首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了了解落羽杉(Taxodium distichum)、乌桕(Sapium sebiferum)和美国山核桃(Carya illinoensis)等树种的耐涝机制, 采用盆栽模拟涝渍环境的试验方法, 设置了淹水、渍水和对照3个处理, 测定了一年生落羽杉、乌桕和美国山核桃实生苗的生长、组织孔隙度、根氧消耗等指标。结果表明, 涝渍处理抑制了落羽杉、乌桕和美国山核桃的生物量和生物量增量(渍水处理下落羽杉的生长得到了促进), 增加了3树种的根冠比, 从生物量和生物量增量下降幅度来评价, 落羽杉的耐涝性最强, 其次为美国山核桃。淹水和渍水处理下, 落羽杉、乌桕和美国山核桃的根、茎和叶中的组织孔隙度显著增加, 且随着处理时间的延长, 各器官的组织孔隙度有增加的趋势, 3个树种中, 落羽杉的根、茎和叶中的组织孔隙度均较其他2个树种高。淹水和渍水处理下, 移除茎明显增加了落羽杉、美国山核桃和乌桕的根的氧消耗, 表明涝渍处理增强了O2在3个树种体内的运输并通过根系扩散到涝渍土壤中的能力, 并且随着处理时间的延长, 3个树种体内运输O2并扩散到土壤中的能力有逐渐增强的趋势。因此, 涝渍环境总体上抑制了落羽杉、乌桕和美国山核桃等树种的生长, 但各树种为了适应这种生长环境, 形成了大量的通气组织, 从而导致各器官组织孔隙度的增加, 增强了O2通过植物体运输到根系并扩散到土壤中的能力, 解决了根系及根际缺氧的矛盾。  相似文献   

2.
Flooding is a major problem in many areas of the world and soybean is susceptible to the stress. Understanding the morphological mechanisms of flooding tolerance is important for developing flood-tolerant genotypes. We investigated secondary aerenchyma formation and function in soybean (Glycine max) seedlings grown under flooded conditions. Secondary aerenchyma, a white and spongy tissue, was formed in the hypocotyl, tap root, adventitious roots and root nodules after 3 weeks of flooding. Under irrigated conditions aerenchyma development was either absent or rare and phellem was formed in the hypocotyl, tap root, adventitious roots and root nodules. Secondary meristem partially appeared at the outer parts of the interfascicular cambium and girdled the stele, and then cells differentiated to construct secondary aerenchyma in the flooded hypocotyl. These morphological changes proceeded for 4 days after the initiation of the flooding. After 14 days of treatment, porosity exceeded 30% in flooded hypocotyl with well-developed secondary aerenchyma, while it was below 10% in hypocotyl of irrigated plants that had no aerenchyma. When Vaseline was applied to the hypocotyl of plants from a flooded treatment to prevent the entry of atmospheric oxygen into secondary aerenchyma, plant growth, especially that of roots, was sharply inhibited. Thus secondary aerenchyma might be an adaptive response to flooding.  相似文献   

3.
BACKGROUND AND AIMS: Aerenchyma formation is thought to be one of the important morphological adaptations to hypoxic stress. Although sponge gourd is an annual vegetable upland crop, in response to flooding the hypocotyl and newly formed adventitious roots create aerenchyma that is neither schizogenous nor lysigenous, but is produced by radial elongation of cortical cells. The aim of this study is to characterize the morphological changes in flooded tissues and the pattern of cortical aerenchyma formation, and to analyse the relative amount of aerenchyma formed. METHODS: Plants were harvested at 16 d after the flooding treatment was initiated. The root system was observed, and sections of fresh materials (hypocotyl, tap root and adventitious root) were viewed with a light or fluorescence microscope. Distributions of porosity along adventitious roots were estimated by a pycnometer method. KEY RESULTS: Under flooded conditions, a considerable part of the root system consisted of new adventitious roots which soon emerged and grew quickly over the soil surface. The outer cortical cells of these roots and those of the hypocotyl elongated radially and contributed to the development of large intercellular spaces. The elongated cortical cells of adventitious roots were clearly T-shaped, and occurred regularly in mesh-like lacunate structures. In these positions, slits were formed in the epidermis. In the roots, the enlargement of the gas space system began close to the apex in the cortical cell layers immediately beneath the epidermis. The porosity along these roots was 11-45 %. In non-flooded plants, adventitious roots were not formed and no aerenchyma developed in the hypocotyl or tap root. CONCLUSIONS: Sponge gourd aerenchyma is produced by the unique radial elongation of cells that make the expansigeny. These morphological changes seem to enhance flooding tolerance by promoting tissue gas exchange, and sponge gourd might thereby adapt to flooding stress.  相似文献   

4.
Morphological and anatomical factors such as aerenchyma formation in roots and the development of adventitious roots are considered to be amongst the most important developmental characteristics affecting flooding tolerance. In this study we investigated the lengths of adventitious roots and their capacity to form aerenchyma in three- and four-week-old seedlings of two maize (Zea mays ssp. mays, Linn.) inbred accessions, B64 and Na4, and one teosinte, Z. nicaraguensis Iltis & Benz (Poaceae), with and without a flooding treatment. Three weeks after sowing and following a seven day flooding treatment, both maize and teosinte seedlings formed aerenchyma in the cortex of the adventitious roots of the first three nodes. The degree of aerenchyma formation in the three genotypes increased with a second week of flooding treatment. In drained soil, the two maize accessions failed to form aerenchyma. In Z. nicaraguensis, aerenchyma developed in roots located at the first two nodes three weeks after sowing. In the fourth week, aerenchyma developed in roots of the third node, with a subsequent increase in aerenchyma in the second node roots. In a second experiment, we investigated the capacity of aerenchyma to develop in drained soil. An additional three teosinte species and 15 maize inbred lines, among them a set of flooding-tolerant maize lines, were evaluated. Evaluations indicate that accessions of Z. luxurians (Durieu & Asch. Bird) and two maize inbreds, B55 and Mo20W, form aerenchyma when not flooded. These materials may be useful genetic resources for the development of flooding-tolerant maize accessions.  相似文献   

5.
The growth characteristics of threeRumex species were determined under different solution oxygen concentrations in hydroculture. These species all occur in a river foreland ecosystem and they were found to differ in their flood tolerance. The flood-tolerantR. maritimus undR. crispus developed a large number of new, aerenchymatous roots within a short period under low solution oxygen concentrations. Biomass production was not affected. In the flood-intolerantR. thyrsiflorus, however, only few slow-growing new roots were developed and biomass production was significantly reduced at solution oxygen concentrations below 2% (v:v). These different responses could be partly explained by a differential aerenchyma formation in new roots of the flood-tolerant species. Aerenchyma can relieve the oxygen stress of the root systems via internal aeration.The fast development of new roots of the flood-tolerantR. maritimus andR. crispus after the onset of anaerobiosis coincided with the reduction or cessation of growth of the primary roots. Notwithstanding the cessation of growth, however, primary roots of both species were able to recover following restoration of aerobic conditions after a 13-day anaerobic period. However, the roots ofR. thyrsiflorus ceased growing very soon after the onset of anaerobiosis. All had died within 10 days.The balance between the growth rates of the primary and the newly formed root system are discussed and related to the differential tolerance of theRumex species to transient flooding.  相似文献   

6.
Echinochloa phyllopogon was grown hydroponically under four root zone gassing treatments to determine aeration effects on the growth and development of the plant root system. Although mesocotyl growth and the number of nodal roots were unaffected by the treatments, other aspects of plant growth were altered. Shoot growth was reduced by hypoxic (5 kPa partial pressure O2 in nitrogen gas) and anoxic conditions (O2 free nitrogen gas), but not by ethylene (0.1 ppm in air). Seminal root growth was unaffected by hypoxia or ethylene treatments, but was reduced under anoxia. Hypoxic environments stimulated the emergence of roots along the length of the mesocotyl when compared to aerobic controls; anoxic and ethylene treatments had no significant effects. Mesocotyl roots elongated from primordia that were produced de novo in response to the hypoxic treatment. Under hypoxic conditions, aerenchyma was present in the cortex of nodal roots and to a lesser extent in seminal roots, but mesocotyl roots were devoid of aerenchyma under these conditions. The results are compared with the literature concerning flooding and aeration effects on growth and development in other species.  相似文献   

7.
BACKGROUND AND AIMS: Flooding results in hypoxia of the root system to which N2 fixation of nodulated roots can be especially sensitive. Morphological adaptions, such as aerenchyma formation, can facilitate the diffusion of oxygen to the hypoxic tissues. Using soybean, the aim of the study was to characterize the morphological response of the nodulated root system to flooding and obtain evidence for the recovery of N metabolism. METHODS: Sections from submerged tissues were observed by light microscopy, while sap bleeding from the xylem was analysed for nitrogenous components. KEY RESULTS: Flooding resulted in the rapid formation of adventitious roots and aerenchyma between the stem (immediately above the water line), roots and nodules. In the submerged stem, taproot, lateral roots and adventitious roots, lysigenous aerenchyma arose initially in the cortex and was gradually substituted by secondary aerenchyma arising from cells derived from the pericycle. Nodules developed aerenchyma from cells originating in the phellogen but nodules situated at depths greater than 7-8 cm showed little or no aerenchyma formation. As a result of aerenchyma formation, porosity of the taproot increased substantially between the 4th and 7th days of flooding, coinciding with the recovery of certain nitrogenous products of N metabolism of roots and nodules transported in the xylem. Thus, on the first day of flooding there was a sharp decline in xylem ureides and glutamine (products of N2 fixation), together with a sharp rise in alanine (product of anaerobic metabolism). Between days 7 and 10, recovery of ureides and glutamine to near initial levels was recorded while recovery of alanine was partial. CONCLUSIONS: N metabolism of the nodulated soybean root system can recover at least partially during a prolonged period of flooding, a process associated with aerenchyma formation.  相似文献   

8.
淹水对玉米不定根形态结构和ATP酶活性的影响   总被引:26,自引:2,他引:26       下载免费PDF全文
淹水2天后,玉米苗基节内即有不定根原基一进于正常植株。淹水16天后,从基节部长出的不定根数多于正常植株,但淹水导致根系生长和干物质积累大幅度下降。淹水幼苗不定根伸长区内有发达的通气组织形成,使根内部组织孔隙度大幅提高。电镜细胞化学研究表明,经15天淹一,不定根根尖细胞内ATP酶的分布与正常功苗基本相同,酶活性尽管有一定的下降,但仍保持较高水平。根据实验结果,本文重点讨论了不定根的发生及其内部通气组  相似文献   

9.
Pterocarpus officinalis (Jacq.) seedlings inoculated with the arbuscular mycorrhizal fungus, Glomus intraradices, and the strain of Bradyrhizobium sp. (UAG 11A) were grown under stem-flooded or nonflooded conditions for 13 weeks after 4 weeks of nonflooded pretreatment under greenhouse conditions. Flooding of P. officinalis seedlings induced several morphological and physiological adaptive mechanisms, including formation of hypertrophied lenticels and aerenchyma tissue and production of adventitious roots on submerged portions of the stem. Flooding also resulted in an increase in collar diameter and leaf, stem, root, and total dry weights, regardless of inoculation. Under flooding, arbuscular mycorrhizas were well developed on root systems and adventitious roots compared with inoculated root systems under nonflooding condition. Arbuscular mycorrhizas made noteworthy contributions to the flood tolerance of P. officinalis seedlings by improving plant growth and P acquisition in leaves. We report in this study the novel occurrence of nodules connected vascularly to the stem and nodule and arbuscular mycorrhizas on adventitious roots of P. officinalis seedlings. Root nodules appeared more efficient fixing N2 than stem nodules were. Beneficial effect of nodulation in terms of total dry weight and N acquisition in leaves was particularly noted in seedlings growing under flooding conditions. There was no additive effect of arbuscular mycorrhizas and nodulation on plant growth and nutrition in either flooding treatment. The results suggest that the development of adventitious roots, aerenchyma tissue, and hypertrophied lenticels may play a major role in flooded tolerance of P. officinalis symbiosis by increasing oxygen diffusion to the submerged part of the stem and root zone, and therefore contribute to plant growth and nutrition.  相似文献   

10.
Aerenchyma development in waterlogged Helianthus annuus, Lycopersicon esculentum, and Salix fragilis was studied. More than half of the root cortical tissue sometimes became an air cavity in willow roots which developed in water. There was no cortical aerenchyma in the terminal portion, but more advanced aerenchyma developed towards the base of the sunflower roots formed in water. Waterlogged sunflower and tomato plants developed lysigenous aerenchyma in the cortex of waterlogged stems within two days.  相似文献   

11.
Responses to soil flooding and oxygen shortage were studied in field, glasshouse and controlled environment conditions. Established stools ofSalix viminalis L., were compared at five field sites in close proximity but with contrasting water table levels and flooding intensities during the preceding winter. There was no marked effect of site on shoot extension rate, time to half maximum length or final length attained. When rooted cuttings were waterlogged for 4 weeks in a glasshouse, soil redox potentials quickly decreased to below zero. Shoot extension was slowed after a delay of 20 d, while, in the upper 100 mm of soil, formation and outgrowth of unbranched adventitious roots with enhanced aerenchyma development was promoted after 7 d. At depths of 100–200 mm and 200–300 mm, extension by existing root axes was halted by soil flooding, while adventitious roots from above failed to penetrate these deeper zones. After 4 weeks waterlogging, all arrested root tips recommenced elongation when the soil was drained; their extension rates exceeding those of roots that were well-drained throughout. Growth in fresh mass was also stimulated. The additional aerenchyma found in adventitious roots in the upper 100 mm of soil may have been ethylene regulated since gas space development was inhibited by silver nitrate, an ethylene action inhibitor. The effectiveness of aerenchyma was tested by blocking the entry of atmospheric oxygen into plants with lanolin applied to lenticels of woody shoots of plants grown in solution culture. Root extension was halved, while shoot growth remained unaffected. H Lambers Section editor  相似文献   

12.
Aerenchyma gas spaces are important for plants that grow in flooded and anaerobic sites or habitats, because these gas spaces provide an internal pathway for oxygen transport. The objective of this study is to characterize the development of aerenchyma gas spaces and observe the porosity in roots of Sonneratia alba. Tissue at different developmental stages was collected from four root types, i.e. cable root, pneumatophore, feeding root and anchor root, of S. alba. In S. alba, gas space is schizogenously produced in all root types, and increases in volume from the root meristem to mature root tissues. The aerenchyma formation takes place immediately, or 3–5 mm behind the root apex. At first, cortical cells are relatively round in cross sections (near the root apex); they then become two kinds of cells, rounded and armed, which combine together, forming intercellular spaces behind the root apex. The average dimensions of cortical cells increased more than 1.3 times in the vertical direction and over 3.3 times in the horizontal direction. At maturity, aerenchyma gas spaces are long tuberous structures without diaphragms and with numerous small pores on the lateral walls. Within the aerenchyma, many sclereids grow intrusively. Root porosity in all root types ranged from 0–60%. Pneumatophores and cable roots had the highest aerenchyma area (50–60%).  相似文献   

13.
Summary Soil waterlogging responses were examined in three Spartina patens populations along a steep flooding gradient in coastal Louisiana. Root anatomy and physiological indicators of anaerobic metabolism were examined to identify and compare flooding responses in dune, swale and marsh populations, while soil physicochemical factors were measured to characterize the three habitats. Soil waterlogging increased along the gradient from dune to marsh habitats and was accompanied by increases in root porosity (aerenchyma). Aerenchyma in marsh roots was apparently insufficient to provide enough oxygen for aerobic respiratory demand, as indicated by high root alcohol dehydrogenase activities and low energy charge ratios. Patterns of root metabolic indicators suggest that dune and swale roots generally respired aerobically, while anaerobic metabolism was important in marsh roots. However, in each population, relatively greater soil waterloging was accompanied by differences in enzyme activities leading to malate accumulation. In dune and swale roots under these circumstances, depressed adenylate energy charge ratios may have been the result of an absence of increased ethanol fermentation. These trends suggest that: 1) Aerenchyma formation was an important, albeit incomplete, long-term adaptation to the prevalent degree of soil waterlogging. 2) All populations adjusted root metabolism in response to a relative (short-term) increase in soil waterlogging.  相似文献   

14.
The relative volume of internal gas spaces (i.e., porosity) of the shoot and roots of a plant largely determines its resistance to flooding, as oxygen may diffuse through these cavities from non-flooded parts of the plant into the submerged tissues. The current techniques to measure porosity either need relatively large amounts of plant tissue (200 mg per sample), or are time-consuming and not sufficiently accurate for specific types of plant material. These limitations were the reason to develop a new method of porosity measurement. Small segments of roots were taken from freshly harvested plants, placed in a two-piece hard gelatin capsule and weighed on a microbalance. The root segments were subsequently infiltrated with water under vacuum, blotted carefully and weighed again. Using the increase in weight and the specific weight of infiltrated tissue, derived from a larger sample of roots, it was possible to calculate the porosity of individual root segments as small as 3–5 mg with a length of 5 mm. The new method combines this use of small samples with a high accuracy, and proved useful for a variety of plant species. Porosity data obtained with this method will improve our knowledge of small-scale processes such as aerenchyma development in root tips.  相似文献   

15.
Black spruce [ Picea mariana (Mill.) B.S.P.] and tamarack [ Larix laricina (Du Roi) K. Koch] are the predominant tree species in boreal peatlands. The effects of 34 days of flooding on morphological and physiological responses were investigated in the greenhouse for black spruce and tamarack seedlings in their second growing season (18 months old). Flooding resulted in reduced root hydraulic conductance, net assimilation rate and stomatal conductance and increased needle electrolyte leakage in both species. Flooded tamarack seedlings maintained a higher net assimilation rate and stomatal conductance compared to flooded black spruce. Flooded tamarack seedlings were also able to maintain higher root hydraulic conductance compared to flooded black spruce seedlings at a comparable time period of flooding. Root respiration declined in both species under flooding. Sugar concentration increased in shoots while decreasing in roots in both species under flooding. Needles of flooded black spruce appeared necrotic and electrolyte leakage increased over time with flooding and remained significantly higher than in flooded tamarack seedlings. No visible damage symptoms were observed in flooded tamarack seedlings. Flooded tamarack seedlings developed adventitious roots beginning 16 days after the start of flooding treatment. Adventitious roots exhibited significantly higher root hydraulic conductivity than similarly sized flooded tamarack roots. Flooded black spruce lacked any such morphological adaptation. These results suggest that tamarack is better able to adjust both morphologically and physiologically to prolonged soil flooding than black spruce seedlings.  相似文献   

16.
We investigated some aspects of flooding tolerance in two riparian populations (exposed and no exposed to flooding) of Luehea divaricata C. Martius. Plants derived from seeds collected in each population were submitted to flooding (30 and 60 d), submergence and re-aeration treatments. Plants exposed to flooding showed development of aerenchyma, hypertrophic lenticels and new adventitious roots. Interestingly, whereas the plants originated from population naturally exposed to flooding developed some of these alterations more markedly, they could not survive when totally submerged. The random amplified polymorphic DNA (RAPD) markers, showed a significant difference between populations, suggesting that seasonal flooding on riparian populations of L. divaricata has been selecting individuals who are more adapted to survive in these conditions.  相似文献   

17.
Tabebuia cassinoides (Lam.) DC (Bignoniaceae) is a tree species that occurs in swampy areas of the coastal “restinga” in SE Brazil (a coastal sandy plains scrub and forest formation). To elucidate possible adaptive strategies that enable this species to occupy areas subjected to seasonal or perennial waterlogging, metabolic, morphological and growth responses of plants under flooding conditions were studied. The root system of T. cassinoides plants presented elevated amounts of ethanol (10.6 μmol g−1 fresh wt) only in the first 5 d of soil water saturation. The two-fold increase in ethanol production under flooding was corroborated by an increase in ADH activity in the same period. Lactic acid concentrations did not change significantly during four months of flooding treatment. The decrease of alcoholic fermentation under hypoxia was associated with the appearing of new roots. The induction of aerenchyma formation in roots developed under flooding conditions, allowed oxygen transport from the shoot to these organs, thus maintaining an aerobic respiration. We conclude that this characteristic and the capacity to oxidize the rhizosphere are probably responsible for the survival and growth of plants while flooded and for their success in an environment, which restricts the presence of the majority of competing tree species.  相似文献   

18.
We investigated physiological and morphological responses to flooding and recovery in Eucalyptus camaldulensis subsp. refulgens, a riparian tree species from a dryland region prone to intense episodic floods. Seedlings in soil flooded for 88 d produced extensive adventitious roots, displayed stem hypertrophy (stem diameter increased by 93%) and increased root porosity owing to aerenchyma formation. Net photosynthesis (Pn) and stomatal conductance (gs) were maintained for at least 2 weeks of soil flooding, contrasting with previous studies of other subspecies of E. camaldulensis. Gradual declines followed in both gs (30% less than controls) and Pn (19% less). Total leaf soluble sugars did not differ between flooded and control plants. Root mass did not recover 32 d after flooding ceased, but gs was not lower than controls, suggesting the root system was able to functionally compensate. However, the limited root growth during recovery after flooding was surprising given the importance of extensive root systems in dryland environments. We conclude that early flood tolerance could be an adaptation to capitalize on scarce water resources in a water‐limited environment. Overall, our findings highlight the need to assess flooding responses in relation to a species' fitness for particular flood regimes or ecological niches.  相似文献   

19.
Using a 141 F2 population generated from maize inbred B64 × teosinte Zea nicaraguensis cross, quantitative trait loci (QTLs) controlling aerenchyma formation in roots under non-flooding drained soil conditions were identified. Seedlings of Z. nicaraguensis formed clear aerenchyma in the cortex of adventitious roots in non-flooding conditions, whereas the maize inbred line B64 did not. In the F2 population, the capacity to develop aerenchyma exhibited wide and continuous variation, suggesting the trait was controlled by multiple genes. A linkage map was developed using 85 SSR markers, covering 1,224 cM across all ten chromosomes. Composite interval mapping analysis revealed that four QTLs for aerenchyma formation under non-flooding conditions were located to two regions of chromosome 1 (identified as Qaer1.02-3 and Qaer1.07), chromosome 5 (Qaer5.09) and chromosome 8 (Qaer8.06-7), and these explained 46.5% of the total phenotypic variance. The multiple interval mapping approach identified additional QTLs on chromosomes 1 (Qaer1.01) and 5 (Qaer5.01). Using these results, it may be possible to use SSR markers linked to aerenchyma formation in a marker assisted selection approach to introduce aerenchyma formation in drained soil conditions into maize for the eventual development of flooding tolerant maize hybrids.  相似文献   

20.
Root hydraulic conductivity has been shown to decrease under phosphorus (P) deficiency. This study Investigated how the formation of aerenchyma is related to this change. Root anatomy, as well as root hydraulic conductivity was studied In maize (Zea mays L.) roots under different phosphorus nutrition conditions. Plant roots under P stress showed enhanced degradation of cortical cells and the aerenchyma formation was associated with their reduced root hydraulic conductivity, supporting our hypothesis that air spaces that form in the cortex of phosphorusstressed roots Impede the radial transport of water in a root cylinder. Further evidence came from the variation In aerenchyma formation due to genotypic differences. Five maize inbred lines with different porosity in their root cortex showed a significant negative correlation with their root hydraulic conductivity. Shoot relative water content was also found lower In P-deficient maize plants than that in P-sufficient ones when such treatment was prolonged enough, suggesting a limitation of water transport due to lowered root hydraulic conductivity of P-deficient plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号