首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I measured the effect of early reproduction on subsequent growth and survival in the alpine perennial wildflower, Polemonium viscosum. Measurements were made over 4 yr on 34 maternal sibships under natural conditions. A significant phenotypic cost of early reproduction characterized the study population. Plants that flowered after only one year's growth had twice as many leaves and 25% more shoots than nonflowering individuals of equal age. However, early flowering decreased leaf number by 18% in the subsequent year and survivorship by 20% after two years relative to changes in leaf number and survival of nonflowering plants. For such trade-offs to shape the further evolution of reproductive schedules, flowering probability and those age-specific components of plant size that represent the energetic currency for reproductive costs must be heritable. Although families showed significant heterogeneity in the probability of early flowering, most (62%) entirely failed to flower. Moreover, phenotypic variation in vegetative size components at ages 1 and 2 had little genetic basis. Only at ages 3 and 4, after vegetative and demographic costs of early reproduction had been incurred, did vegetative size components (leaf length and number, and shoot number) vary significantly among families. Results of this study provide little evidence of a genetically based trade-off between early reproduction and subsequent survival in P. viscosum.  相似文献   

2.
Conditions were developed for the sterile culture of shoot tips of Xanthium pensylvanicum Wallr. for use as a bioassay for flower-controlling chemicals. By using a modified Murashige-Skoog medium (minus the auxin but including kinetin) and light intensity much higher than usual for plant tissue cultures, fast growth and development of the shoot tips was achieved. Under short-day conditions (8 hr day: 16 hr night), the cultures from vegetative shoots flowered and fruited; under noninductive conditions (using a 2 hr light-break in the middle of the dark period), the shoot tips continued vegetative development. Both intact plants and cultured tips could be photoinduced in the first days after germination. Ecdysterone, a potent insect moulting hormone, was tested in the bioassay system. It was without either qualitative or quantitative effect on flowering or vegetative development on either cultured shoot tips or intact plants irrespective of whether they were under inductive or noninductive photoperiodic conditions.  相似文献   

3.
Grafting in species other than Arabidopsis has generated persuasive evidence for long-distance signals involved in many plant processes, including regulation of flowering time and shoot branching. Hitherto, such approaches in Arabidopsis have been hampered by the lack of suitable grafting techniques. Here, a range of micrografting methods for young Arabidopsis seedlings are described. The simplest configuration was a single-hypocotyl graft, constructed with or without a supporting collar, allowing tests of root-shoot communication. More complex two-shoot grafts were also constructed, enabling tests of shoot-shoot communication. Integrity of grafts and absence of adventitious roots on scions were assessed using plants constitutively expressing a GUS gene as one graft partner. Using the max1 (more axillary growth) and max3 increased branching mutants, it was shown that a wild-type (WT) rootstock was able to inhibit rosette branching of mutant shoots. In two-shoot grafts with max1 and WT shoots on a max1 rootstock, the mutant shoot branched profusely, but the WT one did not. In two-shoot grafts with max1 and WT shoots on a WT rootstock, neither shoot exhibited increased branching. The results mirror those previously demonstrated in equivalent grafting experiments with the ramosus mutants in pea, and are consistent with the concept that a branching signal is capable of moving from root to shoot, but not from shoot to shoot. These grafting procedures will be valuable for revealing genes associated with many other long-distance signalling pathways, including flowering, systemic resistance and abiotic stress responses.  相似文献   

4.
A dynamic model of regrowth in Typha angustifolia after cutting shoots above the water surface was formulated by characterizing the phenology and mobilization of resources from below-ground to above-ground organs after the cutting. The model parameters were determined by two cutting experiments to investigate the different strategies with flowering and non-flowering shoots after cutting in 2001 and by four cutting experiments to elucidate the regrowth characteristics after cutting on different days from June to September in 2002. A difference was evident both for flowering and non-flowering shoots and for each cutting day. From June to August, non-flowering shoots regrew immediately after cutting, but flowering shoots did not. The shoot regrowth height, number of leaves and shoot biomass were higher with the earlier cutting. The model was validated using the below-ground biomass observed in December 2002 and below-ground dynamics observed in 2003. In the low-flowering shoot zone of the stands, in which the percentage of flowering shoots was small (around 10%), the decrease in below-ground biomass became larger from June (20%) to August (60%). Cutting the high-flowering shoot zone (flowering shoots: 78%) in July 2001, just 1 week after peduncle formation, decreased the below-ground biomass by about 50%. In the low-flowering shoot zone, cutting just before senescence is better for decreasing below-ground biomass with a smaller rate of flowering shoots. The difference of below-ground biomass reduction in non-flowering shoots is mainly due to the decrease in downward translocation (DWT) of above-ground material to below-ground organs during senescence, because of the decrease in regrowth biomass. As for flowering shoots, the decrease in the photosynthate transportation from above-ground to below-ground organs and that of DWT are closely related because they cannot grow again within the season.  相似文献   

5.
Camelina sativa was successfully established in vitro and systems for the regeneration of shoots from leaf explants developed. Methods for the surface-sterilisation of seeds were used which gave 95% germination, though the in vitro grown seedlings failed to develop beyond 28 days culture. In a micropropagation system, the rooting response of nodal explants was increased from a control level of 26.4% to 46.7% by the addition of 5.4 μM NAA. Leaf explants were more efficient for the regeneration of root and shoots than hypocotyls. For regeneration from leaf tissue the use of auxin (NAA) alone in the medium above a level of 0.54 μM resulted in root or callus growth. Cytokinin, in the form of BA alone failed to induce regeneration, but a combination of 4.44 μM BA and 0.54 μM NAA induced shoot regeneration at rates over 10.0 shoots per explant. Regenerated shoots were successfully transplanted to soil and flowered and set seed normally. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
云南元江干热河谷木本植物的物候   总被引:2,自引:0,他引:2  
在中国西南干热河谷的典型地段——元江干热河谷,连续3年观测了32种木本植物的枝条生长、叶片动态、花期、果期和果实类型。这些植物的枝条生长方式可以分为连续生长、枝条枯死、陡长和间歇生长4个类型。其中连续生长型占优势,包括13种植物,它们的枝条在雨季连续不断伸长。9种植物雨季的枝条伸长与连续生长型的相似,但它们顶部的枝条在旱季末期出现枯死现象。6种植物属于陡长型,在2周内完成抽枝,且一年只抽一次枝。4种植物属于间歇生长型,枝条在雨季来临后伸长一段时间,然后生长停滞,过一段时间后再接着伸长。从叶片物候类型看,元江干热河谷植被以落叶植物占优势。落叶植物中冷凉旱季(11月~2月)落叶植物占优势(19种),而干热旱季(3—4月)落叶植物很少(4种)。除红花柴(Indigofera pulchella)和狭叶山黄麻(Trema angustifolia)从雨季中期开始脱落叶片外,其它30种植物从雨季末期开始脱落叶片,落叶期至少延续3个月以上。常绿植物脱落近1/3~1/2的当年生叶片。共有6种植物能在旱季末期长出新叶。常绿植物的叶面积、单个枝条上的总叶面积和枝条承载(总叶面积/枝条长度)比落叶植物小。虽然一年四季都有不同植物开花和结果,但多数植物(29种,占观测树种的91%)的花期集中在旱季和雨季初期,而果实(种子)成熟期从雨季末期延续到旱季末期和下个雨季初期。果实多为核果。  相似文献   

7.
The effect of 6-benzylaminopurine (BAP) on floweringand on endogenous levels of isoprenoid cytokinins wasinvestigated in explanted terminal shoots of Chenopodium rubrum cultivated in vitro. Themother plants were grown under continuous light andexplants were cut off when the 6th leaf primordiumoriginated at the shoot apex. The explants wereexposed to one dark period of 13 hours inductive forflowering or to continuous light on medium with orwithout BAP (0.05;0.2;0.4 mg.l-1). Undernon-inductive conditions no flowering was observedeither in the control or after BAP treatment. Afterreceiving one inductive dark period, the controlexplants flowered. However, BAP application either atthe beginning of the inductive dark period and/orduring the following light cultivation inhibitedflowering and stimulated initiation and growth of leafprimordia. In the case of the most efficient BAPconcentration (0.05 mg.l-1) flowering wasinhibited by 80% and the number of leaf primordia wasincreased by 3. Explantation caused a significantincrease in the total amount of endogenous cytokininsin the explants within first 13 h, provided they werekept in light. When explants were kept in darkness,only a slight increase in cytokinin levels wasobserved. BAP treatment had no influence on the levelsof endogenous cytokinins either in light or indarkness. We may thus conclude, that BAP applicationinhibited flowering of photoperiodically inducedterminal shoot explants and stimulated leaf primordiaformation with no significant effect on changes inlevels of endogenous isoprenoid cytokinins. This maysuggest the direct ability of BAP to regulate morphogenesis.  相似文献   

8.
常绿阔叶树种栲树开花物候动态及花的空间配置   总被引:16,自引:0,他引:16       下载免费PDF全文
 基于定株观测和随机枝取样法,对浙江天童常绿阔叶林内栲树(Castanopsis fargesii)的开花物候动态及其雌花、雄花的空间配置进行了研究。结果表明:在栲树的生殖枝上,并非所有的芽都分化、萌发生成花序,栲树花芽的分化和发育集中在一级生殖枝上。生殖枝上花芽的分化与该枝的空间位置密切相关。栲树花期明显晚于春季的展叶期,与叶片生长时间重叠。盛花期集中于5月下旬,约持续8 d左右,属于同步发生的花期。栲树雄花序的数量明显高于雌花序,雄花序约占花序总数的77.88%,雌花序仅占22.12%。大量雄花和花粉的存在是保证雌花接受花粉和完成受精的基础。花序在植冠层中的空间配置明显不同:在同一植冠内,向阳面和背阴面生殖枝上芽萌发成花序的比率存在明显差异(p<0.01),阳面生殖枝上顶芽萌发成花序的比率高于阴面生殖枝的比率,并且,阳面的每个生殖枝上平均花序数和雄花数量均高于阴面生殖枝,花序的分化和发育与枝系的生长发育状况有密切关系。  相似文献   

9.
The existence of water potential gradients in flowering shoots and leaves of roses (Rosa sp., cv. Baccara) and along flag leaves of wheat (Triticum aestivum L.) were studied by means of the Scholander pressure chamber. In roses grown in greenhouse, the water potential measured in transpiring shoots was higher than in leaves detached from these shoots, whereas the potential differences between leaf and shoot after equilibration in the dark were small or negligible. A progressive decrease in water potential was found upon repeated measurement on the same organ; this decline was steeper in leaves than in shoots. Extrapolating this decline to excision time resulted in water potential values which, in transpiring shoots, were 3 to 5 bars higher than in leaves. Detopping the flower bud did not alter this pattern, indicating that the highest water potential in the shoot was in the stem. In field-grown wheat, the water potential measured in a whole flag leaf was about 6 bars higher than that measured in the apical one-third of the leaf, and this difference disappeared after equilibrating the detached leaf for 1 h in the dark. These potential differences indicate the presence of resistances along the water path in the organ. The results obtained by the pressure chamber represent the highest water potential in the organ, rather than the average water potential.  相似文献   

10.
Endophytic and epiphytic phyllosphere fungi associated with red-osier dogwood (Cornus stolonifera), a deciduous shrub, were examined in coastal British Columbia, Canada. Current-year shoots were divided into four types based on the absence or presence of inflorescence and secondary elongated shoots at the apex of primary shoots. Leaves on these shoots were then classified into six categories so as to examine the effect of flowering, secondary shoot elongation, and shoot order within current-year shoots on the occurrence of phyllosphere fungi. Species composition of fungi was markedly different between the interior and surface of leaves, whereas it was relatively similar among the six leaf categories in the interior or on the surface. Frequencies of the eight major species were not different between leaves on flowering and nonflowering shoots. The frequency of Colletotrichum gloeosporioides in the leaf interior was greater on leaves on the primary shoots that elongated the secondary shoots than on those that did not, and was greater on leaves on the primary shoots than on those on the secondary shoots. On the other hand, secondary shoot elongation and shoot order had no effect on the frequencies of C. gloeosporioides and the other seven epiphytes on leaf surfaces.  相似文献   

11.
Abstract. Question: How do functional types respond to contrasting levels of herbage use in temperate and fertile grasslands? Location: Central France (3°1’E, 45°43’N), 870 m a.s.l. Methods: Community structure and the traits of dominant plant species were evaluated after 12 years of contrasted grazing and mowing regimes in a grazing trial, comparing three levels of herbage use (high, medium and low). Results and Conclusions: Of 22 measured traits (including leaf traits, shoot morphology and composition, phenology), seven were significantly affected by the herbage use treatment. A decline in herbage use reduced individual leaf mass, specific leaf area and shoot digestibility, but increased leaf C and dry matter contents. Plants were taller, produced larger seeds and flowered later under low than high herbage use. Nine plant functional response types were identified by multivariate optimization analysis; they were based on four optimal traits: leaf dry matter content, individual leaf area, mature plant height and time of flowering. In the high‐use plots, two short and early flowering types were co‐dominant, one competitive, grazing‐tolerant and moderately grazing‐avoiding, and one grazing‐avoiding but not ‐tolerant. Low‐use plots were dominated by one type, neither hardly grazing‐avoiding nor grazing‐tolerant, but strongly competitive for light.  相似文献   

12.
Phenological and quantitative observations on Elodea nuttallii (Planch.) St. John, an exotic aquatic plant in Japan, were made in a shallow pond throughout 1979. Shoot elongation began in spring (late March) when the bottom water temperature became higher than about 10°C. Elongation ceased when the shoot apices reached the pond surface and vigorous branching then occurred. The community formed a dense canopy, with 40–65% of the shoot biomass in the topmost 30-cm water layer during the growing season. Maximum plant biomass (712 g dry wt. m?2) was attained in late July, while the peak root biomass occurred around June, coincident with peak flowering. The anchoring roots and stems eventually died, and after September, the population existed as a floating mat of non-anchored leafy short shoots and decaying old branch stems. This mat sank suddenly to the bottom in December, when water temperatures dropped below approximately 10°C, and overwintered there. The ecological significance of the perennial growth habit and the formation of a floating mat is discussed in terms of the adventive spread of this plant, and an estimation of annual net production and P/B quotient is also made.  相似文献   

13.
A population of the tuberous orchid Dactylorhiza lapponica was sampled from June 2000 to June 2001 in the Sølendet Nature Reserve, Central Norway. Dry matter of aerial shoots, old tubers and new (replacement) tubers was measured, as well as reproductive status during 1999–2001. The biomass of the new tuber was found to continue to increase after the assimilation from photosynthesis had ceased in August. It is suggested that the increase is caused by mycotrophic activity and reallocation of nutrients from the aerial shoots. There was a clear relationship between tuber size and flowering behaviour. Individuals with flower primordia had the largest replacement tuber, whereas those that flowered in the sampling season or remained vegetative throughout 1999–2001 had the smallest. Individuals that flowered in the sampling season had the largest old tuber. Those, which had not flowered for at least two years, but had developed flower primordia, had the second largest, and those that remained vegetative throughout 1999–2001 had the smallest one. Individuals with a replacement tuber less than 0.22 g in October, have a very low probability of flowering the following season. Flowering entails a cost in terms of reduced biomass of the replacement tuber compared to vegetative individuals with old tubers of similar size. Allometric analyses revealed that above-ground biomass and biomass of replacement tubers increased with the biomass of old tubers in vegetative individuals. For generative individuals, however, above-ground biomass was only weakly related to below-ground biomass.  相似文献   

14.
The development of new shoots plays a central role in the complex interactions determining vegetative and reproductive growth in woody plants. To explore this role we evaluated the new shoots in the olive tree, Olea europaea L., and the effect of fruiting on new shoot growth and subsequent flowering. Five-year-old branches served as canopy subunits in order to obtain a global, whole-tree view of new shoot number, size and morphological origin. The non-bearing trees had many more shoots than the fruit-bearing trees, and a greater number of longer shoots. In both bearing conditions, however, the majority of shoots were less than 4 cm long, with shoots of progressively longer lengths present in successively decreasing frequencies. Six major shoot types were defined on the basis of apical or lateral bud origin and of parent shoot age. On fruit-bearing trees, the new shoots originated predominantly from the shoot apex, while on non-fruiting trees, they formed mainly from axillary buds, but in both cases, they tended to develop on younger parent shoots. The previous bearing condition of the tree was the main determinant for subsequent inflorescence development, which was independent of both shoot type and length. Thus, reproductive behavior strongly affected both the amount and type of new branching, but subsequent flowering level was more influenced by previous bearing than by the potential flowering sites on new shoots.  相似文献   

15.
BACKGROUND AND AIMS: Plants have complex mechanisms of aerial biomass exposition, which depend on bud composition, the period of the year in which shoot extension occurs, branching pattern, foliage persistence, herbivory and environmental conditions. METHODS: The influence of water availability and temperature on shoot growth, the bud composition, the leaf phenology, and the relationship between partial leaf fall and branching were evaluated over 3 years in Cerrado woody species Bauhinia rufa (BR), Leandra lacunosa (LL) and Miconia albicans (MA). KEY RESULTS: Deciduous BR preformed organs in buds and leaves flush synchronously at the transition from the dry to the wet season. The expansion time of leaves is <1 month. Main shoots (first-order axis, A1 shoots) extended over 30 d and they did not branch. BR budding and foliage unfolds were brought about independently of inter-annual rainfall variations. By contrast, in LL and MA evergreen species, the shoot extension rate and the neoformation of aerial organs depended on rainfall. Leaf emergence was continuous for 2-6 months and lamina expansion took place over 1-4 months. The leaf life span was 5-20 months and the main A1 shoot extension happened over 122-177 d. Both evergreen species allocated biomass to shoots, leaves or flowers continuously during the year, branching in the middle of the wet season to form second-order (A2 shoots) and third-order (A3 shoots) axis in LL and A2 shoots in MA. Partial shed of A1 shoot leaves would facilitate a higher branching intensity A2 shoot production in LL than in MA. MA presented a longer leaf life span, produced a lower percentage of A2 shoots but had a higher meristem persistence on A1 and A2 shoots than LL. CONCLUSIONS: It was possible to identify different patterns of aerial growth in Cerrado woody species defined by shoot-linked traits such as branching pattern, bud composition, meristem persistence and leaf phenology. These related traits must be considered over and above leaf deciduousness for searching functional guilds in a Cerrado woody community. For the first time a relationship between bud composition, shoot growth and leaf production pattern is found in savanna woody plants.  相似文献   

16.
Liana species have a variety of habitat preferences. Although morphological traits connected to resource acquisition may vary by habitat preference, few studies have investigated such associations in lianas. In previous work on temperate lianas, we observed (1) free standing leafy shoots and (2) climbing shoots that clung to host plants; we examined relationships between habitat preference and shoot production patterns in five liana species. Among the five species, two were more frequent at the forest edges (forest-edge species), and two were more common within the forests (forest-interior species). The proportion of climbing shoots in current-year shoot mass of young plants (3–8 m in height) was greater in the forest-edge species (45–60%) than in the forest-interior species (6–30%). In consequence, there was a greater leaf mass ratio in the total current-year shoots of forest-interior species. This, combined with a greater specific leaf area, endows forest-interior species with a leaf area per unit shoot mass double that of forest-edge species. Forest-edge species had longer individual climbing shoots whose length per unit stem mass was smaller than in forest-interior lianas. Extension efficiency, measured as the sum of the climbing stem length per unit current-year shoot mass, was thus similar between forest-edge and interior species. In conclusion, liana shoot production patterns were related to species habitat preferences. A trade-off between current potential productivity (leaves) and the ability to search for hosts and/or well-lit environments (climbing stems) may underpin these relationships.  相似文献   

17.
The developmental patterns of adventitious shoots regenerated from cultured leaf tissue and the petioles of leaf cuttings of flowering day-neutral tobacco plants were assessed. Leaf tissue, removed from leaves within the inflorescence, was cultured on hormone-free medium and produced a limited number of adventitious shoots. These shoots produced the same number of nodes that would be produced by a seedling meristem. Most leaf-cutting derived shoots produced the same number of nodes that would be produced by a seedling meristem prior to flowering, while a few shoots produced very few nodes and flowered. Some plants appeared to be intermediate in response. Results indicated that the developmental state or the developmental response of all petiole cells is not the same. The influence of position and the potential reversibility in developmental fate of cell populations within leaves is discussed in the context of existing theory.  相似文献   

18.
Three populations of Arabidopsis thaliana (L.) Heynh. were inoculated with three isolates of Plasmodiophora brassicae Woron. Inoculation of young Arabidopsis plants caused clubbing of roots and, in the late flowering population CrGC 9–4, infection of shoots. In this population, the number of inoculated plants reaching the flowering stage was reduced, and the majority of plants died prematurely. Symptoms of shoot infections were compressed rosettes with thickened and stunted leaves containing resting spores of P. brassicae. The results showed clearly that A. thaliana is susceptible to P. brassicae.  相似文献   

19.
Six species of Cabomba have been examined although the anatomy of the vegetative axes is based on the study of only C. caroliniana and C. palaeformis. A plant consists of an erect short shoot with decussate leaves which bears axillary flowering shoots and rhizomes. A rhizome bears decussate leaves and may also form axillary flowering shoots or turn upward and become a new short shoot. The phyllotaxies of the flowering shoots are proximately decussate or ternate (C. piauhyensis). The flowering shoots with decussate phyllotaxy change to 1/3 phyllotaxy distally; they bear axillary flowers proximally, and extra-axillary flowers distally. Flowering shoots with ternate phyllotaxy do not change distally but each produces first axillary and then extra-axillary flowers. Decussate vegetative axes and flowering shoots have four vascular bundles; ternate vegetative axes and flowering shoots have six vascular bundles, distantly paired into two or three vascular bundle-pairs, respectively. An elliptical vascular plexus occurs at each node. Each leaf receives one bundle-pair from one trace and each flower three bundle-pairs. A two-level receptacular vascular plexus occurs in flowers; the proximal, larger portion provides traces to perianth and stamens and the distal, smaller portion becomes carpellary traces. Each of the three sepals typically receives five branch traces from a basal principal trace, and each of the three petals receives, typically, three branch traces from a basal principal trace. Sepals and petals generally occur in a single, basally connate whorl. Each stamen receives one trace. Each stamen of three-stamen flowers is opposite a petal; each stamen of six-stamen flowers is aligned with an interval between a petal and adjacent sepal. Each staminal trace, which is just above the principal petal trace, in a three-petal flower, is frequently adnate to the latter trace. Each carpel receives one principal trace from the distal, small extension of the receptacular plexus, and each principal trace becomes three conventional veins of a carpel. Ovules may be borne directly over one of the veins or in any position between veins and are supplied by branches of the nearest vein or nearest two veins. All traces, ovular supply veins and the proximal portions of all veins are amphicribral. The several anatomical and morphological differences in vegetative axes and flowers between Cabomba and Brasenia suggest a greater taxonomic distance between the two genera than commonly supposed. It is suggested that extra-axillary flowers in 1/3 helical and ternate flowering shoots of Cabomba might be advantageous in preventing anthesis of flowers beneath peltate leaves. The aberrant position might be the initial evolutionary step toward what, in other nymphaeaceous genera, has shifted each flower to an adjacent helix. It is proposed that the zigzag stem accompanying the trigonal and sympodial flowering shoots may offer greater stability and floatability in water than the monopodial form. Several suggestions are offered for the variability of ovular positions: 1) the variability is a vestige of former laminar placentation in conduplicate carpels; 2) it is a vestige of a primitive condition antedating the current close association of ovules with ventral carpellary veins; 3) it is an early stage of evolution which might have terminated in laminar placentation and cantharophily, but which was replaced by a trend toward myophily.  相似文献   

20.
This paper introduces a methodology to analyse the structural costs on plant potential fitness, empirically exemplified in the hierarchical shoot system of a Mediterranean perennial plant, Retama sphaerocarpa (L.) Boiss. During growing season every year (March-August), the terminal shoot (which is the basic unit of growth) develops inflorescences, flowers and fruits, as well as new shoots (first-, second- and third-order branching shoots) which have the potential to "behave" as terminal shoots in the following year. Different morphological and demographical aspects of the modules within the terminal shoot were measured in 100 terminal shoots selected from different plants of a natural population of R. sphaerocarpa. Complementary samples of 100 shoots of different branching orders were collected to obtain biomass estimations of the terminal shoots. We propose a simple procedure to estimate structural cost (biomass investment) on plant potential fitness (flowering buds) as a methodology for interpreting and comparing the consequences on fitness of different plant growth patterns. The results of this study exemplify how differential allocation patterns among plant structural modules, depending on their position within the shoot system, can be quantified to estimate their influence upon plant potential fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号