首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heritability of stamen fertility—different scores were given to sterile stamens developed to different degrees as well as to fertile stamens with one or two pollen sacs—was studied in Scleranthus annuus (Caryophyllaceae), a selling annual that shows extensive phenotypic variation in stamen fertility. Variation within and among 172 maternal families, derived from plants representing 20 natural populations from southern Sweden, was used to estimate heritabilities of stamen fertility for stamens/staminoids at each of the ten stamen positions in the flower. The hierarchical design of the study allowed partitioning of variation at four levels of organization using nested analysis of variance. Heritabilities ranged from 0.631 to 0.714 for stamen positions in the outer whorl of stamens and from 0.235 to 0.555 for positions in the inner whorl. When stamen fertility was pooled across all stamen positions of a flower, the heritability was 0.807. The nested ANOVA indicated that stamen positions in the outer whorl have comparatively higher proportions of among-family and among-population variation than those in the inner whorl. Furthermore, highly significant genetic correlations exist among stamen positions within the inner whorl and among positions within the outer whorl, but not so between positions from each of the two whorls.  相似文献   

2.
In both male and female flowers of H. morsus-ranae the primordia of the floral appendages appear in an acropetal succession consisting of alternating trimerous whorls. In the male flower a whorl of sepals is followed by a whorl of petals, three whorls of stamens, and a whorl of filamentous staminodes. The mature androecial arrangement therefore consists of two antisepalous stamen whorls, an antipetalous whorl of stamens, and antipetalous staminodes. Shortly before anthesis, basal meristematic upgrowth between filaments of adjacent whorls produces paired stamens, joining Whorls 1 and 3, and Whorl 2 with the staminodial whorl. A central domelike structure develops between the closely appressed filaments of the inner stamen and staminodial whorl, giving the structure a lobed appearance. After petal inception in the female flower a whorl of antisepalous staminodes develop, each of which may bifurcate to form a pair of staminodes. During staminode development a girdling primordium arises by upgrowth at the periphery of the floral apex. The girdling primordium rapidly forms six gynoecial primordia, which then go on to produce six free styles with bifid stigmas. Intercalary meristem activity, below the point of floral appendage attachment, leads to the production of a syncarpous inferior ovary with six parietal placentae. The styles and carpels remain open along their ventral sutures. During the final stages of female floral development, several hundred ovules develop along the carpel walls, and three nectaries develop dorsally and basally on the three antipetalous styles.  相似文献   

3.
I used a discontinuous population ofScleranthus annuus (Caryophyllaceae) to study the effect of crossing distances on flower morphology of the progeny. Four types of progeny were produced by artificial selfing, crossing with pollen-donors from the same patch in the population, crossing with pollen from donors from other patches in the population and inter-population crosses. The size of gynoecium parts and 12 sepal characters in this petal-lacking species were significantly influenced by the type of cross and the patch in the population from where the seed-parents originated. All comparisons of progeny types except selfed vs progeny produced by within-patch crosses were significantly separated from each other, while all four seed-parent patches used were significantly separated in a multidimensional space.  相似文献   

4.
BACKGROUND AND AIMS: Pollen and seed dispersal in herbaceous insect-pollinated plants are often restricted, inducing strong population structure. To what extent this influences mating within and among patches is poorly understood. This study investigates the influence of population structure on pollen performance using controlled pollinations and genetic markers. METHODS: Population structure was investigated in a patchily distributed population of gynodioecious Silene vulgaris in Switzerland using polymorphic microsatellite markers. Experimental pollinations were performed on 21 hermaphrodite recipients using pollen donors at three spatial scales: (a) self-pollination; (b) within-patch cross-pollinations; and (c) between-patch cross-pollinations. Pollen performance was then compared with respect to crossing distance. KEY RESULTS: The population of S. vulgaris was characterized by a high degree of genetic sub-structure, with neighbouring plants more related to one another than to distant individuals. Inbreeding probably results from both selfing and biparental inbreeding. Pollen performance increased with distance between mates. Between-patch pollen performed significantly better than both self- and within-patch pollen donors. However, no significant difference was detected between self- and within-patch pollen donors. CONCLUSIONS: The results suggest that population structure in animal-pollinated plants is likely to influence mating patterns by favouring cross-pollinations between unrelated plants. However, the extent to which this mechanism could be effective as a pre-zygotic barrier preventing inbred mating depends on the patterns of pollinator foraging and their influence on pollen dispersal.  相似文献   

5.
 Sugar beet hybrids are produced by crossing a cytoplasmic male-sterile (CMS) line with a pollinator. New CMS lines are produced by crossing a fertile plant to an existing CMS line. The fertile plant is also selfed. In the following generation, one of the selfed, fertile progeny is paired and isolated with one of the crossed, CMS progeny, to give a second generation of selfing and crossing. Over a series of such crosses and selfs, a new fertile inbred line and its corresponding, near-isogenic CMS partner are produced. Selection among lines takes place at one or more stages of the backcrossing programme. A method is presented here for calculating the genetic variances and covariances within and between lines and generations based on a derivation of additive genetic relationships modified from an approach widely employed in animal breeding. The genetic variances and covariances are used to predict response to selection from varying strategies, from which optimum schemes can be determined. Results suggest that selection should generally take place after three generations of backcrossing when the fertile plant used to initiate the backcrossing process is not inbred, but can take place after generation two when the fertile plant is inbred. Doubled haploid production is unlikely to provide an extra advantage that would be worthwhile in such a system. The method developed here can be used to explore a wide range of more complex breeding systems. Received: 27 July 1998 / Accepted: 19 October 1998  相似文献   

6.
The function of stamen dimorphism in the breeding system of the alpine shrub Rhododendron ferrugineum was studied in two populations in the French Alps. This species has pentameric flowers with two whorls of stamens: an inner whorl of five long stamens and an outer whorl of short stamens. We studied the development of stamens from buds to mature flowers (measurement of the filament, anther, and style lengths at five successive phenological stages) and compared the size and position of reproductive organs at maturity in control and partially emasculated flowers (removal of long-level stamens) to determine whether the presence of long-level stamens constitutes a constraint for the development of the short-level ones. Stamen dimorphism can be observed early in stamen development, from the bud stage of the year prior to flowering. At this early stage, meiosis had already occurred. Emasculation of the long-level stamens induced the short-level ones to grow longer than in normal conditions. We also performed seven pollination treatments on ten randomly chosen individuals in each population, and the number of seeds following each treatment was recorded. Results from these treatments showed that R. ferrugineum produced spontaneous selfed seeds in the absence of pollinators. However, no seed was produced when short-level stamens were emasculated and pollinators excluded, suggesting that long-level stamens are not responsible for selfing in the absence of pollinators and that reproductive assurance is promoted by short-level stamens.  相似文献   

7.
The flowers of mangrove Rhizophoraceae (tribe Rhizophoreae) are adapted to three different pollination mechanisms. Floral development of representative species of all four genera suggests that the ancestral flower of the tribe was unspecialized, with successively initiated whorls of separate sepals, petals, antisepalous stamens, and antipetalous stamens; at its inception, the gynoecium had a united, half-inferior ovary and separate stigmatic lobes. This developmental pattern is found in Rhizophora mangle (wind-pollinated) and Ceriops decandra (insect-pollinated). In Kandelia, all floral organs distal to the sepals are initiated simultaneously, and there has apparently been an evolutionary amplification in the number of stamens to about six times the number of petals. Explosive pollen release evolved independently in C. tagal and in Bruguiera. In the former, all stamens belong to one whorl and arise simultaneously upon a very weakly differentiated androecial ring primordium. In Bruguiera, the androecial ring is pronounced, and two whorls of stamens arise upon it; the primordia of the antisepalous whorl arise first but are closer to the center of the apex than the antipetalous stamen primordia. The antisepalous stamens bend toward and are enclosed by the petals early in development. In all genera, the inferior ovary develops by zonal growth of receptacular tissue; additional intercalary growth above the placenta occurs in Bruguiera. In general, floral specialization is accompanied by an increase in the width of the floral apex compared to the size of the primordia, increasing fusion of the stylar primordia, and decreasing prominence of the superior portion of the ovary. Apparent specializations of petal appendages for water storage, including the presence of sub-terminal hydathodes (previously unreported in any angiosperm), were found in two species in which flowers remain open during the day but were absent from two species normally pollinated at night or at dawn. Distinctive tribal characteristics that may aid in phylogenetic analysis include the mode of development of the inferior ovary; the aristate, bifid, usually fringed petals that individually enclose one or more stamens; the intrastaminal floral disc; and the initially subepidermal laticiferous cell layer in the sepals and ovary.  相似文献   

8.
Summary Fusion of two cytoplasmic male-sterile cultivars of Nicotiana tabacum, one with N. bigelovii cytoplasm and one with N. undulata cytoplasm, resulted in the restoration of male fertility in cybrid plants. All male-fertile cybrids exhibited fused corollas, which is characteristic for the cultivar with N. undulata cytoplasm, while their stamen structures varied from cybrid to cybrid, some producing stamens with anthers fused to petal-like appendages and one producing stamens of a normal appearance for N. tabacum. Restriction enzyme digestion and agarose gel electrophoresis of mitochondrial DNA showed that mitochondrial DNA of the fertile cybrids was more similar to the male-sterile cultivar with the cytoplasm of N. undulata than to the cultivar with N. bigelovii cytoplasm. Some restriction fragments were unique to the male-fertile cybrids. Comparisons between stamen structure and mitochondrial DNA for eight fertile progeny from one cybrid plant led to the identification of several restriction fragments that appeared at enhanced levels in connection with normal stamen development.  相似文献   

9.
The inflorescence and floral development of Caldesia grandis Samuel is reported for the first time in this paper. The basic units of the large cymo‐thyrsus inflorescence are short panicles that are arranged in a pseudowhorl. Each panicle gives rise spirally to three bract primordia also arranged in a pseudowhorl. The branch primordia arise at the axils of the bracts. Each panicle produces spirally three bract primordia with triradiate symmetry (or in a pseudowhorl) and three floral primordia in the axils of the bract primordia. The apex of the panicle becomes a terminal floral primordium after the initiations of lateral bract primordia and floral primordia. Three sepal primordia are initiated approximately in a single whorl from the floral primordium. Three petal primordia are initiated alternate to the sepal primordia, but their subsequent development is much delayed. The first six stamen primordia are initiated as three pairs in a single whorl and each pair appears to be antipetalous as in other genera of the Alismataceae. The stamen primordia of the second whorl are initiated trimerously and opposite to the petals. Usually, 9–12 stamens are initiated in a flower. There is successive transition between the initiation of stamen and carpel primordia. The six first‐initiated carpel primordia rise simultaneously in a whorl and alternate with the trimerous stamens, but the succeeding ones are initiated in irregular spirals, and there are 15–21 carpels developed in a flower. Petals begin to enlarge and expand when anthers of stamens have differentiated microsporangia. Such features do not occur in C. parnassifolia. In the latter, six stamen primordia are initiated in two whorls of three, carpel primordia are initiated in 1–3 whorls, and there is no delay in the development of petals. C. grandis is thus considered more primitive and C. parnassifolia more derived. C. grandis shares more similarities in features of floral development with Alsma, Echinodorus, Luronium and Sagittaria. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 39–47.  相似文献   

10.
通过扫描电镜观察了宽叶泽苔草Caldesia grandisSamuel.的花器官发生。宽叶泽苔草 的萼片3枚,逆时针螺旋向心发生 ;花瓣3枚,呈一轮近同时发生,未观察到花瓣_雄蕊复合原基;雄蕊、心皮原基皆轮状向心 发生,最先近同时发生的6枚原基全部发育成雄蕊,随后发生的6枚原基早期并无差别,在发 育过程中逐渐出现形态差异,直至其中1-4枚发育成心皮,其余的发育成雄蕊;而后的几轮 心皮原基,6枚一轮,陆续向心相间发生。本文揭示了3枚萼片螺旋状的发生方式,并推测这种螺旋方式是泽泻科植物进化过程中保留下来  相似文献   

11.
The variation in two sets of morphological characters of the flowers of the highly inbreedingScleranthus annuus (Caryophyllaceae) was assessed using 15–20 plants from each of 20 natural populations from the southernmost region of Sweden. The stamen fertility data set consisted of 10 characters describing the degree of fertility of the ten stamens/staminoids, while the sepal/gynoecium data set comprised 10 sepal characters, together with style and stigma length. Substantial variation was found in both the degree of development and the fertility of the stamens, the degree of variability in stamen fertility being related to stamen position within the flower. Considerable variation was found in the characters of the sepal and the gynoecium. Hierarchical analyses of variance indicated that 29% of the variation in total male reproductive effort was distributed among populations, 28% among plants within populations and 43% represented within-plant variation. The corresponding averages for the characters from the sepal/gynoecium data set are 26, 38, and 35%: a greater proportion of the total variance in female reproductive characters is accounted for by among individual variation than is the case with the male reproductive characters. Significance tests of Mahalanobis distances derived by canonical variate analyses indicated that all populations were significantly separated using the sepal/gynoecium data set, while only 50% of the pairwise comparisons on the basis of the stamen fertility data set were significant. Cluster analysis did not reveal any aggregation of the populations. The incongruence of the two data sets and their ability to discriminate between the populations is discussed.  相似文献   

12.
A study of the floral ontogeny of Popowia was carried out to investigate the phyllotactic arrangement of the floral organs and occurring trends in the androecium of Annonaceae. The flower buds arise on a common stalk in the axil of a bract. Three sepals emerge in quick succession and are rapidly overrun in size by two whorls of petals. The androecium is initiated centripetally in successive whorls. A first whorl of three pairs of outer staminodes emerges opposite the outer petals and is followed by nine staminodes. Next a whorl of nine fertile stamens arises in alternation with the second whorl of staminodes. The carpels arise in three alternating whorls of nine. The nature of the perianth parts is morphologically identical. The process of cyclisation of the androecium from a spiral is discussed for Annonaceae and Magnoliidae in general. The inception of the three outer stamen pairs is a widespread reductive step for multistaminate androecia in the process of oligomerization. It is proposed to define the cyclic inception of numerous stamens as whorled polyandry, being an intermediate step between true polyandry and a reduced stamen number in whorls. The absence of a cup-like shape in the carpel development is related to the flattened receptacle.  相似文献   

13.
大戟科麻疯树属三种植物花器官发生   总被引:1,自引:0,他引:1  
利用扫描电子显微镜观察了大戟科Euphorbiaceae麻疯树属Jatropha麻疯树J. curcas L.、佛肚树J. podagrica Hook.和棉叶麻疯树J. gossypifolia L.花器官发生。结果表明: 麻疯树、佛肚树和棉叶麻疯树花萼原基均为2/5型螺旋发生。在同一个种不同的花蕾中, 花萼的发生有两种顺序: 逆时针方向和顺时针方向。远轴面非正中位的1枚先发生。5枚花瓣原基几乎同时发生。雄花中雄蕊两轮, 外轮对瓣, 内轮对萼。研究的3种麻疯树属植物雄蕊发生方式有两种类型: 麻疯树亚属麻疯树的5枚外轮雄蕊先同时发生, 5枚内轮雄蕊后同时发生, 佛肚树亚属佛肚树和棉叶麻疯树雄蕊8-9枚, 排成两轮, 内外轮雄蕊同时发生。雌花的3枚心皮原基为同时发生。麻疯树属单性花, 雌花的子房膨大而雄蕊退化, 雄花的雄蕊正常发育, 子房缺失。根据雄蕊发生方式, 支持将麻疯树属分为麻疯树亚属subgen. Jatropha和佛肚树亚属subgen. Curcas。  相似文献   

14.
The androecium of the Caryophyllaceae is varied, ranging from a two-whorled condition to a single stamen. A number of species belonging to the three subfamilies, Caryophyl-loideae, Alsinoideae and Paronychioideae have been studied ontogenetically with the SEM to understand their peculiar androecial development in the broader context of the Caryophyllales alliance. Although patterns of initiation are highly variable among species, there are three ontogenetic modes of stamen initiation: all stamens simultaneous within a whorl, the antepetalous stamens simultaneous and the antesepalous sequentially with a reversed direction, or both whorls sequentially with or without a reversed direction. The most common floral (ontogenetic) sequence of the Caryophyllaceae runs as follows: five sepals (in a 2/5 sequence), the stamens in front of the three inner sepals successively, stamens opposite the two outermost sepals, five antepetalous stamens (simultaneously or in a reversed spiral superimposed on the spiral of the antesepalous stamens), five outer sterile (petaloid) organs arising before, simultaneously or after the antesepalous stamens, often by the division of common primordia. A comparison with the floral configurations of the Phytolaccaceae and Molluginaceae indicates that the outer petaline whorl of the Caryophyllaceae corresponds positionally to the alternisepalous stamens of somePhytolacca, such asP. dodecandra. The difference withP. dodecandra lies in the fact that an extra inner or outer whorl is formed in the Caryophyl-laceae, in alternation with the sepals. A comparable arrangement exists in the Molluginaceae, though the initiation of stamens is centrifugal. A comparison of floral ontogenies and the presence of reduction series in the Caryophyllaceae support the idea that the pentamerous arrangement is derived from a trimerous prototype. Petals correspond to sterillized stamens and are comparable to two stamen pairs opposite the outer sepals and a single stamen alternating with the third and fifth sepals. Petals are often in a state of reduction; they may be confused with staminodes and they often arise from common stamenpetal primordia. The antesepalous stamen whorl represents an amalgamation of two whorls: initiation is reversed with the stamens opposite the fourth and fifth formed sepals arising before the other, while the stamens opposite the first and second formed sepals are frequently reduced or lost. Reductive trends are correlated with the mode of initiation of the androecium, as well as changes in the number of carpels, and affect the antesepalous and antepetalous whorls in different proportions. It is concluded that the androecium of the Caryophyllaceae is pseudodiplos-temonous and is not comparable to diplostemonous forms in the Dilleniidae and Rosidae. The basic floral formula of Caryophyllaceae is as follows: sepals 5—petals 5 (sterile stamens)—antesepalous stamens 3+2—antepetalous stamens 5 gynoecium 5.  相似文献   

15.
泽苔草的花器官发生   总被引:9,自引:2,他引:7  
本文用扫描电镜观察了泽苔草的花器官发生过程,观察结果表明:花萼以螺旋状方式向心发生,花瓣以接近轮状方式近同时发生,不存在花瓣雄蕊复合原基。雄蕊和心皮均以轮状向心方式发生,6枚雄蕊分两轮分别在对萼和对瓣的位置先后发生,至发育的后期排成一轮,但仍分别处于对萼和对瓣的位置;随后发生的第一轮3个心皮原基与3枚萼片相对,第二、三轮心皮原基分别为1~3个,与前一轮心皮相间排列向心发生。本文首次揭示了泽苔草花被的外轮3个萼片螺旋状发生方式,这种螺旋状方式很可能是泽泻科植物的花部结构在进化过程中适应环境而保留下来的一种较原始的叶性特征。  相似文献   

16.
利用扫描电镜观察了青城细辛(Asarum splendens)的花器官发生过程。青城细辛的花器官为轮状结构,向心发生,依次为两轮3基数的花被原基,两轮6基数的雄蕊原基和一轮6基数的心皮原基。两轮花被原基互生,只有外轮(先发生的一轮)花被原基完全发育,而内轮(后发生的一轮)花被原基在发育过程中逐渐退化。两轮雄蕊原基为离心发生:位于内侧的一轮雄蕊原基先发生,每两个原基正对第一轮发生的花被原基,外侧的一轮雄蕊原基后发生,与内轮雄蕊原基互生。心皮与内侧的一轮雄蕊互生。  相似文献   

17.
The jequirity bean (Abrus precatorius) is well known because of its shiny black and red coloured seeds and because of the poison (abrin) it contains. The genus Abrus is placed in a monogeneric tribe Abreae which is placed in a relatively isolated systematic position at the base of Millettieae. To contribute to a better understanding of this taxon, a detailed ontogenetic and morphologic analysis of its flowers is presented. Floral primordia are subtended by an abaxial bract and preceded by two lateral bracteoles which are formed in short succession. Sepal formation is unidirectional starting abaxially. All petals are formed simultaneously. The carpel is formed concomitantly with the outer (antesepalous) stamen whorl, which arises unidirectionally, starting in an abaxial position. In the inner, antepetalous stamen whorl two abaxial stamens are formed first, followed by two lateral stamen primordia. The adaxial, antepetalous position remains organ free (i.e. this stamen is lost). Later in development the nine stamen filaments fuse to form an adaxially open sheath. The filament bases of the two adaxial outer-whorl stamens grow inwards, possibly to provide stability and to compensate for the lost stamen. In the mature flower a basal outgrowth can be found in the position of the lost stamen. However this is more likely to be an outgrowth of the filament sheath rather than a remnant of the lost stamen. These ontogenetic patterns match in parts those found in other Millettieae (unidirectional formation of sepals and stamens, simultaneous petal formation). In contrast, the complete loss of a stamen is rather unusual and supports the isolated position of Abreae and probably justifies (among other characters) its tribal status. A review of androecial characters shows that androecial merosity is on the one hand extremely variable among Leguminosae, varying from a single stamen per flower to more than 500. On the other hand it is noteworthy that the number of stamens becomes stabilised in more derived Papilionoideae such as the large non-protein-amino-acid-accumulating clade (NPAAA clade). This indicates that the androecium has played an important role in the success of a major part of Leguminosae.  相似文献   

18.
We provide a detailed comparative study of floral ontogeny and vasculature in Xyridaceae, including XyrisAbolboda and Orectanthe. We evaluate these data in the context of a recent well-resolved phylogenetic analysis of Poales to compare floral structures within the xyrid clade (Xyridaceae and Eriocaulaceae). Xyrids are relatively diverse in both flower structure and anatomy; many species incorporate diverse and unusual floral structures such as staminodes and stylar appendages. Xyridaceae possess three generally epipetalous stamens in a single whorl; the “missing” stamen whorl is either entirely absent or transformed into staminodes. Fertile stamens each receive a single vascular bundle diverged from the median petal bundle. In Xyris, the stamen bundle diverges at the flower base, but it diverges at upper flower levels in both Abolboda and Orectanthe. In species of Abolboda that possess staminodes, staminode vasculature is closely associated with the lateral vasculature of each petal. Despite the likely sister-group relationship between Eriocaulaceae and Xyridaceae, our character optimization indicates that the stylar appendages that characterize some Xyridaceae (except Xyris and Achlyphila) are non-homologous with those of some Eriocaulaceae. On the other hand, it remains equivocal whether the loss of a fertile outer androecial whorl occurred more than once during the evolutionary history of the xyrid clade; this transition occurred either once followed by a reversal to fertile stamens in Eriocauloideae and staminodes in some Xyridaceae, or twice independently within both Xyridaceae and Eriocaulaceae.  相似文献   

19.
青城细辛的花器官发生   总被引:1,自引:0,他引:1  
利用扫描电镜观察了青城细辛(Asarum splendens)的花器官发生过程。青城细辛的花器官为轮状结构,向心发生,依次为两轮3基数的花被原基,两轮6基数的雄蕊原基和一轮6基数的心皮原基。两轮花被原基互生,只有外轮(先发生的一轮)花被原基完全发育,而内轮(后发生的一轮)花被原基在发育过程中逐渐退化。两轮雄蕊原基为离心发生:位于内侧的一轮雄蕊原基先发生,每两个原基正对第一轮发生的花被原基,外侧的一轮雄蕊原基后发生,与内轮雄蕊原基互生。心皮与内侧的一轮雄蕊互生。  相似文献   

20.
The floral ontogeny of Pisum sativum shows a vertical order of succession of sepals, petals plus carpel, antesepalous stamens, and antepetalous stamens. Within each whorl, unidirectional order is followed among the organs, beginning on the abaxial side of the flower, as in most papilionoids. Unusual features include the four common primordia which precede initiation of discrete petal and antesepalous stamen primordia, and the marked overlap of organ initiations between whorls which are usually separately initiated. The stamens arise in free condition, then become diadelphous by intercalary growth at the base of nine stamens, and finally become pseudomonadelphous by surface fusion between the vexillary stamen filament and the adjacent edges of the filament tube. The early initiation of the carpel is not unique among papilionoids, but is somewhat unusual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号