首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Z. S. Wochok  D. Clayton 《Planta》1976,132(3):313-315
Summary All meristematic cells of dorsal angle meristems of Selaginella willdenowii Baker cultured in vitro possessed expanded plasmodesmata, unlike the conventional plasmodesmata which were also found in these cells. Apical tissues of stems, roots and shoots from intact plant also possessed these structures though to a lesser degree than angle meristems. Root tips and stem apices had numerous conventional plasmodesmata in their walls. The expanded plasmodesmata, with their marked symmetry, represent a unique variation of plasmodesmatal structure.This study was partially supported by NSF Grant GB 37945 to Zachary S. Wochok.  相似文献   

2.
Fine structure of plasmodesmata in mature leaves of sugarcane   总被引:1,自引:0,他引:1  
The fine structure of plasmodesmata in vascular bundles and contiguous tissues of mature leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) was studied with the transmission electron microscope. Tissues were fixed in glutaraldehyde, with and without the addition of tannic acid, and postfixed in OsO4. The results indicate that the fine structure of plasmodesmata in sugarcane differs among various cell combinations in a cell-specific manner, but that three basic structural variations can be recognized among plasmodesmata in the mature leaf: 1) Plasmodesmata between mesophyll cells. These plasmodesmata possess amorphous, electron-opaque structures, termed sphincters, that extend from plasma membrane to desmotubule near the orifices of the plasmodesmata. The cytoplasmic sleeve is filled by the sphincters where they occur; elsewhere it is open and entirely free of particulate or spokelike components. The desmotubule is tightly constricted and has no lumen within the sphincters, but between the sphincters it is a convoluted tubule with an open lumen. 2) Plasmodesmata that traverse the walls of chlorenchymatous bundle-sheath cells and mestome-sheath cells. In addition to the presence of sphincters, these plasmodesmata are modified by the presence of suberin lamellae in the walls. Although the plasmodesmata are quite narrow and the lumens of the desmotubules are constricted where they traverse the suberin lamellae, the cytoplasmic sleeves are still discernible and appear to contain substructural components there. 3) Plasmodesmata between parenchymatous cells of the vascular bundles. These plasmodesmata strongly resemble those found in the roots of Azolla, in that their desmotubules are closed for their entire length and their cytoplasmic sleeves appear to contain substructural components for their entire length. The structural variations exhibited by the plasmodesmata of the sugarcane leaf are compared with those proposed for a widely-adopted model of plasmodesmatal structure.Abbreviation ER endoplasmic reticulum This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively.  相似文献   

3.
Summary De novo formation of cytoplasmic cell connections are studied at the graft interface of 5 day old in vitro heterografts ofVicia faba onHelianthus annuus. Continuous and half plasmodesmata, both branched and unbranched, are described at various stages of development in non-division walls between unlike and like dedifferentiated callus cells. In apical portions of protruding callus cells and in the contact zone between opposing cells extremely thin wall parts with a striking ER/plasmalemma contact are observed. During subsequent thickening of the modified wall parts cytoplasmic strands enclosing constricted ER cisternae are entrapped within the newly deposited wall material. These cytoplasmic strands represent half plasmodesmata which—in case of fusion with corresponding structures of adjoining cells across the loosened wall matrix — form continuous cell connections. Golgi vesicles secreting wall material are involved in the process of forming half and continuous plasmodesmata, thus following the same mechanism of plasmodesmata development as described for isolated protoplasts in cell cultures. The findings suggest the existence of a unifying mechanism of secondary formation of plasmodesmata showing far-reaching similarities with the establishment of primary cell connections.  相似文献   

4.
Immunocytochemical localizations in Vicia faba L. protoplasts and cultures of regenerating Solanum nigrum L. protoplasts support former observations that in plant cells ubiquitin occurs within the cytoplasm, the nucleus, the chloroplasts and at the plasmalemma, but not within the vacuole or the cell wall. Immunoresponses were also observed within mitochondria and associated with the endoplasmic reticulum, which is in accordance with previous findings on animal cells. Moreover, the tonoplast membrane system was found to be labelled. For regenerating S. nigrum protoplasts, evidence is given that ubiquitin plays a role in selective degradation even of whole subcellular structures. Most of the discontinuous plasmodesmata formed in the newly deposited outer cell walls during the early stages of culture disappear later on, except for those near the periphery of division walls or of non-division walls, which are probably used for the formation of continuous cell connections during further culture. Outer-wall plasmodesmata which are destined to disappear show high immunoreactivity to ubiquitin antibody, but no conspicuous immunolabelling was observed with the remaining plasmodesmata. Thus, the selective disintegration of whole plasmodesmatal structures is obviously regulated by ubiquitination of plasmodesmatal proteins. A model for the mechanism of degradation of outer-wall plasmodesmata during extension growth of the cell wall is presented.Dedicated to Professor Dr. Andreas Sievers on the occasion of his retirementThis work was supported by grants to R. K. (Deutsche Forschungsgemeinschaft) and to M. S. (Bennigsen-Foerder Preis des Landes Nordrhein-Westfalen). We thank Dipl.— Biol. Kirsten Leineweber for help with the V. faba protoplast isolation and Dr. Olaf Parge, Institut für Psychologie und Sozialforschung, Kiel, Germany, for giving assistance with the statistical analysis.  相似文献   

5.
The early acute response (EAR), a type of hypersensitive response, is defined by small chlorotic spots at the base of the youngest leaf of sorghum (Sorghum bicolor L. Moench) cultivar HOK, and usually appears within five days after inoculation with maize dwarf mosaic virus strain A (MDMV-A). These chlorotic spots become necrotic one to two days later and the leaf tissues are rapidly killed. In leaf tissues showing EAR, plasmodesmal fields contained many modified plasmodesmata of various sizes and structures within thickened cell walls. The membranous vesicles and tubules, derived from the extended terminal structures of modified plasmodesmata, were blocked by callose-like deposits in the area between the cell wall and plasmalemma. Also observed were two opposite-directed channels united via a central cavity at the middle lamella of the cell wall, one end of which was connected to the plasmalemma, but the other end sealed off to form a bulbous extension. The localized structure, an extraprotoplasmic sac containing aggregates of elongated virus-like particles associated with the modified plasmodesmata, was located between the plasmalemma and the cell wall. The sac was bound by membranes, and appeared to be sealed and completely excluded from the protoplasm. Extraprotoplasmic sacs appeared to be derived from the terminal extension of modified plasmodesmata, and these modification seem to be related to restriction of the viral spread.  相似文献   

6.
T. Zhu  T. L. Rost 《Protoplasma》2000,213(1-2):99-107
Summary Plasmodesmata frequency and distribution in root cap cells ofArabidopsis thaliana root tips were characterized during four weeks after germination to understand the symplasmic control of apoptosis. Apoptotic cells in some of the root apical-meristem cells and in root cap cells were identified by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling reaction and characterized by electron microscopy. Starting at the second week after germination, cells in the outermost layers of the root cap showed typical apoptotic features, including nuclear DNA fragmentation, chromatin condensation, cytoplasmic vacuolation, and organelle destruction. Intercellular connections, indicated by the frequency and number of plasmodesmata per cell length, were significantly reduced in the walls of outer root cap cells. This shows that cells become symplasmically isolated during the apoptosis process. In apoptotic root cap cells, the majority of nonfunctional plasmodesmata were observed to be associated with degenerated endoplasmic reticulum; this state was prior to the detection of any nuclear DNA fragmentation. Other nonfunctional plasmodesmata were sealed by heterogeneous cell wall materials. However, in immature epidermal and cortical cells in 4-week-old arrested roots the endoplasmic reticulum associated with plasmodesmata became disconnected as a result of protoplast condensation and shrinkage. No degenerated endoplasmic reticulum was observed in these cells. These observations suggest that the apoptotic processes in the root body and the root cap are different.  相似文献   

7.
Ultrastructural and histochemical studies on guard cells   总被引:6,自引:0,他引:6  
Serial thick sections of guard cells from Vicia faba L., Nicotiana tabacum L., Allium cepa L., Zea mays L. and Beta vulgaris L. were obtained systematically (600–800 nm) and viewed with the transmission electron microscope in an effort to demonstrate the presence or absence of a symplastic transport pathway within the stomatal complex. Eight to ten stomata from each species were examined, and no continuous plasmodesmata were found connecting guard cells to sister guard cells or to adjacent epidermal or subsidiary cells. Continuous plasmodesmata were observed in immature guard cells, but were sealed (truncated) during the development of the mature cell wall. Histochemical stains, phosphotungstic acid and silver methenamine, were used to demonstrate differentiation within the mature guard-cell wall. The structural differentiation of the stomatal apoplastic region is discussed in relation to fanctional specialization. Plasma-membrane elaborations or plasmalemmasomes were identified in the guard cells of Zea, and it is suggested that these structures may function in ion transport.Abbreviations PTA-HCl phosphotungstic acid and hydrochloric acid - SM silver methenamine - UA-LC uranyl acetate and lead citrate  相似文献   

8.
Summary The occurrence of plasmodesmata in the graft interfaces of two heteroplastic grafts (Impatiens walleriana onImpatiens olivieri andHelianthus annum onVicia faba) has been studied. For both systems two types of intercellular strand are described: 1. Continuous plasmodesmata interconnecting the cells of stock and scion and 2. half plasmodesmata traversing the wall part of one partner cell without connection to the abutting cell. Single strands or branched forms occur in both types of plasmodesma. In the case of half plasmodesmata, branchings with extended median nodules predominate. The distribution of half and continuous plasmodesmata varies with the different areas of a graft interface: in the region of bridging vascular tissues most cell connections are continuous. In areas where cortex or pith-derived callus cells and those of misaligned tissues (cortex/vascular tissue; cortex/pith; pith/vascular tissue) match, discontinuous strands predominate.Branched half plasmodesmata also occur in presumably fused walls between related callus cells; they are typical structures secondarily formed in non-division walls.The results are discussed with regard to compatibility/incompatibility phenomena in heterografts and the development and function of interspecific cell bridges.  相似文献   

9.
Protoplasts were prepared from cultured cells of Ammi visnaga (Umbelliferae) by enzymatic digestion of the cell walls and examined microscopically. Staining of fresh protoplasts with Calcofluor and silver hexamine demonstrated the apparent absence of wall material. Protoplasts contained more cell organelles than the whole cells, particularly endoplasmic reticulum and associated polysomes. The plasmalemma of most protoplasts appeared smooth; some protoplasts were connected by structures resembling plasmodesmata. Multinucleates resulting from fusion were frequently observed.  相似文献   

10.
Plasmodesmata are occluded when Funaria chloronemata are fragmented by the development of tmema cells (TCs). The TC deposits a new wall layer along the cross wall toward the neighbouring non-sister cell (NC). This wall layer cuts off the plasmodesmata and its connection with the cross wall is soon lost. The plasmodesmata become isolated when the NC forms a new wall layer along the former cross wall. At the end of TC development, before its disintegration, the sister cell (SC) also deposits a new wall layer along the cross wall toward the TC, cutting off the plasmodesmata. For some time the plasmalemma of the plasmodesmata remains connected to the NC or the TC, whereas the desmotubule soon disappears. Relicts of the plasmalemma remain even after the isolation of the plasmodesmata and the disintegration of the TC. During the decay of the plasmodesmata, a cylinder of electron-dense material is frequently formed along the border of the plasmodesmatal channel. This may extend over the surface of the cell wall. Eventually, the plasmodesmatal channel is filled with wall material. Callose is only observed around functional plasmodesmata and does not seem to play a role in their occlusion.  相似文献   

11.
Dr. J. Burgess 《Protoplasma》1972,74(4):449-458
Summary The fine structure of the interspecific junction in the periclinal chimeraCytisus adami has been investigated. This non-division wall shows the occurrence of pits of normal morphology. The pit membrane is partially penetrated by structures closely resembling plasmodesmata. These plasmodesmata, however, do not show direct continuity across the wall. Connections where they are seen appear to be established by a process of bridging between two half-plasmodesmata. The results are discussed with reference to the reversibility of the differentiation of plasmodesmata and their mode of formation.  相似文献   

12.
应用透射电镜技术研究了宁夏枸杞果实韧皮部细胞的超微结构变化。结果表明:(1)随着枸杞果实的发育成熟,果实维管组织中的韧皮部筛分子筛域逐渐变宽,筛孔大而多,通过筛孔的物质运输十分活跃;筛分子和伴胞间有胞间连丝联系,伴胞属传递细胞类型,与其相邻韧皮薄壁细胞和果肉薄壁细胞连接处的细胞界面发生质膜内突,整个筛分子/伴胞复合体与韧皮薄壁细胞之间形成共质体隔离,韧皮部糖分的卸载方式主要以质外体途径进行。(2)韧皮薄壁细胞间的胞间连丝较多,而韧皮薄壁细胞与果肉薄壁细胞的胞间连丝相对较少,但果肉薄壁细胞间几乎无胞间连丝;果肉薄壁细胞之间胞间隙较大,细胞壁和质膜内突间形成较大的质外体空间,为质外体的糖分运输创造了条件。(3)筛管、伴胞、韧皮薄壁细胞和果肉薄壁细胞中丰富的囊泡以及活跃的囊泡运输现象,暗示囊泡也参与了果实糖分的运输过程。研究推测,枸杞果实韧皮部同化物的卸载方式以及卸载后的同化物运输主要以质外体途径为主。  相似文献   

13.
C. M. Willmer  R. Sexton 《Protoplasma》1979,100(1):113-124
Summary In developing epidermal tissue ofPhaseolus vulgare L. complete plasmodesmatal connections occurred between guard cells and epidermal cells and between sister guard cells of a stoma but they were not seen in fully differentiated tissue. However, incomplete, aborted plasmodesmata were occasionally seen in the common guard/epidermal cell wall, usually connected to the epidermal cell protoplast, in mature tissue. Plasmodesmatal connections between neighbouring epidermal cells were commonly observed in tissue at all stages of development. In all locations, the plasmodesmata were usually unbranched occurring singly or in small pit fields; very rarely branched, incomplete plasmodesmata were also seen in the wall between mature guard and epidermal cells. The significance of these findings were related to stomatal functioning and to the development of plasmodesmata in general.  相似文献   

14.
Summary Plasmodesmata are complex channels within the plant cell wall, which create plasma membrane and symplastic continuity between neighbouring cells. To detect plasmodesmata in cell wall preparations fromNicotiana cle elandii, we have used 3,3-dihexyl-oxacarbocyanine iodide (DiOC6), a cationic amphiphilic fluorescent probe, widely employed for general studies of membrane structure and dynamics. Punctate fluorescent staining was readily seen in pit fields, small depressions within the cell wall known to be rich in plasmodesmata. Scanning electron microscopy was used to demonstrate that the punctate staining corresponded to plasmodesmata. Treatment of cell wall fragments with chloroform-methanol to remove lipids did not alter the staining of plasmodesmata. In contrast, pronase E-sodium dodecyl sulfate treatment completely abolished staining, indicating that the DiOC6 labelling of plasmodesmata may be protein rather than lipid specific. Although not membrane mediated, DiOC6 staining of plasmodesmata is a simple, rapid, and specific tool for the detection of plasmodesmata in isolated cell walls and will prove useful for studies of plasmodesmal location, structure, and composition.  相似文献   

15.
The intercellular and intracellular distribution of the movement protein (MP) of the Ob tobamovirus was examined in infected leaf tissues using an infectious clone of Ob in which the MP gene was translationally fused to the gene encoding the green fluorescent protein (GFP) of Aequorea victoria. In leaves of Nicotiana tabacum and N. benthamiana, the modified virus caused fluorescent infection sites that were visible as expanding rings. Microscopy of epidermal cells revealed subcellular patterns of accumulation of the MP:GFP fusion protein which differed depending upon the radial position of the cells within the fluorescent ring. Punctate, highly localized fluorescence was associated with cell walls of all of the epidermal cells within the infection site, and apparently represents association of the fusion protein with plasmodesmata; furthermore, fluorescence was retained in cell walls purified from infected leaves. Within the brightest region of the fluorescent ring, the MP:GFP was observed in irregularly shaped inclusions in the cortical regions of infected cells. Fluorescent filamentous structures presumed to represent association of MP:GFP with microtubules were observed, but were distributed differently within the infection sites on the two hosts. Within cells containing filaments, a number of fluorescent bodies, some apparently streaming in cytoplasmic strands, were also observed. The significance of these observations is discussed in relation to MP accumulation, targeting to plasmodesmata, and degradation.  相似文献   

16.
Plasmodesmata and pit development in secondary xylem elements   总被引:1,自引:0,他引:1  
J. R. Barnett 《Planta》1982,155(3):251-260
Developing pit membranes of secondary xylem elements in Drimys winteri, Fagus sylvatica, Quercus robur, Sorbus aucuparia, Tilia vulgaris and Trochodendron aralioides have been examined by transmission electron microscopy. Absence of plasmodesmata from the membranes of vessel elements and tracheids indicates that their pits develop independently of these structures. On the other hand, plasmodesmata are abundant in pit membranes between fibres, parenchyma cells, and combinations of these cell types in Fagus, Quercus and Tilia. In each case the plasmodesmata pass right through the developing pit membrane. In the case of Sorbus fibres, however, plasmodesmata were absent from the majority of pit membrane profiles seen in sections. Occasionally they were observed in large numbers associated with a swollen region on one side of the pit membrane between fibres and between fibres and parenchyma, radiating from a small area of the middle lamella. In the case of fibre to parenchyma pitting, this swelling was always found on the fibre side of the membrane, while on the other side a small number of plasmodesmata were present completing communication with the parenchyma cytoplasm. These observations are discussed with regard to the role of plasmodesmata in pit formation, and in the differentiation of the various cell types in secondary xylem. The significance their distribution may have for our understanding of xylem evolution is also discussed.  相似文献   

17.
Summary The development of pit-pairs between differentiating xylem cells has been examined by transmission electron microscopy in young shoots ofSorbus torminalis. In some vessel-to-tracheid pits, as well as in previously studied intertracheid pits, a thickening of the pit membrane containing branched plasmodesmata was observed. A secondary wall-like cap was deposited over the thickening prior to cytoplasmic autolysis; some plasmodesmata, parallel to the plane of section, appeared to perforate the cap. At the end of the cell maturation stage, the central part of the primary wall thickening was hydrolysed, while the cap, including plasmodesmata remnants, appeared unaltered. In half-bordered pit-pairs between a parenchyma cell and a vessel or a tracheid, similar structures could be observed beside the conducting elements. When the vessel or tracheid matured, sealing of the pit membrane plasmodesmata resulted from the formation of a protective layer on the parenchyma-side rather than from the deposition of a cap on the conducting cell-side. These observations provide the first information on the presence of symplasmic connections in pits between differentiating vessels and neighbouring xylem cells. InS. torminalis, xylem differentiation is probably highly coordinated within a symplasmic domain; the persistence of such connections may account for the lack of specialization ofSorbus wood.  相似文献   

18.
In leaf blades of Zea mays L. plasmodesmata between mesophyll cells are aggregated in numerous thickened portions of the walls. The plasmodesmata are unbranched and all are characterized by the presence of electron-dense structures, called sphincters by us, near both ends of the plasmodesmatal canal. The sphincters surround the desmotubule and occlude the cytoplasmic annulus where they occur. Plasmodesmata between mesophyll and bundle-sheath cells are aggregated in primary pit-fields and are constricted by a wide suberin lamella on the sheath-cell side of the wall. Each plasmodesma contains a sphincter on the mesophyll-cell side of the wall. The outer tangential and radial walls of the sheath cells exhibit a continuous suberin lamella. However, on the inner tangential wall only the sites of plasmodesmatal aggregates are consistently suberized. Apparently the movement of photosynthetic intermediates between mesophyll and sheath cells is restricted largely or entirely to the plasmodesmata (symplastic pathway) and transpirational water movement to the cell walls (apoplastic pathway).Abbreviation ER endoplasmic reticulum  相似文献   

19.
A unique cell wall component has been observed in the aleurone layer of barley (Hordeum vulgare L. cv. Himalaya). This wall component has been shown to be localized adjacent to the plasmalemma. Unlike the surrounding cell wall matrix it is resistant to “Onozuka” cellulase and remains intact during gibberellic acid-stimulated hydrolase release. After treatment of the tissue with gibberellic acid followed by digestion with “Onozuka” cellulase this resistant wall component can be isolated free of protoplast. Study of its surface features revealed the presence of numerous tubular extensions, 120 nm wide, connecting adjacent resistant walls. These tubes resembled light microscope images of plasmodesmata in size and appearance. E.M. sections of resistant walls showed the presence of unit membrane lining the inner surface of the wall tubes. It was concluded that the resistant wall constitutes a modified wall layer that is secreted uniformly across all plasmalemma surfaces, including those in the wall (plasmodesmata). The presence of wall tubes surrounding plasmodesmata enhances the apparent size of the plasmodesmata in the light microscope. This may account for previous inconsistencies in the literature between light and electron microscope determinations of plasmodesmata diameters.  相似文献   

20.
Summary The developing pigment strand of rice (Oryza sativa L.) was studied by conventional electron microscopy and also by use of thick sections post-fixed with zinc iodide and osmium (ZIO).When the rice caryopsis achieves maximum length, a suberised adcrusting wall layer is laid down over the original primary walls of the pigment strand. Concomitant with suberin deposition a proliferation of tubular endoplasmic reticulum occurs in the cytoplasm giving rise to numerous interconnected vesicles which bear ribosomes. The vesicles in the general cytoplasm retain their ribosomes while those close to the wall become smooth and contain an electron-opaque granular material which is eventually deposited to the outside of the plasmalemma. This granular material may be the precursor(s) from which suberin is polymerised. The suberised wall attains about six times the width of the original primary wall and plasmodesmata, which traverse both primary wall and suberised wall layers, become greatly elongated.Lipid bodies increase in both size and frequency during development, eventually coalescing to form a complete plug across the pigment strand and occluding the symplast of this tissue. The significance of these ultrastructural observations is discussed in relation to the previously demonstrated role of the pigment strand as a translocation pathway for water and assimilates during grain filling.Abbreviations ER endoplasmic reticulum - ZIO zinc iodide-osmium fixation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号