首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex allocation models predict that cosexuality is stabilized by high allocation to attractive structures in pollen-limited species or by high allocation to shared structures that contribute to both genders. High investment in unilateral fixed costs favor the evolution of dioecy or gender change. With these predictions in mind, I studied sexual mass allocation at flowering in the monoecious Arum italicum (Araceae) and compared it with information available for its sex labile relative Arisaema dracontium. In A. italicum, 68% of biomass was allocated to structures believed to be involved in pollinator attraction and capture. This allocation pattern contrasts with that of Arisaema dracontium, in which 70% of biomass was allocated to scape, considered to be a unilateral fixed cost. The importance of attractive structures in A. italicum was further supported by a disproportionate increased allocation, in larger inflorescences, to the appendix (an attractive structure) compared to fertile flowers. In addition, an increase in inflorescence mass involved a disproportionate increase in mass allocation to male, rather than female, flowers. This pattern also contrasts with a size-related gender change from male to female in Arisaema species. These findings were consistent with sex allocation model predictions and shed light on the evolution of sex lability in Arisaema species.  相似文献   

2.
Abstract.— The most common sexual system in animal-pollinated plants is hermaphroditism, while some species are dioecious or gynodioecious and a very few are androdioecious. In this paper, I attempt to explain this pattern by extending previous models for the evolution of sexual systems to incorporate two main features: (1) a portion of investment in pollinator attraction contributes to only female or male function, because one sexual function of a flower is saturated with pollinator visitation earlier than the other sexual function; and (2) there are trade-offs between the size and number of flowers. The analysis was conducted to determine the conditions when females and males can increase in frequency in a hermaphroditic population, assuming either concave or convex pollinator gain curves (relation between investment to attractive structures of a flower and frequency of pollinator visits to the flower). The results suggest that both of the main factors play important roles in the evolution of plant sexual systems: uneven contribution of pollinator-attractive structures and nonlinear trade-offs between flower size and number can destabilize hermaph-roditism. When a convex pollinator gain curve was assumed, the effect of nonlinear trade-offs can produce accelerating compensation from the elimination of one sexual function, allowing males to increase for large regions of parameter space, where females could not increase. The last prediction obviously conflicts with the observed rarity of androdioecy in nature, indicating the necessity of exploring pollinator gain curves in more detail.  相似文献   

3.
Sex allocation theory addresses how separate sexes can evolve from hermaphroditism but little is known about the genetic potential for shifts in sex allocation in flowering plants. We tested assumptions of this theory using the common currency of biomass and measurements of narrow-sense heritabilities and genetic correlations in Schiedea salicaria, a gynodioecious species under selection for greater differentiation of the sexes. Female (carpel) biomass showed heritable variation in both sexes. Male (stamen) biomass in hermaphrodites also had significant heritability, suggesting the potential for further evolution of dioecy. Significant positive genetic correlations between females and hermaphrodites in carpel mass may slow differentiation between the sexes. Within hermaphrodites, there were no negative genetic correlations between male and female biomass as assumed by models for the evolution of dioecy, suggesting that S. salicaria is capable of further changes in biomass allocation to male and female functions and evolution toward dioecy.  相似文献   

4.
Expressions for male and female fitnesses of partially self-fertilizing cosexual plants are derived, assuming that allocation to pollinator attraction at the time of flowering may decrease resources available for male and female primary structures. The total female fertility is assumed to be controlled by factors at two stages, flowering-time and fruiting-time, with resources for fruit maturation being limited so that maximum seed production may be limited by the availability of these resources. The fitness formulas are used to calculate ESS (evolutionarily stable strategy) allocations at flowering time to primary male and female sex functions and to attractive structures. These are compared with some data that are available for dry weights of different flower parts. The fitnesses of unisexual mutant forms are calculated, assuming that they are introduced into a population consisting mostly of the initial cosexual form and that they obey the same gain curves as that form. When compared with the fitness of the ESS cosexual form, this enables one to ask whether unisexual forms will be favored. We show that the spread of females is unlikely, unless there is high inbreeding depression and a rather high selfing rate, and that in some circumstances a linear relation between number of fertilized ovules and number of seeds matured can be less favorable for the invasion of females than is a highly concave relation. With a nearly linear relation between numbers of fertilized ovules and mature seeds, invasion by females is more likely when investment in attraction is low than when it is high. These effects are discussed in relation to the distribution of dioecy. The spread of male mutants is never likely in these models.  相似文献   

5.
The size advantage hypothesis (SAH) predicts that the rate of increase in male and female fitness with size (the size advantage) drives the evolution of sequential hermaphroditism or sex change. Despite qualitative agreement between empirical patterns and SAH, only one comparative study tested SAH quantitatively. Here, we perform the first comparative analysis of sex change in Labridae, a group of hermaphroditic and dioecious (non–sex changer) fish with several model sex‐changing species. We also estimate, for the first time, rates of evolutionary transitions between sex change and dioecy. Our analyses support SAH and indicate that the evolution of hermaphroditism is correlated to the size advantage. Furthermore, we find that transitions from sex change to dioecy are less likely under stronger size advantage. We cannot determine, however, how the size advantage affects transitions from dioecy to sex change. Finally, contrary to what is generally expected, we find that transitions from dioecy to sex change are more likely than transitions from sex change to dioecy. The similarity of sexual differentiation in hermaphroditic and dioecious labrids might underlie this pattern. We suggest that elucidating the developmental basis of sex change is critical to predict and explain patterns of the evolutionary history of sequential hermaphroditism.  相似文献   

6.
Does the mode of self-pollination affect the evolutionarily stable allocation to male vs. female function? We distinguish the following scenarios. (1) An ‘autogamous’ species, in which selfing occurs within the flower prior to opening. The pollen used in selfing is a constant fraction of all pollen grains produced. (2) A species with ‘abiotic pollination’, in which selfing occurs when pollen dispersed in one flower lands on the stigma of a nearby flower on the same plant (geitonogamy). The selfing rate increases with male allocation but a higher selfing rate does not mean a reduced export of pollen. (3) An ‘animal-pollinated’ species with geitonogamous selfing. Here the selfing rate also increases with male allocation, but pollen export to other plants in the population is a decelerating function of the number of simultaneously open flowers. In all three models selfing selects for increased female allocation. For model 3 this contradicts the general opinion that geitonogamous selfing does not affect evolutionarily stable allocations. In all models, the parent benefits more from a female-biased allocation than any other individual in the population. In addition, in models 2 and 3, greater male allocation results in more local mate competition. In model 3 and in model 2 with low levels of inbreeding depression, hermaphroditism is evolutionarily stable. In model 2 with high inbreeding depression, the population converges to a fitness minimum for the relative allocation to male function. In this case the fitness set is bowed inwards, corresponding with accelerating fitness gain curves. If the selfing rate increases with plant size, this is a sufficient condition for size-dependent sex allocation (more allocation towards seeds in large plants) to evolve. We discuss our results in relation to size-dependent sex allocation in plants and in relation to the evolution of dioecy.  相似文献   

7.
Sex-allocation models predict that the evolution of self-fertilization should result in a reduced allocation to male function and pollinator attraction in plants. The evolution of sex allocation may be constrained by both functional and genetic factors, however. We studied sex allocation and genetic variation for floral sex ratio and other reproductive traits in a Costa Rica population of the monoecious, highly selfing annual Begonia semiovata. Data on biomass of floral structures, flower sex ratios, and fruit set in the source population were used to calculate the average proportion of reproductive allocation invested in male function. Genetic variation and genetic correlations for floral sex ratio and for floral traits related to male and female function were estimated from the greenhouse-grown progeny of field-collected maternal families. The proportion of reproductive biomass invested in male function was low (0.34 at flowering, and 0.07 for total reproductive allocation). Significant among-family variation was detected in the size (mass) of individual male and female flowers, in the proportion of male flowers produced, and in the proportion of total flower mass invested in male flowers. Significant among-family variation was also found in flower number per inflorescence, petal length of male and female flowers, and petal number of female flowers. Except for female petal length, we found no difference in the mean value of these characters between selfed and outcrossed progeny, indicating that, with the possible exception of female petal length, the among-family variation detected was not the result of variation among families in the level of inbreeding. Significant positive phenotypic and broad-sense genetic correlations were detected between the mass of individual male and female flowers, between male and female petal length, and between number of male and number of female flowers per inflorescence. The ratio of stamen-to-pistil mass (0.33) was low compared to published data for autogamous species with hermaphroditic flowers, suggesting that highly efficient selfing mechanisms may evolve in monoecious species. Our results indicate that the study population harbors substantial genetic variation for reproductive characters. The positive genetic correlation between investment in male and female flowers may reflect selection for maximum pollination efficiency, because in this self-pollinating species, each female flower requires a neighboring male flower to provide pollen.  相似文献   

8.
The evolutionary forces shaping within‐ and across‐species variation in the investment in male and female sex function are still incompletely understood. Despite earlier suggestions that in plants the evolution or cosexuality vs. dioecy, as well as sex allocation among cosexuals, is affected by seed and pollen dispersal, no formal model has explicitly used dispersal distances to address this problem. Here, we present a game‐theory model as well as a simulation study that fills in this gap. Our model predicts that dioecy should evolve if seeds and pollen disperse widely and that sex allocation among cosexuals should be biased towards whichever sex function produces more widely dispersing units. Dispersal limitations stabilize cosexuality by reinforcing competition between spatially clumped dispersal units from the same source, leading to saturating fitness returns that render sexual specialization unprofitable. However, limited pollen dispersal can also increase the risk of selfing, thus potentially selecting for dioecy as an outbreeding mechanism. Finally, we refute a recent claim that cosexuals should always invest equally in both sex functions.  相似文献   

9.
Sex allocation theory forecasts that larger plant size may modify the balance in fitness gain in both genders, leading to uneven optimal male and female allocation. This reasoning can be applied to flowers and inflorescences, because the increase in flower or inflorescence size can differentially benefit different gender functions, and thus favour preferential allocation to specific floral structures. We investigated how inflorescence size influenced sexual expression and female reproductive success in the monoecious Tussilago farfara, by measuring patterns of biomass, and N and P allocation. Inflorescences of T.?farfara showed broad variation in sex expression and, according to expectations, allocation to different sexual structures showed an allometric pattern. Unexpectedly, two studied populations had a contrasting pattern of sex allocation with an increase in inflorescence size. In a shaded site, larger inflorescences were female-biased and had disproportionately more allocation to attraction structures; while in an open site, larger inflorescences were male-biased. Female reproductive success was higher in larger, showier inflorescences. Surprisingly, male flowers positively influenced female reproductive success. These allometric patterns were not easily interpretable as a result of pollen limitation when na?vely assuming an unequivocal relationship between structure and function for the inflorescence structures. In this and other Asteraceae, where inflorescences are the pollination unit, both male and female flowers can play a role in pollinator attraction.  相似文献   

10.
Dioecy has often broken down in flowering plants, yielding functional hermaphroditism. We reasoned that evolutionary transitions from dioecy to functional hermaphroditism must overcome an inertia of sexual dimorphism, because modified males or females will express the opposite sexual function for which their phenotypes have been optimised. We tested this prediction by assessing the siring success of monoecious individuals of the plant Mercurialis annua with an acquired male function but that are phenotypically still female‐like. We found that pollen dispersed by female‐like monoecious individuals was ~ 1/3 poorer at siring outcrossed offspring than pollen from monoecious individuals with an alternative male‐like inflorescence. We conclude that whereas dioecy might evolve from functional hermaphroditism by conferring upon individuals certain benefits of sexual specialisation, reversion from a strategy of separate sexes to one of combined sexes must overcome constraints imposed by the advantages of sexual dimorphism. The breakdown of dioecy must therefore often be limited to situations in which outcrossing cannot be maintained and where selection favours a capacity for inbreeding by functional hermaphrodites.  相似文献   

11.
One evolutionary pathway from plants with combined male and female functions (hermaphroditism) to those with separate sexes (dioecy) involves females coexisting with hermaphrodites (gynodioecy). The research presented here explores sex allocation in Fragaria virginiana (a gynodioecious wild strawberry), within the context of theory on the gynodioecy–dioecy transition. By growing clonally replicated plants in the greenhouse and surveying six populations in situ, I evaluated the effects of plant size, genotype, sexual identity, population of origin and female frequency on sex allocation. I found significant positive effects of plant size on most sex allocation traits studied. In addition to strong sex-specific allocation patterns, I found significant broad-sense heritabilities for all traits, suggesting that plants could respond to selection. Moreover, there was a negative genetic correlation between pollen production and fruit set per flower within hermaphrodites, lending support to a basic assumption of sex allocation theory. On the other hand, several sex allocation traits, namely pollen and ovules per flower in hermaphrodites, were positively genetically correlated, suggesting that they may act to constrain the evolution of sexual dimorphism. Populations differed in the frequency of females, and females were more prevalent on sites with lower soil moisture and where hermaphrodites were least likely to produce fruit, suggesting that females’ seed fitness relative to that of hermaphrodites may be strongly environment-dependent in this species.  相似文献   

12.
The returns on investment in sexual reproduction are described by fitness gain curves and the shapes of these curves affect, among other things, the evolutionary stability of reproductive systems. The available evidence indicates that gain curves for male function decelerate, corresponding to diminishing fitness returns on investment in pollen. In contrast, the gain curve for female function is thought to decelerate less strongly than it does for male function (e.g., if seed fertility is limited by more by resources than by mating opportunities). Here we suggest that when the shapes of the female and male gain curves differ, clonality alters the rates of return on investment via the two sex functions. In particular, we propose that clonal expansion might increase fitness gains through male function because the subdivision of reproductive effort among ramets allows each ramet to take advantage of the steepest parts of the male gain curve. We examined the interaction between clonal expansion and fitness gains using numerical analysis of a model of sex allocation in which we assumed that there is no mating interference among ramets. We found that clonal expansion led to substantial increases in fitness through male function, but to decreases in fitness through female function. Under intermediate investment in clonal growth, marginal fertility gains through the two sex functions did not intersect over a broad range of sex allocation patterns, suggesting that clonality could favor the evolution of separate sexes. Finally, we suggest an alternative explanation for the common observation of male-biased sex ratios in clonal dioecious plants. If male function fitness is maximized under higher rates of clonal expansion than for female function, greater frequencies of male ramets might reflect the outcome of fertility selection, rather than constraints on clonal expansion imposed by greater costs of reproduction for females.  相似文献   

13.
Thoracican barnacles show one of the most diverse sexual systems in animals: hermaphroditism, dioecy (males and females), and androdioecy (males and hermaphrodites). In addition, when present, male barnacles are very small and are called "dwarf males". The diverse sexual systems and male dwarfism in this taxon have attracted both theoretical and empirical biologists. In this article, we review the theoretical studies on barnacles' sexual systems in the context of sex allocation and life history theories. We first introduce the sex allocation models by Charnov, especially in relation to the mating group size, and a new expansion of his models is also proposed. We then explain three studies by Yamaguchi et al., who have studied the interaction between sex allocation and life history in barnacles. These studies consistently showed that limited mating opportunity favors androdioecy and dioecy over hermaphroditism. In addition, other factors, such as rates of survival and availability of food, are also important. We discuss the importance of empirical studies testing these predictions and how empirical studies interact with theoretical constructs.  相似文献   

14.
Most flowering plants are simultaneous hermaphrodites. Within species and even within local populations, sex allocation is usually highly plastic. Here, we link pollen sufficiency to the size of pollen-exchanging groups (i.e., pollen neighborhoods) and to pollen transfer efficiency, using an individual-based game-theoretic framework to determine the stable distribution of sex allocation that does not require the unrealistic assumption of infinitely large, panmictic populations. In the absence of selfing, we obtain the novel result that pollen limitation destabilizes hermaphroditism and favors separate sexes, whereas hermaphroditism remains stable without pollen limitation. With mixed mating, hermaphroditism is stable except when the fitness value of selfed offspring is less than half that of outcrossed offspring (i.e., strong inbreeding depression). In that case, the size of pollen neighborhoods, pollen transfer efficiencies, and the relative fitness of selfed offspring determine whether separate sexes or hermaphroditism is the stable outcome. The model thus predicts that separate sexes can derive from either of two ancestral states: obligate outcrossing under pollen limitation, or mixed mating (competing self-fertilization) under severe inbreeding depression. It also predicts conditions under which variance in sex-allocation among hermaphrodites within pollen exchanging groups along a gradient of pollen limitation can range from high (dioecy) to near zero (equal proportions of male and female investment).  相似文献   

15.
多年生龙胆属植物个体大小与花期资源分配研究   总被引:4,自引:1,他引:3  
梁艳  张小翠  陈学林 《西北植物学报》2008,28(12):2400-2407
于各物种花中前期对青藏高原东部高寒草甸6种多年生龙胆属植物花期的繁殖分配和性分配进行分析,结果表明:(1)多年生龙胆属植物的植株个体越大,繁殖投入越高,繁殖分配越低;(2)随着植物个体的增大,对雌性、雄性和吸引结构的投入都在增加,这可保证资源的充分利用,不会因为单一部分的增加而造成资源的浪费;(3)6种龙胆属植物中,有4种其性分配结果与性别分配(SDS)的理论预测一致,即大个体更偏向雌性器官的资源投入,但麻花艽(Gentiana atraminea)和达乌里秦艽(Gentiana dahurica)的性分配与个体大小则没有表现出负相关,可能与其本身具有的雌雄异熟———雄性先熟特点有关;(4)资源在雌雄功能间的分配没有表现出权衡关系,可能是由于植物必须在许多不同生活史性状之间进行资源分配,而不是两两之间非此即彼.  相似文献   

16.
雌雄同花植物的性分配   总被引:5,自引:1,他引:4  
赵志刚  杜国祯  刘左军 《生态学报》2005,25(10):2725-2733
性分配理论假定雌雄功能之间存在着trade-off,对一种性别的投入增多必然会减少对另一性别的投入。雌雄功能投入的适合度曲线的形状决定了哪种繁育系统是进化稳定的。因此,性分配理论可以解释植物繁育系统的进化,尤其被认为是雌雄异株进化的选择机制之一。目前的实验研究分别在物种间、种群间、个体间及花间四个层次上进行:自交率的程度对物种和种群的性分配都有影响;虫媒和风媒植物的性分配是个体大小依赖的;而且花序内花的性分配模式受昆虫访花行为的影响。相对于理论,性分配的实验研究明显滞后,随着分子标记技术的普及,性分配理论将会获得更大的发展。繁殖分配需要进一步与性分配理论结合,尤其在空间尺度上资源分配与繁育系统变化的研究是很有意义的。  相似文献   

17.
Theory predicts that cosexual plants should adjust their resource investment in male and female functions according to their size if female and male fitness are differentially affected by size.However,few empirical studies have been carried out at both the flowering and fruiting stages to adequately address size-dependent sex allocation in cosexual plants.In this paper,we investigated resource investment between female and male reproduction,and their size-dependence in a perennial andromonoecious herb,Veratrum nigrum L.We sampled 192 flowering plants,estimated their standardized phenotypic gender,and assessed the resource investment in male and female functions in terms of absolute dry biomass.At the flowering stage,male investment increased with plant size more rapidly than female investment,and the standardized phenotypic femaleness (ranging from 0.267 to 0.776) was negatively correlated with plant size.By contrast,female biased allocation was found at the fruiting stage,although both flower biomass and fruit biomass were positively correlated with plant size.We propose that increased maleness with plant size at the flowering stage may represent an adaptive strategy for andromonoecious plants,because male flowers promote both male and female fertility by increasing pollinator attraction without aggravating pollen discounting.  相似文献   

18.
The evolution of dioecy from a monomorphic hermaphroditic condition requires two mutations, one producing females and one producing males. Conversely, a single mutation sterilizing one sexual function in one morph of distylous species would result in functional dioecy because such a mutation also affects the complementary function in the other morph. In this study, we tested these ideas with Erythroxylum havanense, a distylous species with morph-biased male sterility. Based on sex allocation theory we evaluated whether the invasion of thrum females is favoured over the maintenance of this morph cosexuals. Completely male sterile thrum plants obtained higher fitness returns than hermaphrodites or partial male sterile individuals of the same morph, thus favouring the invasion of female thrum plants. We concluded that because fruit production of pin individuals depends on the pollen produced by thrum plants, the invasion of thrum females would result on the evolution of functional dioecy.  相似文献   

19.
Hermaphroditic plants allocate their reproductive resources to different functions: male, female and pollinator attraction. While earlier sex-allocation models considered only male and female functions, more recent ones can divide reproductive resources into multiple functions. The basic predictions derived from these models are similar. While most models predict sex allocation at the fruit stage (pollen and seeds), some have examined allocation at the flower stage (pollen and ovules). Selfing rate, mode of pollination and competition among offspring of the same parent are some of the factors that can influence sex allocation among populations. Although the empirical evidence lags behind the theoretical development, sex-allocation theory has been quite successful at predicting trends among populations.  相似文献   

20.
A general explanation for diversity in plant breeding systems is offered by sex-allocation theory. This theory assumes a trade-off between allocation of resources to the two sexual functions. It explains the high frequency of hermaphroditism in angiosperms by diminishing fitness returns on investment of more resources in a single function. Recent experimental studies provide tests of this theory by measuring male and female fitness gains, and examining the trade-off assumption. These studies show how fitness responds to shifts in allocation. Allocation traits often show heritable variation, but support for a trade-off remains weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号