首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cultivated strawberry (Fragaria × ananassa) together with other economically important genera such as Rosa (roses) and Rubus (raspberry and blackberry) belongs to the subfamily Rosoideae. There is increasing interest in the development of transferable markers to allow genome comparisons within the Rosaceae family. In this report, 122 new genic microsatellite (SSR) markers have been developed from cultivated strawberry and its diploid ancestor Fragaria vesca. More than 77% of the sequences from which the markers were developed show significant homology to known or predicted proteins and more than 92% were polymorphic among strawberry cultivars, representing valuable markers in transcribed regions of the genome. Sixty-three SSRs were polymorphic in the diploid Fragaria reference population and were bin-mapped together with another five previously reported but unmapped markers. In total, 72 loci were distributed across the seven linkage groups. In addition, the transferability of 174 Fragaria SSRs to the related Rosa and Rubus genera was investigated, ranging from 28.7% for genic-SSRs in rose to 16.1% for genomic-SSRs in raspberry. Among these markers, 33 and 16 were both localized in the diploid Fragaria reference map and cross-amplified in rose and raspberry, respectively. These results indicate that transferability of SSRs across the Rosoideae subfamily is limited. However, we have identified a set of Fragaria markers, polymorphic in the diploid reference population, which cross-amplified in both Rosa and Rubus, which represents a valuable tool for comparative mapping and genetic diversity analyses within the Rosoideae subfamily.  相似文献   

2.
In this study, 121 wild edible plants used as food in Anatolia were surveyed to determine the plant parts used and their detailed preparation methods. The results of this study show that the plants may be boiled, fried in fat, and eaten raw or as rolled vegetables. They may also be consumed as pickles, fruits, sweets and spices, and drunk as cold and hot drinks. Thirty species (8 genera) were identified as belonging to the Lamiaceae family, 15 species (15 genera) belong to the Asteraceae family, 13 species (5 genera) belong to the Rosaceae family, 8 species (7 genera) belong to the Brassicaceae family, 6 species (3 genera) belong to the Orchidaceae family and 5 species (5 genera) belong to the Apiaceae family. The genera represented by the highest number of species in the study are as follows:Sideritis L. is represented by 13 species, Origanum L. by 7 species,Rubus L. by 5 species,Thymus L. by 4 species andRumex L. by 4 species.  相似文献   

3.
4.
Banded chromosomes of five species of testudinid turtles (Geochelone pardalis, G. elongata, G. elephantopus, Gopherus berlandieri, and G. polyphemus) reveal little variation within either genus, although there are differences in amount and distribution of heterochromatin between Geochelone pardalis and G. elongata. The chromosomal position and size of the nucleolar-organizer region differs between species of the two genera.Comparisons of standard karyotypes of these species and Malacochersus tornieri with data in the literature on other tortoises show a diploid number of 52 characterizes the family. These data are consistent with those for other families which show turtles are karyotypically conservative. G-banded chromosomes of Geochelone are identical to those of Chinemys reevesi, a karyotypically primitive batagurine emydid, supporting a derivation of the tortoises from a batagurine ancestor.  相似文献   

5.
Flowers of 169 species of Rosaceae subfamily Maloideae, which were chosen to represent the taxonomic and geographic diversity of the group, were studied to ascertain their morphological variation and its systematic relevance. We describe and illustrate variation in size, indumentum, color, and macroscopic structural features. Most maloid species have syncarpous flowers with two to five carpels in which the ovary is at least three-quarters inferior, whereas species of other Rosaceae subfamilies have apocarpous or unicarpellate flowers with superior ovaries. However, maloid flowers show significant variation in the degree of carpel connation and of ovary adnation to the hypanthium. Cotoneaster, Heteromeles, and Pyracantha are completely apocarpous, and Dichotomanthes is perigynous with a completely superior ovary. Thus, no one floral character is sufficient to separate the Maloideae from other subfamilies of Rosaceae. Differences among their flowers support our recognition of Malus, Pyrus, and Sorbus as separate genera. Further, we argue for removal of Docyniopsis and Eriolobus from Malus, division of Sorbus into several genera, and union of Aronia, Photinia, and Stranvaesia. No floral characters support the traditional dichotomy of the subfamily into tribes Crataegeae and Sorbeae.  相似文献   

6.
The 140+ species of Echeveria have more than 50 gametic chromosome numbers, including every number from 12 through 34 and polyploids to n = ca. 260. With related genera, they comprise an immense comparium of 200+ species that have been interconnected in cultivation by hybrids. Some species with as many as 34 gametic chromosomes include none that can pair with each other, indicating that they are effectively diploid, but other species with fewer chromosomes test as tetraploids. Most diploid hybrids form multivalents, indicating that many translocations have rearranged segments of the chromosomes. Small, nonessential chromosomal remnants can be lost, lowering the number and suggesting that higher diploid numbers (n = 30–34) in the long dysploid series are older. These same numbers are basic to most other genera in the comparium (Pachyphytum, Graptopetalum, Sedum section Pachysedum), and many diploid intergeneric hybrids show very substantial chromosome pairing. Most polyploid hybrids here are fertile, even where the parents belong to different genera and have very different chromosome numbers. This seems possible only if corresponding chromosomes from a polyploid parent pair with each other preferentially, strong evidence for autopolyploidy. High diploid numbers here may represent old polyploids that have become diploidized by loss, mutation, or suppression of duplicate genes, but other evidence for this is lacking. Most species occur as small populations in unstable habitats in an area with a history of many rapid climatic and geological changes, presenting a model for rapid evolution.  相似文献   

7.
A review on the complex of species of eriophyoid mites associated with Rosaceae is given, focused on the phylogeny, biology, and distribution of their host plants and galls induced by these mites. About 200 species of 39 genera from 3 families ofEriophyoidea are known from Rosaceae. Among them, 6 species from 2 genera belong to Phytoptidae, 178 species from 27 genera, to Eriophyidae, and 28 species from 10 genera, to Diptilomiopidae; 7 genera of the latter family are represented on Rosaceae by a single species each. The ability to induce galls is discussed using the example of the most widespread and numerous genera of the family Eriophyidae from Rosaceae. Mites of two large subfamilies, Eriophyinae and Phyllocoptinae, include both vagrant and concealed forms. The types of galls caused by mites are related to the systematic position of mites and the distribution of mites and their host plants. The hypothesis of host shifts of eriophyoid mites from other plant families to Rosaceae is considered. Most of the species which presumably switched to Rosaceae have been described from Southeast Asia. Morphological similarity between vagrant and concealed forms from the paraphyletic tribes Eriophyini and Phyllocoptini, and also Aceriini and Anthocoptini is discussed. Their pairwise similarity might be the result of evolution (Eriophyini → Phyllocoptini and Aceriini → Anthocoptini) connected with change oflife style.  相似文献   

8.
Proto‐Araceae, the earliest diverged lineage within the family Araceae, includes two subfamilies, Gymnostachydoideae (one species) and Orontioideae (eight species). Based on an extensive sampling (a total of 198 accessions) of six chloroplast non‐coding regions (5799 aligned sites), we assessed phylogenetic relationships among the genera and species within subfamily Orontioideae and estimated the timing of intercontinental disjunct events in the Northern Hemisphere. Overall phylogenetic relationships among the genera were consistent with results from previous studies, but several new important findings were discovered, primarily within Symplocarpus Salisb. ex W. P. C. Barton. First, two major lineages within Symplocarpus were identified: one lineage included S. foetidus (L.) Salisb. ex W. Barton, S. nabekuraensis Otsuka & K. Inoue, and S. renifolius Schott ex Tzvelev (Japan), whereas the other included S. nipponicus Makino, S. egorovii N. S. Pavlova & V. A. Nechaev, and S. renifolius (Korea). Symplocarpus renifolius in Japan was tetraploid and closely related to the tetraploid S. foetidus in eastern North America. Populations of S. renifolius in Korea were confirmed to be diploid (2n = 30) and shared the most recent common ancestor with the other diploid species, S. nipponicus. Second, two recently described species, S. nabekuraensis and S. egorovii, were deeply embedded within S. renifolius in Japan and Korea, respectively, and their distinct taxonomic status requires further assessment. Finally, two intercontinental disjunction events in the subfamily, one in Lysichiton Schott between eastern Asia and western North America and the other in Symplocarpus between eastern Asia and eastern North America, were estimated to be between 4.5 and 1.4 million years ago (Pliocene and Pleistocene) and between 1.9 and 0.5 million years ago (Pleistocene), respectively.  相似文献   

9.
于2012~2013年,以样带法、样方法和无样地法相结合,分4次对蟒河国家级自然保护区猕猴栖息地食源植物种类进行了实地调查,并分析了其区系特征。研究发现:(1)蟒河保护区猕猴栖息地内有维管植物659种,隶属102科374属,其中54科126属261种为猕猴的食源植物,占猕猴栖息地植物科、属、种总数的52.94%、33.69%和39.61%;蔷薇科是食源植物中包含种类最多的科,有16属39种,其次为豆科,含11属23种。(2)蟒河保护区内猕猴食源植物区系特征为:食源植物所在科有6个分布型和2个变型,所在属有13个分布型和6个变型;在属的分布类型中,温带性质分布类型的属占优势,有75个,占总属数的66.96%,其中北温带分布类型的属46个,占总属数的41.07%;热带性质分布类型的属有24个,地中海区、中亚、东亚和中国特有分布成分的属共有13个,分别占总属数的21.43%和11.61%,说明蟒河保护区内猕猴食源植物区系为暖温带性质。  相似文献   

10.
A total of 145 microsatellite primer pairs from Prunus DNA sequences were studied for transferability in a set of eight cultivars from nine rosaceous species (almond, peach, apricot, Japanese plum, European plum, cherry, apple, pear, and strawberry), 25 each of almond genomic, peach genomic, peach expressed sequence tags (EST), and Japanese plum genomic, 22 of almond EST, and 23 of apricot (13 EST and 10 genomic), all known to produce single-locus and polymorphic simple-sequence repeats in the species where they were developed. Most primer pairs (83.6%) amplified bands of the expected size range in other Prunus. Transferability, i.e., the proportion of microsatellites that amplified and were polymorphic, was also high in Prunus (63.9%). Almond and Japanese plum were the most variable among the diploid species (all but the hexaploid European plum) and peach the least polymorphic. Thirty-one microsatellites amplified and were polymorphic in all Prunus species studied, 12 of which, covering its whole genome, are proposed as the “universal Prunus set”. In contrast, only 16.3% were transferable in species of other Rosaceae genera (apple, pear, and strawberry). Polymorphic Prunus microsatellites also detected lower levels of variability in the non-congeneric species. No significant differences were detected in transferability and the ability to detect variability between microsatellites of EST and genomic origin.  相似文献   

11.
Patterns of nodulation, growth, andFrankia — host specificity have not been well characterized for the actinorhizal genera in the family Rosaceae because of the scarcity ofFrankia isolates from these taxa. Furthermore, the few isolates available from actinorhizal Rosaceae have consistently failed to nodulate plants from the host genus. In a series of experiments, species of rosaceousDryas, Cowania, Cercocarpus, Fallugia, andPurshia were inoculated withFrankia isolates, crushedDryas actinorhizae, and neoglacial soils to ascertain whether any of these inocula would effectively induce nodulation. Neoglacial soils from Alaska and Canada nodulated not only the localDryas drummondii, but alsoCercocarpus betuloides, Cowania mexicana andPurshia tridentata from distant and ecologically diverse locales as well as nonrosaceous, actinorhizal species ofAlnus, Elaeagnus, Myrica, andShepherdia. But of eightFrankia isolates, including two fromPurshia tridentata and one fromCowania mexicana, none were able to induce nodulation onPurshia orCowania species. Globular, actinorhizae-like nodules incapable of acetylene reduction were produced onC. betuloides inoculated withFrankia isolates. Crushed nodule suspensions fromDryas drummondii nodulated rosaceousCowania, Dryas andPurshia, as well as non-rosaceousElaeagnus, Myrica, andShepherdia species. Nodules produced by inoculation ofCowania mexicana andPurshia tridentata with crushed, dried nodule suspensions fromDryas drummondii reduced acetylene to ethylene, indicating nitrogenase activity for these nodulated plants. These data suggest that a similar microsymbiont infects the actinorhizal genera in the family Rosaceae.  相似文献   

12.
Scanning electron microscopic investigations of seed morphology of the five genera of Menyanthaceae illustrate a remarkable diversity of seed characteristics for a small family. Seeds of the monotypic northern hemisphere Menyanthes and Fauria are unomamented and similar, and those of the monotypic Liparophyllum of New Zealand and Tasmania are similar to some Australian species of Villarsia. Seed characteristics within the larger genera Villarsia and Nymphoides are variable and mostly species specific, but do not lend support to taxonomic separation of these genera. Interspecific affinities postulated on other grounds are, in many instances, supported by seed morphology. Various seed-coat features are believed to aid in water or animal dispersal of the seeds of several species. Ant dispersal appears to be important for Villarsia and Nymphoides in Australia, but does not seem to occur in these genera or in other members of the family outside of Australia.  相似文献   

13.
14.
Genic microsatellites or simple sequence repeat markers derived from expressed sequence tags (ESTs), referred to as EST–SSRs, are inexpensive to develop, represent transcribed genes, and often have assigned putative function. The large apple (Malus × domestica) EST database (over 300,000 sequences) provides a valuable resource for developing well-characterized DNA molecular markers. In this study, we have investigated the level of transferability of 68 apple EST–SSRs in 50 individual members of the Rosaceae family, representing three genera and 14 species. These representatives included pear (Pyrus communis), apricot (Prunus armeniaca), European plum (P. domestica), Japanese plum (P. salicina), almond (P. dulcis), peach (P. persica), sour cherry (P. cerasus), sweet cherry (P. avium), strawberry (Fragaria vesca, F. moschata, F. virginiana, F. nipponica, and F. pentaphylla), and rose (Rosa hybrida). All 68 primer pairs gave an amplification product when tested on eight apple cultivars, and for most, the genomic DNA-derived amplification product matched the expected size based on EST (in silico) data. When tested across members of the Rosaceae, 75% of these primer pairs produced amplification products. Transferability of apple EST–SSRs across the Rosaceae ranged from 25% in apricot to 59% in the closely related pear. Besides pear, the highest transferability of these apple EST–SSRs, at the genus level, was observed for strawberry and peach/almond, 49 and 38%, respectively. Three markers amplified in at least one genotype within all tested species, while eight additional markers amplified in all species, except for cherry. These 11 markers are deemed good candidates for a widely transferable Rosaceae marker set provided their level of polymorphism is adequate. Overall, these findings suggest that transferability of apple EST–SSRs across Rosaceae is varied, yet valuable, thereby providing additional markers for comparative mapping and for carrying out evolutionary studies.  相似文献   

15.
蔷薇科是历山自然保护区种子植物的第一大科。该区有蔷薇科植物4亚科,23属,85种(含变种7)。在历山蔷薇科植物的区系组成中,优势属明显,尤以中等属突出,中等属占其蔷薇科植物总属数的43.48%,所含种数占该区蔷薇科植物总种数(包括变种)的75.29%。该区的蔷薇科植物从属、种层次上都表现出典型的温带性质,且以北温带性质为主;在属级、种级水平上,温带分布分别占该区蔷薇科植物总属数和总种数的95.45%、51.76%。该区蔷薇科植物属、种的特有现象不平衡,没有中国特有属,有中国特有种40种。  相似文献   

16.
Photinia and its morphologically similar allies in Maleae (Rosaceae) consist of five currently recognized genera: Aronia, Heteromeles, Photinia, Pourthiaea, and Stranvaesia, and 68 species, distributed in Asia and North and Central America. Despite previous efforts to clarify relationships in this group, the generic delimitations have remained uncertain. Our goals were to reconstruct a robust phylogeny of Photinia and its close allies to test the monophyly of the currently recognized genera, especially Photinia and Stranvaesia, and the hybrid origin hypothesis of Photinia bodinieri. This study employs complete plastomes and the entire nuclear ribosomal DNA (nrDNA) repeats assembled from the genome skimming approach with a broad taxon sampling of 81 species in 30 genera of Rosaceae, especially Maleae. Based on three datasets, including the whole plastome, coding sequence, and nrDNA repeats, the results of maximum likelihood and Bayesian inference analyses showed that the previously circumscribed Stranvaesia and Photinia were each non‐monophyletic. Six clades have been recovered herein within Photinia and its allied genera: Aronia, Heteromeles, Photinia s.s., Pourthiaea, Stranvaesia, and a new genus Phippsiomeles consisting of the Central American species formerly placed in Photinia. The strong conflicts between the plastome and nrDNA phylogenies of Phippsiomeles and Stranvaesia tomentosa suggest the possibility that they may have each originated involving hybridization events, while no incongruence among datasets was detected to support the hybrid origin of Photinia bodinieri. We provide 12 new combinations, to transfer eight taxa of the New World Photinia into Phippsiomeles and clarify the generic placements of several species of Photinia and Stranvaesia.  相似文献   

17.
The current taxonomy on the haemococcidia establishes that the two genera of protozoan parasites that integrate the family Lankesterellidae are Lankesterella and Schellackia. However, the phylogeny of these genera, as well as the other coccidia, remains unresolved. In this sense, the use of type and described species is essential for the resolution of systematic conflicts. In this study, we molecularly characterize the type species of the genus Schellackia, that is, S. bolivari from Europe and also a described species of the same genus from Asia. At the same time, we contribute with the molecular characterization of another species of the genus Lankesterella. All this put together supports the polyphyly of the family Lankesterellidae. Therefore, we propose the resurrection of the zoological family, Schellackiidae Grassé 1953 , to include species within the genus Schellackia.  相似文献   

18.
New chromosome counts for 9 species and 2 genera of Sapindaceae are presented and compared with a review of all available chromosome numbers of the family. In 4 species diploid numbers differing from previous reports are found. In 4 species of the tribe Paullinieae (S. diversiflora, S. subdentata, C. grandiflorum and C. halicacabum) detailed studies on interphase nucleus structure, condensing behaviour and chromosome banding patterns are presented. The karyological differentiation of Paullinieae is generally characterized by dysploid reduction of chromosome numbers and the increase of chromosome size. Sequential staining of nuclei with CMA/DAPI and Giemsa-C-banding demonstrates diversification of constitutive heterochromatin (= hc) and different types of chromatin organization in Serjania and Cardiospermum. The obvious lack of polyploid series and the karyological evolution within the family is discussed. The outstanding small genome size found in Cardiospermum halicacabum is considered to be due to a secondary loss of DNA in the course of the change to herbaceous growth.  相似文献   

19.
Plant R genes confer resistance to pathogens in a gene-for-gene mode. Seventy-five putative resistance gene analogs (RGAs) containing conserved domains were cloned from Rubus idaeus L. cv. ‘Latham’ using degenerate primers based on RGAs identified in Rosaceae species. The sequences were compared to 195 RGA sequences identified from five Rosaceae family genera. Multiple sequence alignments showed high similarity at multiple nucleotide-binding site (NBS) motifs with homology to Drosophila Toll and mammalian interleukin-1 receptor (TIR) and non-TIR RNBSA-A motifs. The TIR sequences clustered separately from the non-TIR sequences with a bootstrap value of 76%. There were 11 clusters each of TIR and non-TIR type sequences of multiple genera with bootstrap values of more than 50%, including nine with values of more than 75% and seven of more than 90%. Polymorphic sequence characterized amplified region and cleaved amplified polymorphic sequence markers were developed for nine Rubus RGA sequences with eight placed on a red raspberry genetic linkage map. Phylogenetic analysis indicated four of the mapped sequences share sequence similarity to groupTIR I, while three others were spread in non-TIR groups. Of the 75 Rubus RGA sequences analyzed, members were placed in five TIR groups and six non-TIR groups. These group classifications closely matched those in 12 of 13 studies from which these sequences were derived. The analysis of related DNA sequences within plant families elucidates the evolutionary relationship and process involved in pest resistance development in plants. This information will aid in the understanding of R genes and their proliferation within plant genomes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo‐Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species‐specific C‐banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine‐cytosine‐rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号