首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 126 毫秒
1.
Shiba T  Mii M 《Plant cell reports》2005,24(10):572-580
Efficient plant regeneration system from cell suspension cultures was established in D. acicularis (2n=90) by monitoring ploidy level and visual selection of the cultures. The ploidy level of the cell cultures closely related to the shoot regeneration ability. The cell lines comprising original ploidy levels (2C+4C cells corresponding to DNA contents of G1 and G2 cells of diploid plant, respectively) showed high regeneration ability, whereas those containing the cells with 8C or higher DNA C-values showed low or no regeneration ability. The highly regenerable cell lines thus selected consisted of compact cell clumps with yellowish color and relatively moderate growth, suggesting that it is possible to select visually the highly regenerable cell lines with the original ploidy level. All the regenerated plantlets from the highly regenerable cell cultures exhibited normal phenotypes and no variations in ploidy level were observed by flow cytometry (FCM) analysis.  相似文献   

2.
In the summer of 1983, immature embryos from 101 selfed inbred lines and germplasm stocks of Zea mays L. were examined for their ability to produce callus cultures capable of plant regeneration (regenerable cultures) using a medium with which some limited success had previously been obtained. Forty-nine of the genotypes (49%) produced callus which visually appeared similar to callus previously cultured and shown to be capable of plant regeneration. After five months, 38 of these genotypes were alive in culture and plants were subsequently regenerated from 35 (92%) of them. No correlation was observed between plant regeneration and callus growth rate, the vivipary mutation (genes vp1, 2, 5, 7, 8 and 9), or published vigor ratings based on K+ uptake by roots. When F1 hybrid embryos were cultured, 97% of the hybrids having at least one regenerable parent also produced callus capable of plant regeneration. No regenerable cultures were obtained from any hybrid lacking a parent capable of producing a regenerable callus culture.In the summer of 1984, immature embryos from 218 additional inbred lines and germplasm stocks were plated and examined for their ability to produce regenerable callus cultures on media containing altered micronutrient concentrations, 3,6-dichloro-o-anisic acid (dicamba), glucose, and elevated levels of vitamin-free casamino acids and thiamine. Of these genotypes 199 (91%) produced callus that was regenerable in appearance. In the 1984 study, plant regeneration was noted in many commercially important inbreds, including B73, Mo17, B84, A632, A634, Ms71, W117, H993H95 and Cm105. Thus tissue-culture techniques are now available to obtain callus cultures capable of plant regeneration from immature embryos of most maize genotypes.Abbreviations trade names 2,4-D 2,4-dichlorophenoxyacetic acid - dicamba 3,6-dichloro-o-anisic acid  相似文献   

3.
Phragmites australis tissue cultures were initiated from mature seeds on MS medium supplemented with 1 mgl-1 each of 2,4-D and IAA. Cultures displayed typical embryogenic callus that was compact and bright yellow. Selection for embryogenic callus established long-term regenerable cultures. Removal of auxin from the basal medium allowed numerous complete plants to be recovered from the cultures. Histological study indicated both the presence of embryogenic-type cells and the bipolar development of regenerated plants.  相似文献   

4.
Summary Digitaria sanguinalis (crabgrass) has recently been introduced as a high quality forage crop. We report here a tissue culture system showing a high level of regeneration developed to aid in a breeding program. Two morphologically distinct types of callus, compact opaque and friable translucent, were induced from leaf blade explants and mature seeds when cultured on MS medium containing 0.9 μM 2,4-dichlorophenoxyacetic acid. Proline (25 mM) inhibited induction of callus but was required for continued maintenance. Plants were readily regenerated from the compact opaque callus. Selectively subcultured friable translucent callus continued to produce colony sectors of the morphogenically competent compact opaque callus when transferred to regeneration medium. Suspension cell cultures derived from callus or directly from leaf blade explants also produced regenerable callus.  相似文献   

5.
A method is described for the culture and regeneration of plants from callus of sunflower (Helianthus annuus) andH. annuus x H. tuberosus hybrids. Immature embryos proved to be the only explant which consistently gave regenerable cultures in all genotypes. The most responsive embryos were approximately 12 mm2 in area. Genotype had a significant effect on the capacity of cultures to regenerate. Some regeneration was also obtained from cultures of tuber tissue but only from one genotype,H. tuberosus x H. annuus cross 200. None of theH. annuus accessions gave regenerable callus from root tissue. Difficulties included the premature initiation of flowering of regenerating shoots and the frequent occurence of "vitreous" plantlets which could not be transplanted successfully to soil. Some amelioration of both these problems was achieved by replacing inorganic nitrogen partially with amino acids. More effective reduction of these difficulties was accomplished by the addition of 10, 30 and 100 M phloridzin, esculin or naringin.Abbreviations BAP 6-benzylaminopurine; zeatin, trans-6-(4-hydroxy-3-methyl-but-2-enyl) aminopurine; kinetin, 6-furfurylaminopurine - IAA indole-acetic acid - NAA naphthyl acetic acid  相似文献   

6.
In order to optimize tissue culture conditions for bermudagrass, an important warm-season turfgrass species, tissue culture responses of young inflorescences of a hybrid bermudagrass cultivar `Tifgreen' (Cynodon dactylon×Cynodon transvaalensis) and a common bermudagrass cultivar `Savannah' (Cynodon dactylon) were investigated. When cultured on Murashige and Skoog medium with 4.52 to 13.57 μM (1–3 mg l-1) 2,4-D, young inflorescence segments yielded non-embryogenic calli which were unorganized and had loosely associated, long tubular cells on the surface. However, inclusion of 6-benzyladenine (BA) in callus induction medium at a level of 0.044 μM (0.01 mg l-1) induced formation of a compact, nodular embryogenic structure on approximately 20% of the calli. Calli with such a compact embryogenic structure were highly regenerable. When young inflorescences smaller than 0.75 cm were cultured, the embryogenic structure yielded green plantlets with regeneration rates of 79.5% and 83.3%, respectively for the two cultivars. All 96 plants regenerated from calli induced in the BA-containing medium were green and morphologically normal. The embryogenic nature of the compact structure was confirmed by scanning electron microscopy. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
An efficient plant regeneration system from leaf-derived callus in 6 genotypes of Avena sativa L. has been established. Regenerable callus was induced in the basal 1–2 mm region of 2 to 5 day old seedlings. Plants were regenerated from the regenerable callus and grown to maturity. The frequency of regenerable callus formation and plant regeneration was correlated with the position, developmental stage and genotype of the expiant. The regeneration capacity of the first one mm of the leaf basal region from three day old seedlings was comparable to that of immature embryos. Furthermore, the leaf regenerable calli were subcultured for 8 months without loss of their regeneration capabilities.  相似文献   

8.
Rapidly growing, regenerable suspension cultures were obtained from meristem-derived callus cultures of garlic (Allium sativum L.). The liquid culture medium consisted of MS salts, B5 vitamins, 3% sucrose, 1 mg l–1 naphthalene-acetic acid (NAA) and 2 mg l–1 6-benzyladenine (BA). The tissue in the suspension culture was yellow, smooth, organized, and proliferated as nodular clumps. Histological examination revealed that these morphogenic clumps had a well-defined epidermis. Following transfer of the morphogenic clumps to an agar-solidified medium, numerous meristems with green leaf primordia were produced.  相似文献   

9.
The effect of 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin was studied in anther culture of oat Avena sativa L., wild oat A. sterilis L. and progeny of crosses between them. A high 2,4-D concentration (5–6 mg l–1) increased embryo production in genotypes of both species and promoted plant regeneration in anther cultures of A. sterilis and A. sativa×A. sterilis progeny, while kinetin caused severe browning. However, a low concentration of kinetin was essential for initiation of regenerable embryos from anther culture of A. sativa cv. Kolbu: one green and one albino plant were produced. In addition, medium containing W14 salts gave higher regenerant recovery compared with medium containing Murashge and Skoog salts, when cross progeny were tested. Received: 6 March 1998 / Revised: 30 April 1998 / Accepted: 16 November 1998  相似文献   

10.
Summary Procedures have been developed for the initiation and long-term maintenance of embryogenic suspension cultures of pickling cucumber (Cucumis sativus) cultivar Endeavor and for the regeneration of normal plantlets. Embryogenic calluses from petiole explants plated on Murashige and Skoog (MS) medium with 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BA), both at 5μM, were used to initiate the embryogenic suspension cultures. Among various growth regulator combinations evaluated for initiation and maintenance of these suspension cultures, only MS medium with 2,4-D and BA, both at 1μM, produced cultures that were yellow, friable, and still regenerable after repeated subculture (every two wk) over a 3- to 15-mo. period. The effects of various concentrations of auxin and cytokinin in the plating medium, the addition of AgNO3, and various plating procedures were also evaluated. The highest frequency of regeneration of shoots and plantlets was achieved by plating aggregates onto filter paper overlaid on MS medium with naphthalene acetic acid (NAA)/BA at a concentration of 2:1 or 1:1μM. The addition of activated charcoal (0.5%) or AgNO3 (30μM) in the plating medium did not enhance the frequency of plantlet regeneration. The highest frequency of normal-appearing plantlets recovered was 42 to 46% per petri dish. The procedures described in this study can be used to increase plantlet recovery from individual embryogenic calluses of pickling cucumber.  相似文献   

11.
Protocols were established for achieving plant regeneration from stem internode, callus, and cell suspension cultures of Solanum lycopersicoides Dun. Two accessions of S. lycopersicoides exhibited different responses as to callus formation on various media, requirement of gibberellic acid for shoot regeneration, and ability to grow in suspension culture. The optimum medium for initiation and maintenance of cell suspension cultures was Murashige and Skoog [9] medium with 15 mg l NAA. For shoot regeneration, of three cytokinins tested, zeatin was found most effective relative to number, rapidity of response and overall quality of shoots. Shoot regeneration from stem explants, callus and suspension cultures was optimum on MS + 3.0 mg l–1 zeatin + 0.1 mg l–1 gibberellic acid.Michigan Agricultural Experiment Station Journal Article No. 11589.  相似文献   

12.
An efficient protocol for plant regeneration from leaves of the interspecific hybrid Helianthus eggertii Small. × Helianthus annuus L. was developed. The regeneration capacity of the first backcross progeny is reported. Leaves from the F1 interspecific hybrid were cultured on Murashige and Skoog basal media (MS) supplemented with -naphthalenacetic acid (NAA), N 6-benzyladenine (BA), AgNO3, KNO3, casein hydrolysate and adenine sulfate. Embryo-like structures and/or shoots regeneration were observed on most of the tested media. The best results were obtained on media with a higher concentration of cytokinin (8.8 M BA) and lower concentration of auxin (1.08 M NAA). The addition of casein hydrolysate in the media increased the regeneration efficiency. Plant regeneration was achieved via somatic embryogenesis and direct organogenesis. The regeneration potential of leaf, stem and root explants of eighteen first backcross lines was studied. Most of the tested lines were highly regenerable and some of them had DNA content closely related to that of Helianthus annuus L.  相似文献   

13.
Summary Mature embryos from hulled, regenerable GP-1 (A. sativa L.), hull-less, recalcitrant Tibor (A. nuda L.) and reciprocal crosses were cultured in vitro on a putrescine- (Put) containing medium. Hormone-free Murashige and Skoog medium (MS-0) or shoot proliferation medium (SPM) [2.0 mgl−1 (9.0 μM) 2,4-dichlorophenoxyacetic acid (2,4-D)], with and without 0.5 mM Put or 1 mM Put, were tested for effects on somatic embryogenesis and plant regeneration. Put/SPM (0.5mM) was the best medium for both somatic embryos (SEs) and plant numbers per gram of callus, regardless of genotype. This effect was most evident in Tibor, which produced no somatic embryos or plants on SPM, a previously published regeneration medium, and in Tibor ×GP-1, which produced reduced numbers of SE and plants on the remaining media. The number of SEs per gram of callus for GP-1 and GP-1× Tibor showed little significant differences between the different media. Put treatments produced plants from the four genotypes but the regeneration efficiency on Put-containing medium was similar or even better than on SPM for explants containing maternal GP-1 germplasm. This suggests that Put-containing MS-0 medium can be used for testing regeneration of other oat lines. In addition, SPM containing 0.5 mM Put can be used to induce significant regeneration of plants from normally recalcitrant genotypes. This improvement greatly increases the number of potential germplasms for further transformation efforts.  相似文献   

14.
Suspension cultures from mature embryo-derived compact callus were initiated in seven meadow fescue (Festuca pratensis Huds.) cultivars. Four to six months after initiation, embryogenic suspension cultures with a moderate growth rate were established from three of them (cvs. Barmondo, Belimo and Leopard). These suspension cultures showed the capacity, maintained over six months, to regenerate green plants which could be grown to maturity under greenhouse conditions.Morphogenic suspension cultures from single genotypes of three F. pratensis cultivars (cvs. Barmondo, Belimo and Leopard) yielded large numbers of protoplasts, which upon culture in agarose beads using nurse cells formed microcalli with an overall plating efficiency in the range of 10-3 to 10-4. Mature plants were reproducibly regenerated and established in soil, from such protoplasts during a period of six months. The regeneration of fertile plants from protoplasts derived from suspension cultures of meadow fescue and its implications on gene transfer technology for this species are discussed.Abbreviations 2,4-D 2,4-dichlorophenoxy-acetic acid.  相似文献   

15.
In this study, we have demonstrated that Zoysia japonica callus induced from mature seeds can produce high frequencies of plant regeneration and somatic embryogenesis, even following a prolonged period of subculturing. Initial callus cultures were induced from mature seeds of Japanese lawngrass (Z. japonica Steud.) incubated on a medium containing major N6 medium salts, minor Murashige and Skoog (MS) medium salts, and modified MS medium organic elements supplemented with 3 mg L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.01–0.02 mg L−1 6-benzyladenine. Compact callus were selected and subcultured monthly on a medium containing 2 mg L−1 2,4-D, 0.5 mg L−1 kinetin, 500 mg L−1 casein hydrolysate, 500 mg L−1 proline, and 500 mg L−1 myoinositol. Callus maintained in vitro for 18 mo could be induced to regenerate plantlets with a frequency of >90%. By contrast, 36-mo-old callus cultures failed to produce normal shoot regeneration. However, the addition of CuSO4 to the subculture media maintained >90% regeneration frequencies in such long-term callus cultures. Histological observations revealed that plant regeneration occurred both through somatic embryogenesis and organogenesis pathways. The ability to sustainable regeneration in long-term callus cultures will be valuable to the program of genetic transformation and somaclonal variant selection.  相似文献   

16.
The goals of this study were to investigate thidiazuron (TDZ)-induced morphogenesis of Echinacea purpurea L. and to assess the possibility of developing a liquid-based protocol for rapid micropropagation. Callus development and root organogenesis were observed on leaf explants cultured on media containing 2,4-dicholorophenoxyacetic acid or dicamba, but no plantlets were regenerated. Addition of TDZ to the culture medium as the sole growth regulator resulted in the production of regenerable callus cultures. The highest rate of regeneration was observed for explants cultured on medium with TDZ at 2.5 μM or higher. Tissue derived from 1.0 μM TDZ treatments was used to initiate liquid cultures. All liquid treatments produced a similar number of regenerants but significantly more healthy plants were obtained from cultures grown in the presence of 0.1 and 1.0 μM TDZ. This TDZ-based micropropagation system is the first liquid, large-scale propagation protocol developed for the mass production of E. purpurea plants.  相似文献   

17.
The turf-type bermudagrasses are genetically variable and do not respond uniformly to tissue culture and plant regeneration protocols. We evaluated the callus induction response of two explant types, young inflorescences and nodes, from multiple genotypes including triploid TifSport, TifEagle, and Tift97-4 and tetraploid Tift93-132, Tift93-135, Tift93-156 and Tift93-157 on MS medium supplemented with 1–1.5 mg l−1 2,4-D + 0.01 mg l−1 BA + 1.16 g l−1 proline. Four types of callus were observed. Type I was fluffy, soft, and white non-embryogenic callus, common to all cultures. Type II was globular, transparent, and hard, but sticky callus, which was pre-embryogenic and could be selected for subculture. Type III callus was transparent, compact, and embryogenic. Type IV callus was opaque white and compact. Both Type III and Type IV calluses were embryogenic and regenerative. A combination of gelling agents in the medium (2 g l−1 Gelrite and 5 g l−1 agar) improved callus quality and increased the rate of compact callus formation during subculture. Embryogenesis from compact callus was observed in TifEagle, TifSport and Tift93-132, and shoots were regenerated on MS medium with 0.1 mg l−1 2,4-D + 0.5–4.0 mg l−1 BA. Low intensity light treatment (30 μmol m2 s−1 of cool white fluorescence) to callus before regeneration greatly enhanced regeneration frequency from 6.7% to 40% in recalcitrant TifSport.  相似文献   

18.
Seashore paspalum (Paspalum vaginatum Swartz) is a salt tolerant, fine textured turfgrass used on golf courses in coastal, tropical, and subtropical regions. A callus induction and plant regeneration protocol for this commercially important turfgrass species has been developed. Induction of highly regenerable callus with approximately 400 shoots per cultured immature inflorescence (1 cm in length) was achieved by culturing 0.2 cm segments on media with 3 mg l−1 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 0.1 or 1.0 mg l−1 benzylaminopurine (BA). A multifactorial experiment demonstrated the combination of 3 mg l−1 dicamba and 1.0 mg l−1 BA for induction of callus resulted in 12 times higher plant regeneration frequency compared to 3 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) alone or ten times higher plant regeneration frequency than the combination of 3 mg l−1 2,4-D and 1.0 mg l−1 BA. These results are expected to support the development of a genetic transformation protocol for seashore paspalum.  相似文献   

19.
Callus cultures were initiated from apical meristems of two commercially cultivated species of cocoyam, Xanthosoma sagittifolium and X. violaceum, on AZ medium supplemented with 2.0 mg 1–1 1-naphthaleneacetic acid (NAA). Organ differentiation was achieved from the friable, white callus by using MS medium containing 2.0 mg 1–1 kinetin (Kn) and 0.2–2.0 mg 1–1 NAA. This two-step system of plant regeneration could be reduced into one-step in X. violaceum by culturing the explants on MS medium supplemented with 5.0 mg 1–1 NAA, 100 ml 1–1 coconut-milk, and 2.0 mg 1–1 Kn, where compact, green callus formation and organogensis occurred within 8 weeks. The regenerated plants were free of dasheen mosaic virus disease. In X. sagittifolium, various phenotypic variation was noted, such as shape, size and total number of leaves and corms. These alterations may be used to improve cocoyam production.  相似文献   

20.
Crown and leaf slices of in vitro plantlets of a non-flowering Vetiveria zizanioides from Java were used to induce compact calli and to regenerate plantlets. The influence of different growth regulators (2,4-dichlorophenoxy acetic acid, 6-benzylaminopurine), sucrose concentrations (10–100 g l−1), cultivation in light or dark, and cultivation time on callus induction medium (6 or 12 weeks), on the induction of compact callus and the subsequent regeneration of plantlets was studied. Up to 75% of crown slices cultured on modified Murashige and Skoog medium supplemented with 2.26 μM 2,4-dichlorophenoxy acetic acid, 2.22 μM 6-benzylaminopurine and 75 g l−1 sucrose developed compact callus. For subsequent regeneration of plantlets, callus induction in the light for 6 weeks on the callus induction medium containing 10 g l−1sucrose, and subsequent transfer to the regeneration medium, was the best procedure, regenerating plantlets on around 60% of the crown or leaf slices, with up to 100 plantlets per slice. We have compared the efficiency of the above mentioned procedure with several other methods to regenerate plantlets. Our findings indicate that the procedure developed in this study was best in regenerating plantlets for the used vetiver variant. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号