to flowers may not always be attributable to differences in pollen deposition, but rather to differences in plant fecundity or resource availability. Pollinator effectiveness and seed production were studied for two populations over a 4-year period and were measured using single bee visit manipulations of flowers. No significant difference in pollinator effectiveness (pollen deposited on stigmas) was observed between the two populations. However, a significant difference between the two populations was observed in the number of seeds produced per flower. The Wellhouse population produced approximately three times as many seeds/flower from a single pollinator visit as did the Firefly Meadow population. Within each population, pollinators (Bombus pennsylvanicus and Apis mellifera) did not differ in the number of pollen grains deposited on stigmas or seeds produced per flower from single visit experiments. Differences in plant density, pollen viability, and ovules per flower also could not account for a significant amount of the variation. A resource augmentation experiment (water and fertilizer application) resulted in a decrease in seeds per flower per bee visit for the water treatment at the Wellhouse population only. For both populations, pollen deposition, pollen viability, and ovules per flower were unaffected by the resource augmentation. Alternative possibilities for the observed differences in seeds per flower per bee visit are discussed.  相似文献   

2.
The limited seed production of insect-depended plant, Liriodendron chinense was once considered to be pollen-limited and insufficient cross pollination. In this study, we counted pollen grains deposited on stigmas in three populations in Guizhou, Hunan and Zhejiang provinces of China respectively. Over 61.9% stigmas were pollinated. From 1994 to 1996, the mean number of pollen grains on each stigma ranged from 4.4 to 42.6, much more than ovules(2) in each pistil. Based on observations of three years, both the pollination rate and pollen quantity on stigmas significantly affected seed set. When flowers opened without stamens dehiscencing at the early stage of anthesis, stigmas received considerable quantity of pollen grains. Pollen grains from different sources were able to germinate and pollen tube growth rates were not greatly variable. It is very likely that pollen grains arrived first would fertilize eggs. Since only several pollen tubes went through the stylar canal, the potential pollen competition may exist. In this case, there would be strong selection on floral syndrome which benefit early insect visits. Pollen grains from the early visits would have a greater chance to fertilize ovules than those from later visits, which implies that cross pollination is the predominant breeding system of this plant. The conclusion was also confirmed by following four artificial experiments. Three treatments, including flowers bagged, netted or with the perianth removed, all reduced seed set clearly, but flowers with the stamens removed (emasculation)had a higher seed production by open pollination. As the rates of deposited stigmas in three populations were 6~8 times more than full seed set, we considerthat lower seed production in this plant may not mainly be due to pollen limitation.  相似文献   

3.
Habitat fragmentation can markedly influence the levels of pollen deposition and seed production in natural populations, and rare plants may be especially susceptible to any associated reductions in pollen quantity and quality. In order to ascertain the potential for pollen limitation of maternal fitness in a rare plant, Silene douglasii var. oraria, which is endemic to western coastal prairies, we counted ovules and measured conspecific and heterospecific pollen deposition on stigmas collected from open-pollinated plants. We further investigated the effect of increasing pollen intensity on fruit production, seed number and weight, as well as several measures of progeny vigor. Three levels of outcross pollen were added to plant stigmas for comparison with autogamous and open pollination in the largest naturally occurring population. Both seed and fruit production were significantly greater (P<0.05) for supplemented versus nonsupplemented stigmas, but flowers receiving different levels of pollen addition were statistically indistinguishable. Seed germination and seedling survival were also lowest for the offspring of nonsupplemented flowers; however, in natural populations, opportunities for pollen competition are very limited since open-pollinated flowers averaged fewer viable pollen grains than ovules. Seed production was equivalent for open- and autogamously pollinated flowers in 1996, indicating that natural pollen transfer may have involved mostly self pollen. Overall, the low reproductive success of var. oraria likely reflects both low pollen quantity and quality. Multiyear empirical studies of pollen intensity in field populations are needed so that we can better understand the fitness consequences of pollen limitation in rare perennials.  相似文献   

4.
M. Ramsey 《Oecologia》1995,103(1):101-108
The extent, frequency and causes of pollenlimited seed production were examined in partially selffertile populations of Blandfordia grandiflora for 2 years. Percentage seed set of open-pollinated plants (50–57%) did not differ within or between years, and was about 19% less than experimentally cross-pollinated plants (70–75%). Floral visits by honeybees did not differ through the flowering season and the number of pollen grains deposited on stigmas within 12 h of flowers opening exceeded the number of ovules per flower, indicating that the quality rather than the quantity of pollination limited seed set. Pollen limitation was caused by concurrent self- and cross-pollination and the subsequent abortion of some selfed ovules due to inbreeding depression. Natural seed set (55%) was intermediate between selfed (43%) and crossed (75%) flowers and was not increased when flowers that had been available to pollinators for 24 h were hand cross-pollinated, suggesting that ovules were already fertilized. Similarly, experimental pollination with both cross and self pollen within 24 h of flowers opening did not increase seed set relative to natural seed set, indicating that both cross- and self-fertilizations had occurred. In contrast, when selfing followed crossing by 48 h, or vice versa, seed set did not differ from crossed-only or selfed-only flowers, respectively, indicating that ovules were pre-empted by the first pollination. Collectively, these results indicate that under natural conditions self pollen pre-empts ovules, rendering them unavailable for cross-fertilization. This selfing reduces fecundity by 50%, as estimated from the natural production of cross seeds when selfing was prevented. Consequently, selection should favour floral traits, such as increased stigma-anther separation or protandry, that reduce interference between male and female functions that leads to selfing.  相似文献   

5.
Jepsonia parryi (Saxifragaceae) has heterostylous flowers and is strongly self-incompatible. Pin flowers have long styles, large stigmas, short stamens, and numerous, small pollen grains with finely sculptured walls. Thrum flowers have short styles, small stigmas, long stamens, and fewer, larger pollen grains with coarsely sculptured walls. Pin plants and thrum plants occur in a 1:1 ratio in field populations. Although the insect pollinators of J. parryi transfer ample compatible pollen to pin and thrum stigmas to account for full seed production, much of the pollen deposited on stigmas is incompatible. Analysis of the pollen deposits on stigmas collected from field populations indicates that compatible “legitimate” pollination of pin and thrum flowers is essentially random and is not obviously aided by floral dimorphism. It is suggested that although heterostyly had a positive adaptive value in the past evolutionary history of Jepsonia it is no longer adaptive under the present pollination regime, although it is maintained because of its strong genetic fixity.  相似文献   

6.
Pollen limitation and resource limitation were invoked to account for the pattern that flowering plants produce more flowers and ovules than fruits and seeds. This study aimed to determine their relative importance in Veratrum nigrum, a self-compatible, perennial, andromonoecious herb. In order to determine whether female production was limited by pollen grains on stigmas or by available resources, we performed supplemental hand pollination in three populations, male-flower-bud removal in three other populations, and emasculation of hermaphroditic flowers in still another population, resulting in a total of seven populations experimentally manipulated. Across the three populations, supplemental hand pollination did not significantly increase fruit set, seed number per fruit, and total seed production per individual, nor did emasculation of hermaphroditic flowers. Taken together, our results suggest that pollen grains deposited on stigmas were abundant enough to fertilize all the ovules. Male-flower-bud removal significantly increased the mean size of hermaphroditic flowers in all three populations. Female reproductive success was increased in one population, but not in the other two populations possibly due to heavy flower/seed predation. We concluded that the female reproductive success of V. nigrum was not limited by pollen grains but by available resources, which is consistent with Bateman's principle. Furthermore, the female reproduction increase of male-flower-bud removal individuals might suggest a trade-off between male and female sexual functions.  相似文献   

7.
Females of Thalictrum pubescens produce stamens containing sterile pollen. Earlier studies have shown the presence of stamens does not increase seed set through increased visitation by insects. Insects may, however, increase pollen deposition on stigmas and increase pollen competition. This paper examines: 1) pollen deposition levels in natural populations and 2) whether larger pollen loads lead to higher quality offspring. The majority of stigmas in two populations received less than 15 grains, but a small proportion had large loads. The latter may represent the occasional insect visit. These visits may provide the opportunity for pollen tube competition. In the greenhouse, flowers receiving heavy-pollen loads had higher seed set than flowers receiving light-pollen loads. Seeds from the two treatments were the same mass, had similar germination times, and seedlings had the same mass. In conclusion, it does not appear that pollen tube competition can account for the maintenance of stamens in females of T. pubescens.  相似文献   

8.
Pollination success of plants is highly susceptible to the frequency of visits and foraging behavior of pollinators. Pollination of the nectarless flowers of Pedicularis species depends on bumblebee workers collecting pollen by vibrating the anthers (buzz pollination). However, little is known about the efficiency of the pollination system. Foraging behavior, pollen removal from anthers and pollen deposition on stigmas of P. chamissonis were studied to assess the effectiveness of buzz pollination in an alpine snowbed population of northern Japan. Although bumblebees tended to visit most of the flowers open at a given time within inflorescences during a single visit, pollen removal rate at the first visit was about 20%, and buzzing period decreased with increasing number of previous visits, resulting in a decreasing proportion of pollen removed per visit as the number of visits increased. These trends enable plants to provide pollen for more pollinators. The number of pollen grains deposited on stigmas was not saturated during the first visit and increased with additional visits. Irrespective of weak self-compatibility, evidence of interference between self and outcross pollen was lacking for seed production. Therefore, buzz pollination in P. chamissonis acts as a mechanism that improves the chance of cross-pollination upon multiple visits if pollinator visitation is frequent.  相似文献   

9.
Sympatric plant species can compete for pollination services in several ways. For example, pollinators may move between species and deposit heterospecific pollen on stigmas, which in turn may reduce the efficacy of conspecific pollen. We explored this possibility by determining the effect of Delphinium nelsonii pollen on seed set in Ipomopsis aggregata. These montane herbs are pollinated by hummingbirds, experience heterospecific pollen deposition in nature, and suffer reduced seed set in each other's presence. We hand-pollinated flowers of I. aggregata with either pure conspecific pollen or a mixture of pollen of the two species. Resulting pollen loads on stigmas ranged from 0–865 D. nelsonii grains and from 10–336 I. aggregata grains; mean seed set per flower was 11.3. There was no detectable effect of D. nelsonii pollen load on I. aggregata seed set. It is possible that seed set reductions seen in previous studies of competition for pollination between these species were caused by pollen wastage, pollen layering on the pollinator, or the temporal sequence of pollen arrival at the stigma.  相似文献   

10.
The pollen competition hypothesis predicts that when the number of pollen grains deposited onto stigmas exceeds the number of ovules, selection can operate in the time frame between deposition and fertilization. Moreover, because of the overlap in gene expression between the two phases of the life cycle, selection on microgametophytes may alter the resulting sporophytic generation. The extent to which pollen competition occurs in nature has been unclear, because tests of the predictions of the pollen competition hypothesis have used cultivars and/or artificial growth conditions and hand-pollination techniques. In this study we used a wild species, Cucurbita foetidissima, in its natural habitat (southern New Mexico) to determine the amount and timing of the arrival of pollen onto stigmas, the relationship between pollen deposition and seed number, and the effects of the intensity of pollen competition on progeny vigor. We found that ~900 pollen grains are necessary for full seed set and that a single visit by a pollinator results in the deposition of 653.0 ± 101.8 pollen grains. About 29% of the flowers receiving a single pollinator visit had 900 or more pollen grains on its stigma. Moreover, within 2 h of anthesis, >4000 pollen grains were deposited onto a typical stigma, indicating that multiple pollinator visits must have occurred. Fruits produced by multiple visits had greater seed numbers (206 vs. 147) than fruits produced by a single visit. Finally, the progeny produced by multiple pollinator visits were more vigorous than those produced by single visits with respect to five measures of vegetative growth (MANCOVA, Wilks' lambda = 0.96, F(6,370) = 2.54, P < 0.02. These data demonstrate that conditions for pollen competition exist in nature and support the prediction that pollen competition enhances offspring vigor.  相似文献   

11.
Sarcotheca celebica is a tree endemic lo Sulawesi (and Kabaena Island). Kike many species in the Oxalidaceae it is heterostylous (here distylous). The small red flowers, which last less than one day, are produced in loose inflorescences which bloom over a long flowering season (several months). There are two whorls of stamens in each plant, which overlap in length, perhaps indicating a tristylous origin. Long–styled and short–styled plants differed in the measurements of stamens, styles and pollen grains. Only a small amount of pollen was produced by long–styled plants. Effective insect pollinators were mainly large Hymenoptcra, especially Xylocopa species, which visited many flowers and different trees in rapid succession. A wide diversity of insects visited flowers of both morphs, and numbers visiting each morph were approximately equal. The only successful experimental pollinations were from pollen of short–styled plants onto stigmas of long–styled plants. Automatic self–pollination did not occur. In nature not all flowers produced fruit, some fruits were set with no seeds and a low number of seeds was set in all fruits. The differences in seed set per fruit between short–styled, long–styled and experimental crosses indicate that pollinator visits were insufficient for maximum seed set in some fruits, but selective abortion of seeds must also be occurring. We suggest that S. celebica may represent an intermediate stage in the evolution of dioecy from distyly, with the short–styled flowers making their major genetic contribution through pollen and long–styled flowers through ovules.  相似文献   

12.
Allison A. Snow 《Oecologia》1982,55(2):231-237
Summary Initial seed set and fruit set were pollen-limited in a Costa Rican population of Passiflora vitifolia, a self-incompatible species with 200–350 ovules per flower. Pollination intensity was measured by counting the number of allogamous pollen grains on stigmas of the large one-day flowers. Hand-pollinations demonstrated that 25–50 pollen grains are required for fruit set, and >450 are needed for maximum seed set, with a pollen:seed ratio of about 1.6:1.0. Hummingbirds (Phaethornis superciliosus) delivered sufficient allogamous pollen for maximum seed set to only 28% of the flowers examined. Naturally pollinated flowers yielded fewer fruits and fewer seeds per fruit than those pollinated by hand. Most pollen transferred by humming-birds was self-incompatible; emasculated flowers yielded higher seed set than flowers with intact anthers. Visitation rates did not provide a good index of effective pollination.There were significant differences in ovule number, maximum seed set, and maximum per cent seed set among individual vines. More than half of an individual's flowers failed to set fruit, whether pollinated by birds or by hand. In this population, maximum reproductive potential may be limited by maternal resources for fruit development, but seed set varies with pollination intensity. Pollen-limited seed set may be a disadvantage of self-incompatibility, especially in species with many-seeded fruits.  相似文献   

13.
In many species with animal-pollinated flowers, pollen arrives on the stigma in pulses and late-arriving pollen may be precluded from fertilizing ovules. When seed set per fruit is not pollen limited, the fate of pollen from later cohorts is affected by the time between pollinator visits, variation in pollen tube growth rates, and the amounts of pollen deposited relative to the availability of stigmatic area and unfertilized ovules. In a natural population of Hibiscus moscheutos, we found that consecutive pollinator visits to individual flowers occurred within 15 min of each other in more than half of our observations. We then conducted hand-pollination experiments using equal doses of early and late pollen bearing unique allozyme markers for paternity analysis (each dose was more than sufficient to result in full seed set). When pollen was applied 15 or 30 min after an earlier pollen load, the proportions of seeds sired by late-arriving pollen were reduced by 13–30% and 21–57%, respecitively. A few pollen-tubes from the late pollen load sired seeds even when a large dose of pollen was applied 1–2 h earlier, suggesting that the performance of pollen grains within each cohort was highly variable. The advantage of arriving early was greater when the first pollen load was applied at 0930 hours as compared with 1130 hours. We found no effect of previous pollination on the growth rates of late-arriving pollen-tubes. Taken together, these results demonstrate that pollen from later visits can compete with pollen from earlier visits, but the success of late-arriving pollen typically declines to very low levels after an interval of about 2 h. Given that surplus pollen often arrives on stigmas by mid-morning, we conclude that male reproductive success is more likely to be affected by the timing of pollen dispersal and pollen-tube competitive ability than by the total amount of pollen that is exported from flowers.  相似文献   

14.
Pollinator and/or mate scarcity affects pollen transfer, with important ecological and evolutionary consequences for plant reproduction. However, the way in which the pollen loads transported by pollinators and deposited on stigmas are affected by pollination context has been little studied. We investigated the impacts of plant mate and visiting insect availabilities on pollen transport and receipt in a mass‐flowering and facultative autogamous shrub (Rhododendron ferrugineum). First, we recorded insect visits to R. ferrugineum in plant patches of diverse densities and sizes. Second, we analyzed the pollen loads transported by R. ferrugineum pollinators and deposited on stigmas of emasculated and intact flowers, in the same patches. Overall, pollinators (bumblebees) transported much larger pollen loads than the ones found on stigmas, and the pollen deposited on stigmas included a high proportion of conspecific pollen. However, comparing pollen loads of emasculated and intact flowers indicated that pollinators contributed only half the conspecific pollen present on the stigma. At low plant density, we found the highest visitation rate and the lowest proportion of conspecific pollen transported and deposited by pollinators. By contrast, at higher plant density and lower visitation rate, pollinators deposited larger proportion of conspecific pollen, although still far from sufficient to ensure that all the ovules were fertilized. Finally, self‐pollen completely buffered the detrimental effects on pollination of patch fragmentation and pollinator failure. Our results indicate that pollen loads from pollinators and emasculated flowers should be quantified for an accurate understanding of the relative impacts of pollinator and mate limitation on pollen transfer in facultative autogamous species.  相似文献   

15.
Pollen limitation and resource limitation have been documented as the major factors responsible for plants commonly producing more ovules than seeds, but few studies have examined pollen deposition directly in natural populations at different sites and times. We investigated the causes of low seed set in four populations of Liriodendron chinense (Magnoliaceae), an insect‐pollinated endangered tree endemic to southern China, over 2–3 years. One pistil potentially produces two ovules. The number of pistils per flower varies among populations, but in three of the four populations the variation in a given population was not significantly different among years. Overall, populations with higher pistil numbers tend to set more seeds per flower, but a positive correlation between pistil numbers and seed production per flower was observed in only one of the four populations. The numbers of pollen grains deposited per stigma varied from 0 to 60. The proportion of pollinated stigmas per flower ranged from 44% to 88% among populations and years. The numbers of pollen grains deposited per stigma and the percentages of pollinated stigmas were significantly different between populations, and two populations showed significant differences between years. A positive correlation between stigmatic pollen load and seed set was sought in ten population‐by‐year combinations but, in a given population, high stigmatic pollen loads did not always result in high seed set. Examination of pollen deposition, pistil and seed production over several sites and years showed that in addition to pollination, other factors such as resource or genetic loads were likely to limit the (lower than 10%) seed set in L. chinense. It appears that small, isolated populations experience severe pollination limitation; one population studied had seed/ovule ratios of 0.84% and 1.88% in 1995 and 1996. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 31–38.  相似文献   

16.
Hedyotis caerulea is a perennial, spring-flowering herb native to eastern North America with distylous flowers that differ in a number of morphological and physiological traits. However, the pin and thrum morphs produce the same numbers of buds, flowers, and fruits per plant, although it is possible that differences in these may occur in some populations at certain times of the flowering period. The two morphs are self-incompatible and cross-compatible. Most populations contained an excess of pins over thrums (anisoplethy); less commonly pins and thrums were equally represented (isoplethy). Populations change from anisoplethy to isoplethy and in the reverse direction. The spatial distribution of pin and thrum flowers in populations was random in some populations but non-random in others. There is some indication that the two morphs in some populations have somewhat different flowering periods. Pollinators seem to be chiefly bombyliid flies and perhaps thrips, but insects were rarely observed visiting flowers. In some populations, the two morphs produced equal numbers of pollen grains per flower; in others they did not. The average pollen viability varied, but on the average there was a moderate level of pollen sterility. High numbers of pollen grains remained in dehisced anthers, probably as a result of low pollinator activity. However, between 5% and 9% of the pollen produced participated in pollination. Stigmas of most pin flowers received more pin pollen grains than thrum pollen grains; on stigmas of thrum flowers pin pollen grains outnumbered thrum pollen grains. Thus, compatible pollen flow from pins to thrums was greater than in the reverse direction. Anisoplethic and isoplethic populations had the same pollen flow patterns. A plant-by-plant examination of stigmas indicated that many stigmas bore few or no pollen grains. Seed production of the two morphs was equal. Despite the inequities in pollen flow patterns, the widespread and occasionally weedy nature of H. caerulea suggests that its breeding system must be viewed as a successful one.  相似文献   

17.
Greater pollination intensity can enhance maternal plant fitness by increasing seed set and seed quality as a result of more intense pollen competition or enhanced genetic sampling. We tested experimentally these effects by varying the pollen load from a single pollen donor on stigmas of female flowers of Dalechampia scandens (Euphorbiaceae) and measuring the effects on seed number and seed mass. Seed set increased rapidly with pollen number at low to moderate pollen loads, and a maximum set of three seeds occurred with a mean pollen load of 19 pollen grains. We did not detect a trade‐off between the number of seeds and seed mass within a fruit. Seed mass increased with increasing pollen load, supporting the hypothesis of enhanced seed quality via increased pollen‐competition intensity or genetic sampling. These results suggest that maternal fitness increases with larger pollen loads, even when the fertilization success is already high. Our results further highlight the importance of high rates of pollen arrival onto stigmas, as mediated by reliable pollinators. Comparing the pollen‐to‐seed response curve obtained in this experiment with those observed in natural populations suggests that pollen limitation may be more severe in natural populations than predicted from greenhouse studies. These results also indicate that declines in pollinator abundance may decrease plant fitness through lowered seed quality before an effect on seed set is detected.  相似文献   

18.
Flowers of white clover (Trifolium repens L.) are hermaphrodite and self-incompatible; their cross-pollination depends entirely on insect visitors, mainly bees (Apoidea). Because self-pollination of white clover occurs before flower anthesis, we determined whether selfing affected the pollination efficiency of a honeybee visit. We compared pollen deposition in emasculated and intact flowers following (1) a single honeybee visit, (2) open-pollination for a day and (3) enclosure in a cloth bag to prevent insect visits. In emasculated flowers, open-pollination resulted in more pollen deposited than after one visit (+30%) which is consistent with flowers being visited more than once by pollinators during the course of a day. On intact flowers, saturation of the stigma was achieved after the first visit of a honeybee (near 280 grains) because of self-pollination. Additional visits did not increase pollen deposits, but they improved pollen efficiency in terms of numbers of pollen tubes reaching the ovules. In such a context of easily saturated stigmas, self-pollen does not inhibit cross-pollen activity, but represents a constraint for pollination which demands multiple bee visits to each flower to achieve maximum fertilization. Received: 20 May 1997 / Accepted: 25 October 1997  相似文献   

19.
Interest in the possibility of sexual selection in plants has focused primarily on competition among pollen donors based on the speed of pollen-tube growth. However, when pollen arrives on stigmas, there is the opportunity for both races for access to ovules (exploitation competition) and interference with the germination and growth of pollen from other donors (interference competition). We considered whether this second form of competition might occur among pollen grains of wild radish in two experiments. In the first, interference likely occurred because the amount of pollen germination was less in mixed-donor than in single-donor pollinations. This result was duplicated in a second experiment, which also showed that interference occurred only when pollen grains from different donors were in direct contact with each other. In addition, in the second experiment, the opportunity for interference affected the frequency of seeds sired by different pollen donors. Because pollen loads are often mixed in nature, interference competition among pollen grains may be important in the ecology and evolution of plant reproduction.  相似文献   

20.
Petrocoptis montsicciana (Caryophyllaceae) is a threatened pre‐Pyrenean endemic that grows exclusively on caves and walls of limestone. We studied its pollination ecology by monitoring phenology and by evaluating pollen and nectar production, pollinator activity (frequency and behaviour of visitors), quantity and quality of pollination services, pollen/ovule ratio, and seed set in response to insect exclusion and self‐compatibility tests. We also analysed the effect of population size on reproductive mechanisms by comparing a large and a small population. Flowers of P. montsicciana produced nectar and were visited by Hymenoptera (79.7%), Diptera (11.5%), and Lepidoptera (8.8%). The most frequent pollinators (60.6% of total visits) were long‐tongued bees of the genus Anthophora. Both populations had a similar range of pollinators. We found a correlation between the number of visited flowers and the number of open flowers per census; 88.7% of pollen grains deposited on the stigmas were conspecific and the main competitor was another chasmophyte plant, Antirrhinum molle. Bagged flowers set seeds but significantly less so than hand‐self‐pollinated and control flowers. Thus, although self‐compatible and self‐pollinated, entomophilous pollination of P. montsicciana is required in order to explain c. 10–40% of total seed set, in accordance with P/O ratio estimations. Bagged flowers from the small population set significantly more seeds than the large one. Visitation rates were lower in the small population, but, unexpectedly, showed higher stigmatic pollen loads and similar or higher seed set. These results suggest an increase of spontaneous selfing rates in the small population, probably favoured by a smaller flower size, which can not only assure reproductive success when pollinators are scarce, but also provide additional potential to adapt to climatic changes. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 76 , 79–90.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号