首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The three major components of the maize leaf are the blade, the sheath, and at their junction, the ligular region. Each exhibits specific cell types and organization. Four dominant Liguleless (Lg) mutations (Lg3-O, Lg4-O, Lg*347, and Lg*9167) in at least three different genes cause a similar morphological phenotype in leaves, although each mutation affects a distinct domain of the blade. Mutant leaves display regions of altered cell fate in the blade, occompanied by elimination of ligule and auricle at their wild-type positions and development of ligule and auricle in the blade at the borders of the altered regions. The affected blade cells are transformed into sheath-like cells, as determined by morphological and genetic tests. Lg4-O expressivity is highly dependent on genetic background. For example, two different backgrounds may specify converse patterns of phenotypic expression. Lg4-O expressivity is also affected by the heterochronic mutation Teopod2 (Tp2). Gene dosage experiments indicate that Lg4-O is a neomorph. Interactions between recessive lg mutations (which eliminate ligular structures) and the dominant Lg mutations suggest that the lg+ genes act after the Lg mutations. Lg3-O and Lg4-O act semidominantly, and interact with each other and with other mutations in the Knotted1 (Kn1)-like family (a family in which dominant mutant alleles cause blade to sheath transformation phenotypes). These interactions suggest that the above Kn1-like mutations may function similarly in the leaf. We discuss the similarities between the Lg mutations and the other mutations of the Kn1-like family, which led us to postulate that lg3 and lg4 are members of a growing family of kn1-like (knox) homeobox genes that are identified by dominant mutant alleles causing leaf transformation phenotypes. We also propose that certain key characteristics of this family of dominant neomorphic mutations are important for generating meaningful morphological changes during evolution. © 1996 Wiley-Liss, Inc.  相似文献   

2.
A staging system for development of gladiola (Gladiolus × grandiflorus) that relies on simple, visual, non‐destructive criteria is proposed. Four field trials were conducted during the spring 2010, autumn/winter 2011 and winter 2011 at Santa Maria, RS, Brazil, with different gladiola cultivars, in order to observe the developmental stages of the above‐ground parts and their dry matter. The developmental cycle, which starts at dormant corm and ends with plant senescence, is divided into four developmental phases: dormancy phase, sprouting phase (from filiform roots appearance to sheaths appearance), vegetative phase (from emergence of the first leaf tip to emergence of the final leaf tip on the stem) and reproductive phase (from heading to plant senescence). The developmental stages that were identified during the dormancy phase and during the sprouting phases are coded as S stages: S0 = dormant corm, S1 = appearance of roots, S2.1 = first sheath, S2.2 = second sheath and S2.3 = third sheath. Vegetative phase is coded as V stages: VE = emergence of the sheaths above ground, V1 = first leaf, V2 = second leaf, Vn = nth leaf and VF = flag leaf. Leaf tip is the marker for V1–VF. The developmental stages during the reproductive phases are coded as R stages: R1 = heading, R2 = blooming, R3 = onset of flowering, R4 = end of anthesis, R5 = end of florets senescence and R6 = plant senescence (leaves and floret axis are brown). Sub‐stages have also been assigned between R1 and R2 and between R3 and R4. Illustrations (photographs) of each developmental stage taken from field pot‐grown plants are provided and the proposed scale was tested with field observations. These criteria are straight forward and allow for quick determination of development stage. This system can be used by both farmers and for experimental trials.  相似文献   

3.
Abstract

Flowering is the most elusive and fascinating of all plant developmental processes. The ability to induce flowering in vitro in orchids would reduce the relatively long juvenile phase and provide deeper insight into the physiological, genetic and molecular aspects of flowering. This review synthesizes all available studies that have been conducted on in vitro flowering of orchids with the objective of providing valuable clues as to the mechanism(s) that is possibly taking place.  相似文献   

4.
  • 1 The host‐odour preferences of the rice leaf bug Trigonotylus caelestialium between the rice plant Oryza sativa L. and four species of graminaceous weeds, Poa annua, Alopecurus aequalis, Digitaria ciliaris and Eleusine indica, were investigated with an olfactometer aiming to clarify the influence of these odours on invasion of the bug to paddy fields at the flowering stage of rice.
  • 2 Both female and male adults significantly preferred the graminaceous weed A. aequalis in the flowering stage to rice in the fifth‐leaf stage. The bugs also significantly preferred flowering P. annua and A. aequalis to rice in the panicle‐formation stage. However, the bugs showed no preferences between rice in the flowering and grain‐filling stages and the flowering graminaceous weeds P. annua, D. ciliaris and E. indica.
  • 3 The preference of the rice leaf bug for the flowering graminaceous weeds before rice flowering coincides with the fact that these bugs mainly live on these weeds before rice flowering. It is considered that the bug's similar preference for flowering rice panicles as the flowering graminaceous weeds causes the intense invasion of the bug into paddy fields at this rice developmental stage.
  相似文献   

5.
6.
The dominant Knotted-1 mutations in maize alter development of the leaf blade. Sporadic patches of localized growth, or knots, and fringes of ectopic ligule occur along lateral veins of mutant leaf blades. In addition, bundle sheaths do not completely encircle lateral veins on mutant leaf blades. We have compared mutant leaf blades with wild-type leaves to determine the precise nature of the perturbed regions. Our analysis includes characterization of epidermal cell shapes, localization of photosynthetic proteins and histology of the leaf. We show that mutant leaf blades are a mosaic of leaf organ components. Affected regions of mutant leaf blades resemble either sheath or auricle tissue in both external and internal features. This conversion of blade cells represents an acropetal shift of more basal parts of the leaf blade region and correlates with previously identified ectopic expression of the Knotted-1 protein in the leaf blade. We propose that inappropriate expression of Kn1 interferes with the process of establishment of cell identities, resulting in early termination of the normal blade development program or precocious expression of the sheath and auricle development programs. © 1994 Wiley-Liss, Inc.  相似文献   

7.
We wished to determine the nature of differences in epidermalcell numbers and dimensions between leaves of different lengthin mutants of barley (Hordeum vulgare L. ‘Himalaya’).Three comparisons were made: leaf one (L1)vs. leaf four (L4);wild typevs. nine dwarf mutants and wild typevs. a slender mutant.L1 was shorter than L4, and for most lines this was associatedwith a change in epidermal cell number for the blade, and inboth cell number and length for the sheath. Compared to wildtype, the smaller leaves of dwarf plants generally had shorterand fewer cells in both blade and sheath. The blade of slenderplants was the same length (L1) or longer (L4) than wild type,while the sheath was longer than that of wild type for bothL1 and L4. Slender plants had longer but fewer cells than thewild type along the blade of L1, and shorter but more cellsfor the blade of L4. In the sheath, slender plants had longerand more (L1) or fewer (L4) cells than did the wild type. ForL1, variation in blade width amongst the barley lines was associatedwith a change in file width and file number. For L4, blade widthvaried only with file number, except for slender plants wherenarrow blades were associated with reduced file width. Hencethere was no consistent correlation between changes in cellsize or cell (or file) number with changes in leaf length orwidth. Differences depended on the leaf (L1vs. L4), leaf part(bladevs. sheath), and the nature of the mutation (dwarfvs.slender). Barley (Hordeum vulgare L. ‘Himalaya’); leaf epidermis; dwarf mutant; slender mutant  相似文献   

8.
The rice peter pan syndrome-1 (pps-1) mutant shows a prolonged juvenile phase and early flowering. Although the early vegetative phase and flowering time of pps-1 have been closely examined, the phenotypes in the late vegetative and reproductive phases are not yet well understood. In the ninth leaf blade of pps-1, the relative length of the midrib was comparable to the sixth leaf blade of wild-type. Moreover, pps-1 had a small inflorescence meristem and small panicles. These phenotypes indicate that in pps-1 the juvenile phase coexists with the late vegetative phase, resulting in small panicles. Gibberellin is known to promote the juvenile-adult phase transition. d18-k is dwarf and has a prolonged juvenile phase. Double mutant (d18-k pps-1) showed the same phenotype as the pps-1, indicating that PPS is upstream of GA biosynthetic genes.  相似文献   

9.
It is useful to envision two fundamentally different ways by which the timing of plant development is regulated: developmental stage-transition mechanisms and time-to-flowering mechanisms. The existence of both mechanisms is indicated by the behavior of various mutants. Shoot stage transitions are defined by dominant mutants representing at least four different genes; each mutant retards transitions from juvenile shoot stages to more adult shoot stages. In addition, dominant leaf stage-transition mutants in at least seven different genes have similar phenotypes, but the leaf rather than the shoot is the focus (and at least two of these genes encode homeodomain proteins.) One mutant, Hairy sheath frayed 1-O (Hsf1-O) simultaneously affects shoot and leaf; this mutant's behavior initiated our interest in plant heterochronism. The second type of timekeeping involves time-to-flowering. As with most plant but not animal species, cultivars of the maize species vary greatly for the time-to-flowering quantitative trait: between 6 and 14 weeks is common. It is via the 'slipping time frames' interaction that takes place between stage-transition mutants and time-to-flowering genetic backgrounds that unexpected and radical phenotypes occur. We see a reservoir of previously unsuspected morphological possibilities among the few heterochronic genotypes we have constructed, possibilities that may mimic the sort of variation needed to fuel macroevolution without having to posit (as done by Goldschmidt) any special macromutational mechanisms.  相似文献   

10.
The elucidation of molecular mechanisms underlying the leaf development can be facilitated by the detailed anatomical study of leaf development mutants. We present an analysis of leaf anatomy and morphogenesis during early developmental stages in has mutant of Arabidopsis thaliana. The recessive has mutation affects a number of aspects in plant development, including the shape and size of both cotyledons and leaves. The earliest developmental observations suggest almost synchronous growth of the first two leaf primordia of has mutant. No significant disruption of the cell division pattern in the internal tissue is observed at the earliest stages of development, with the major anatomical difference compared to wild type primordia being the untimely maturation of mesophyll tissue cells in has mutant. At the stage of leaf blade formation, structure disruption becomes clearly evident, by irregular arrangement of the cell layers and the lack of polarity in juvenile has leaves. One distinguishing feature of the mutant leaf anatomy is the absence of mesophyll tissue differentiation. Altered has mutant leaf morphology could be at least partially accounted for by the ectopic STM activity that was found at the base of leaf primordia during early stages of leaf development in has plants.  相似文献   

11.
Barley seedlings (cv. Beatrice) emerging from seed infected with Drechslera teres were sorted into healthy seedlings, those with leaf sheath lesions and those with leaf blade lesions. Leaf area, plant height and total weight were reduced relative to healthy plants; leaf emergence also appeared to be delayed.  相似文献   

12.
L. Sun  L. H. Wu  T. P. Ding  S. H. Tian 《Plant and Soil》2008,304(1-2):291-300
Silicon (Si) isotope composition and Si distribution among different rice plant organs and different parts of rice leaf at maturity were studied, which may provide new insights into the mechanism of Si accumulation in plants and biogeochemical Si cycle. An isotope ratio mass spectrometer (IRMS) was used to examine Si isotope fractionation by rice plant grown in a hydroponic system. The observed 30Si-depletion (about 0.3‰) of whole plant relative to external nutrient solutions suggested biologically mediated Si isotope fractionation occurred during uptake. However, it was not possible to judge the Si uptake mechanism with the data. For δ30Si variation within plant, there was a consistent increasing trend from lower to upper tissues (stem < leaf < husk < grain; leaf sheath < leaf blade base <leaf blade middle < leaf blade top). The phenomenon, reflecting kinetic isotope effects, could be explained that isotope fractionation during Si deposition in rice plant was a Rayleigh-like behavior. The range (−2.7‰ to 2.3‰) of δ30Si variation among rice plant tissues in present experiment exceeded that (−1.7‰ to 2.5‰) of phytoliths observed previously in continents, which would enhance understanding the role of phytoliths on globe Si isotope balance.  相似文献   

13.
H. Hashimoto 《Protoplasma》1985,127(1-2):119-127
Summary Nucleoid distribution in chloroplasts and etioplasts at the different developmental stages was examined with the first leaves ofAvena sativa by using a DNA-specific fluorescent probe, 46-diamidino-2-phenylindole (DAPI). In light-grown first leaves, three types of plastid nucleoid distribution were recognized. 1. Peripheral distribution in undeveloped chloroplasts which contain only a few thylakoids in the middle region of the leaf sheath. 2. Ring-like arrangement along the rim of developing and dividing young chloroplasts, of which grana were composed of four to eight layers of thylakoids, at the base of the leaf blade. The plane of the nucleoids' ring is in parallel with the face of the thylakoids. 3. Scattered distribution of 10 to 20 discrete spherular nucleoids in the stroma of fully developed chloroplasts, of which grana were composed of up to 20 thylakoids, in the regions of the middle and the tip of the leaf blade. In dark-grown first leaves two types were recognized. 1. Peripheral distribution in developing and dividing young etioplasts in the leaf sheath and the base of the leaf blade. 2. Scattered distribution of 10 or more discrete spherular nucleoids in fully developed etioplasts, containing extended prothylakoids, in the regions of the middle and the tip of the leaf blade. Ring-like arrangement of nucleoids was not observed in any etioplasts. The results indicates that spatial arrangement of plastid nucleoids dynamically changes in close relationship with the development of the inner membrane systems of plastids.  相似文献   

14.
Relative elemental growth rates (REGR) and lengths of epidermal cells along the elongation zone of Lolium perenne L. leaves were determined at four developmental stages ranging from shortly after emergence of the leaf tip to shortly before cessation of leaf growth. Plants were grown at constant light and temperature. At all developmental stages the length of epidermal cells in the elongation zone of both the blade and sheath increased from 12 m at the leaf base to about 550 m at the distal end of the elongation zone, whereas the length of epidermal cells within the joint region only increased from 12 to 40 m. Throughout the developmental stages elongation was confined to the basal 20 to 30 mm of the leaf with maximum REGR occurring near the center of the elongation zone. Leaf elongation rate (LER) and the spatial distributions of REGR and epidermal cell lengths were steady to a first approximation between emergence of the leaf tip and transition from blade to sheath growth. Elongation of epidermal cells in the sheath started immediately after the onset of elongation of the most proximal blade epidermal cells. During transition from blade to sheath growth the length of the blade and sheath portion of the elongation zone decreased and increased, respectively, with the total length of the elongation zone and the spatial distribution of REGR staying near constant, with exception of the joint region which elongated little during displacement through the elongation zone. Leaf elongation rate decreased rapidly during the phase when only the sheath was growing. This was associated with decreasing REGR and only a small decrease in the length of the elongation zone. Data on the spatial distributions of growth rates and of epidermal cell lengths during blade elongation were used to derive the temporal pattern of epidermal cell elongation. These data demonstrate that the elongation rate of an epidermal cell increased for days and that cessation of epidermal cell elongation was an abrupt event with cell elongation rate declining from maximum to zero within less than 10 h.Abbreviations LER leaf elongation rate - REGR relative elemental growth rates  相似文献   

15.
The wildtype leaf blade of Pisum sativum possesses proximalleaflets and distal tendrils, which may be altered by two recessivemutations that affect pinna morphology, afila (afaf) and tendrilless(tltl). Using morphological observations and SEM, the variationin leaf forms along the plant axis and leaf development werecharacterized for plants heterozygous at the Af and/or Tl loci.The Af and Tl genes interacted to affect many characteristicsof shoot ontogeny, including rate changes in leaf blade lengthand complexity increases, as well as time to flowering. TheAf gene retarded early vegetative development and acceleratedthe time to flowering. The leaf phenotypes of these heterozygousgenotypes were specified mainly by changes in the timing ofmajor developmental events. The data support the hypothesesthat both genes are heterochronic in nature and that the pealeaf blade consists of three genetically- and developmentally-determined regions: proximal, distal and terminal. Copyright2000 Annals of Botany Company Heterochrony, leaf development, shoot ontogeny, Pisum sativum L., garden pea, afila,tendrilless .  相似文献   

16.
17.
The long juvenile period of citrus trees (often more than 6 years) has hindered genetic improvement by traditional breeding methods and genetic studies. In this work, we have developed a biotechnology tool to promote transition from the vegetative to the reproductive phase in juvenile citrus plants by expression of the Arabidopsis thaliana or citrus FLOWERING LOCUS T (FT) genes using a Citrus leaf blotch virus‐based vector (clbvINpr‐AtFT and clbvINpr‐CiFT, respectively). Citrus plants of different genotypes graft inoculated with either of these vectors started flowering within 4–6 months, with no alteration of the plant architecture, leaf, flower or fruit morphology in comparison with noninoculated adult plants. The vector did not integrate in or recombine with the plant genome nor was it pollen or vector transmissible, albeit seed transmission at low rate was detected. The clbvINpr‐AtFT is very stable, and flowering was observed over a period of at least 5 years. Precocious flowering of juvenile citrus plants after vector infection provides a helpful and safe tool to dramatically speed up genetic studies and breeding programmes.  相似文献   

18.
Laser induced breakdown spectroscopy (LIBS) has been used to perform in situ analysis of major and minor elements present in the different parts of the Bermuda grass (Cynodon dactylon). In situ, point detection/analysis of the elements in plants without any sample preparation has been demonstrated. LIBS spectra of the different parts (leaf blade, leaf sheath and stem) of fresh C. dactylon plant have been recorded to study the pattern of silica deposition in its different parts. Atomic lines of Si, Mg, Ca, C, Al, Zn, N, Sr, etc. have been observed in the LIBS spectra of the C. dactylon. A close observation of LIBS spectra of the different parts of the plants shows that silica concentration is greater in leaf blades than leaf sheaths and stems. The results obtained with LIBS analysis are also compared with the number density of phytoliths deposited in different parts of C. dactylon. It is observed that the highest silicified cell frequency is present in leaf blades followed by leaf sheaths and stems which is in close agreement with LIBS analysis.  相似文献   

19.
《Acta Oecologica》2007,31(2):210-215
Nicotine is both a constitutive and induced defense in cultivated tobacco (Nicotiana tabacum). Nicotine is thought primarily to defend against above-ground herbivory; however, below-ground herbivores like the nematode Meloidogyne incognita can also damage plants. We evaluated the costs and benefits of constitutive nicotine production in four near-isogenic lines of N. tabacum differing in nicotine content. We exposed the four lines to levels of nematode infection below that found to induce nicotine synthesis, and measured nematode density and each line's response to nematode presence. Nematode density did not differ among lines and was not related to leaf nicotine content in any of the lines, suggesting that constitutive nicotine content did not affect nematode survival or reproduction. Most measures of plant performance were unaffected by nematodes; however, nematode infection decreased flowering in the high nicotine line relative to the other lines. Lines with less constitutive nicotine did not incur similar costs, suggesting a tradeoff between nicotine production and tolerance of low levels of herbivory. A cost of nicotine production is also suggested by the fact that flowering was inversely correlated with leaf nicotine content in all four lines. Although nicotine conferred no resistance to nematodes, high nicotine content reduced the plant's tolerance of low levels of nematode infection and was correlated with reduced flowering. In examining the costs and benefits of a constitutive plant defense, this work complements and extends previous research addressing the relationship between plant tolerance and induced defenses.  相似文献   

20.
The partitioning of photosynthetically fixed carbon betweencarbohydrate fractions and the processes of export and storagewere compared in mature leaf blades and sheaths of the grassPoa pratensis L. Most of the fixed carbon was destined for exportfrom the leaf blade with only 1% of the carbon fixed duringthe photoperiod being stored after 24 h. Although most of theassimilates imported to the sheath from the blade were subsequentlyexported, there was some unloading and storage of assimilates.Autoradiography was used to compare the translocation of 14C-labelledassimilates through non-fed areas of leaf blade and sheath andrevealed that the veins in the sheath showed a greater capacityfor storage of assimilates compared to the leaf blade. Biphasickinetics of sucrose and glucose uptake were observed in segmentsof leaf blade and sheath. Although similar carriers for eachof the sugars appear to exist in the blade and sheath, the rateof uptake via these carriers was significantly lower in thesheath compared to the blade. Assuming that unloading proceedsvia a symplastic pathway, it would appear that the conversionof sucrose to starch in the sheath could be an important meansof regulating unloading and in determining sink strength ofthe sheath. It is concluded that although the net amount ofsugars unloaded in the sheath is small, the storage of assimilatesin the vein network could be an important means of bufferingchanges in sucrose concentration in the translocate during periodsof fluctuating assimilation. Key words: Poa pratensis, autoradiography, sugar uptake, leaf blade, leaf sheath  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号