首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seasonal development and fungal endophytes of the mycorrhizal roots of Calypso bulbosa (L.) Oakes were studied using fresh collections from Alberta and herbarium specimens from six herbaria. Typically, a single pair of mycorrhizal roots are produced at the base of a single corm each growing season. No evidence was found to support the putative existence of a coralloid rhizome in this species. The pattern of fungal infection, peloton formation, and breakdown is similar to other nonsaprophytic, terrestrial orchids. The endophytic fungi of a single mycorrhizal root can belong to a number of different fungal taxa. Fungi isolated and described include Rhizoctonia anaticula Currah, Thanatephorus pennatus Currah, Leptodontidium orchidicola Sigler and Currah, Phialocephala fortinii Wang and Wilcox, and two unnamed isolates of Rhizoctonia.  相似文献   

2.
3.
4.
Winter , Dorothy M. (Iowa State U., Ames.) The development of the seed of Abutilon theophrasti. I. Ovule and embryo. Amer. Jour. Bot. 47(1): 8–14. Illus. 1960.—Abutilon theophrasti Medic, is a widespread annual weed which produces an abundance of seed in capsules which mature within 20 days after pollination. Ovule differentiation may be observed at least 8 days before anthesis when a sporogenous cell becomes evident and 2 integuments are initiated. An 8-nucleate embryo sac is produced from the chalazal megaspore approximately 2 days before anthesis. The outer integument of the mature campylotropous ovule consists of 2 cell layers, the inner integument has 6 to 15 cell layers. The initially free-nucleate endosperm becomes cellular betwen 3 and 7 days after pollination. At maturity a thin layer of gelatinous endosperm encases the embryo. The Asterad-type proembryo of Abutilon has a stout suspensor and develops rapidly. Four days after pollination cotyledons are initiated; 4 days later a leaf primordium is evident. Fifteen days after pollination the embryo, which has essentially completed its growth, consists of a large hypocotyl with root promeristem and root cap at its basal end, and 2 flat, folded, leaflike cotyledons enclosing a small epicotyl at its upper end. The epicotyl consists of an embryonic leaf and a stem apex.  相似文献   

5.
胚珠发育的分子基础   总被引:7,自引:3,他引:4  
胚珠作为胚囊的携带者,在植物的生殖过程中起重要作用。胚珠是种子的前身,它在受精后发育成种子。近年来通过诱变已创造出一些胚珠和胚囊发育异常的突变体,如sin1,bel,ovm2,ovm3。这几个突变体的表现型不但是珠被发育异常,而且胚囊不能形成或发育异常,最终结果是雌性不育。同时,已分别从蝶兰和矮牵牛的胚珠中分离出一批胚珠发育特异的基因,其中有关MADSBox基因在胚珠形成和发育中的作用研究得比较清楚,基因转化工作证实胚珠的分化和形成受一类新的MADSBox基因控制。  相似文献   

6.
7.
红花胚珠和雌配子体发育   总被引:1,自引:2,他引:1  
用石蜡切片法研究了红花的大孢子发生和雌配子体发育过程,得到以下结果:(1)胚珠发育为薄珠心类型,倒生胚珠,具单珠被。(2)胚囊发育蓼型。(3)有珠被绒毛层,珠被绒毡层起始于大孢子母细胞时期,单核胚囊阶段高度发育,受精后从合点端逐渐退化。珠孔塞细胞呈毛状。  相似文献   

8.
Wiggins , Ira L. (Stanford U., Stanford, Calif.) Development of the ovule and megagametophyte in Saxifraga hieracifolia. Amer. Jour. Bot. 46(10): 692–697. Illus. 1059.—Buds of Saxifraga hieracifolia collected in the vicinity of Point Barrow, Alaska, fixed, sectioned, and stained by standard methods, revealed that the archesporial cell in the ovule of this species is hypodermal and gives rise to the megaspore mother cell and a small number of parietal cells. Occasionally 2 megaspore mother cells occur within an ovule. Meiosis in the megaspore mother cell produces a linear tetrad of megaspores, the chalazal one of which normally gives rise to a monosporic, Polygonum-type megagametophyte. The polar nuclei fuse near the chalazal end of the megagametophyte and the antipodal cells disintegrate prior to fertilization. A distinct filiform apparatus and a marked lateral “spur” develop on each synergid. Vacuolation in the egg cell and in the synergids follows the usual pattern. Only a single integument surrounds the nucellus.  相似文献   

9.
以蝶兰(Phalaenopsis“Mt.Kaala”cv SM9108)为材料,分别提取大孢子母细胞时期胚珠和成熟胚珠的PolyA RNA,反转录成cDNA,构建起两个cDNA文库。克隆筛选采用差异杂交法。从上述两个cDNA文库中,各选择一个筛选出的cDNA,对其在植物体不同器官和不同发育时期的胚珠内的表达进行了分析。结果表明该两个cDNA均为胚珠特异,并且分别在胚珠发育的特定时期表达。推测该两个cDNA的表达受胚珠内部的不同因子调控。  相似文献   

10.
Arceuthobium douglasii develops a dome-like structure, the ovarian papilla, in which 2 megasporocytes are formed. The papilla is not a true ovule, for no integuments are formed, and it is forced aside by the developing endosperm. Megasporocytes are differentiated in the spring, but meiosis does not occur until the following spring. A tetrasporic embryo sac is developed which is 8-nucleate at maturity. Pollination and fertilization occur approximately 13–14 months after initiation of the inflorescence. Only 1 of the 2 embryos develops after fertilization. After fertilization, the embryo sac segregates into 2 parts, one containing the zygote and the disintegrating synergids, the other the primary endosperm nucleus and the degenerating antipodals. This primary endosperm cell elongates toward the base of the ovarian papilla. Cytokinesis then forms an endosperm cell, adjacent to the zygote, and a haustorial cell. The haustorial cell forms several tiers of cells which persist during the development of the embryo and endosperm. The zygote, while still contained within the ovarian papilla, divides, forming a 2-celled sphere. It remains unchanged until after it is conveyed out of the ovarian papilla by the developing endosperm. The development of the embryo and endosperm is arrested in the autumn approximately 3 months after their initiation. They complete their development the following spring and summer.  相似文献   

11.
12.
13.
葡萄胚珠,胚乳及胚的发育   总被引:2,自引:0,他引:2  
本文研究了“早玫瑰”和“新玫瑰”葡萄胚珠、胚乳和胚的发育。结果表明:花后3天胚珠即开始迅速生长,其生长的最终大小依品种成熟期的不同而各异。胚乳游离核在花后33天成为细胞状态。受精后16—21天,合子才开始第一次分裂。当胚乳充满珠心组织时,胚开始迅速发育并一直持续到果实成熟.胚的发育与果实的发育无明显竞争关系。  相似文献   

14.
15.
16.
Browne , Edward T., Jr . (U. of Kentucky, Lexington.) Morphological studies in Aletris. I. Development of the ovule, megaspores and megagametophyte of A. aurea and their connection with the systematics of the genus. Amer. Jour. Bot. 48(2): 143–147. Illus. 1961.—Development in a North American species of this variously classified genus has shown great similarity with the development in several genera of Hutchinson's Liliaceae-Narthecieae: Pleea, Tofieldia, Nanhecium and ∗∗∗Metaparthecium. The ovules are anatropous, bitegmic, crassinucellate and arranged in 4 rows in each locule of the tricarpellate pistil. There is a hypostase and an obturator. The primary archesporial cell is hypodermal. This undergoes a division to form a wall cell and the megaspore parent cell (MPC). The megaspores usually have a linear arrangement although occasionally a T-shaped tetrad may be formed. Most frequently the chalazal megaspore functions, but rarely the one adjacent to it may enlarge instead. Megagametophyte development is of the Polygonum type. A characteristic narrowed chalazal constriction is formed during the development of the megagametophyte. It is recommended on the basis of this information that Aletris be classified with the genera of the Liliaceae-Narthecieae.  相似文献   

17.
Engleman , E. Mark . (U. of California, Davis.) Ovule and seed development in certain cacti. Amer. Jour. Bot. 47(6) : 460–467. Illus. 1960.—Ovules of Astrophytum myriostigma, Thelocactus bicolor, and Toumeya papyracantha are crassinucellate, possess a nucellar cap, and have a micropyle formed only by the inner of 2 integuments. Survival of the chalazal megaspore results in a monosporic gametophyte. A single layer of endosperm cells forms a cap over the radicle in a mature seed, as occurs in some of the Centrospermae. The characteristic hilum cup consists of the hilum and variable amounts of thickened cells of the funiculus which border a cuplike cavity. The hilum cup is associated with a funicular hump near the junction of the funiculus and the integuments. The funicular hump is similar in position to a swelling on the funiculus of some members of the Centrospermae.  相似文献   

18.
红直獐牙菜的胚胎学   总被引:14,自引:1,他引:14  
首次报道了红直獐牙菜大小孢子发生,雌雄配子体形成和胚胎发育过程。主要结果如下:花药四室,药壁发育为双子叶型,绒毡层异型起源,接近腺质绒毡层,中层3层,花药壁表皮宿存,细胞柱状伸长,纤维状加厚,药室内壁退化,小孢子母细胞减数分裂为同时型,四分体的排列方式为四面体形;成熟花粉为3-细胞;子房2心皮,1室,12列胚珠,侧膜胎座,薄珠心,单珠被,倒生胚珠,蓼型胚囊,反足细胞3个,宿存时间短,胚乳发育为核型  相似文献   

19.
蒙古黄芪的胚胎学   总被引:5,自引:0,他引:5  
蒙古黄芪(Astragaius monghocus Bge.)雄性原为花药表皮下单列细胞,小孢子四分体为四面体型,胞质分裂为同时型。单子叶型花药壁。分泌型绒毡层,其细胞核始终一个,细胞里含有一至多个草酸钙晶体。二细胞型花粉:单室子房,多胚珠,弯生,双珠被,厚珠心。蓼型胚囊。雌性孢原为珠心亚表皮下多细胞。直线形大孢子四分体,合点端第一、或第二、或第三个大孢子有功能。成熟胚囊具有盲囊结构;花粉管通过退化助细胞进入胚囊。双受精属于有丝分裂前配子融合类型;胚的发育为柳叶菜型。核型胚乳。胚乳细胞在球形胚时期开始形成。在胚乳发育过程中,合点端胚乳游离核存在着聚集、合并、无丝分裂和胚乳细胞内多核合并等现象。  相似文献   

20.
The simple, efficient method described here for the study of ovule and megagametophyte development in angiosperms provides for the extension of investigation beyond the limits imposed by the traditional but arduous section technique. Excised pistils previously fixed in FPA50 and stored in 70 % ethanol are placed in a clearing fluid composed of lactic acid (85 %), chloral hydrate, phenol, clove oil, and xylene (2:2:2:2:1, by weight). After 24 hr, ovules dissected from the ovularies are transferred with some of the fluid to a slide, covered so that the cover glass is supported laterally by two permanently affixed covers, and examined with phase contrast optics. The unique action of the clearing fluid permits the study of cellular structure with the phase oil objective focused at any focal plane within the ovule. Downward focusing thus reveals a series of optical sections in the sagittal, frontal, or transverse plane depending on the orientation of the ovule. Orientation can be altered by a slight shifting of the cover glass on the lateral support mounts. The ovules become quite fragile in the clearing fluid. Pressure applied to the cover glass gradually breaks the ovule apart without disrupting the structural integrity of individual cells. This squash procedure provides for extending observations to cytological features of megasporocytes, megaspores, and megagametophytes previously identified in intact ovules. The new method is applied here to the study of ovule development in two unrelated species, Cassia abbreviata Oliver var. granitica Bak. f. (Leguminosae) and Ludwigia uruguayensis (Camb.) Hara. (Onagraceae). For best results, the ovules of Ludwigia must be pretreated in lactic acid (85 %) for 24 hr prior to application of the clearing fluid. Other methods for pretreatment likely will be required as the technique is applied to a wider range of flowering plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号