首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
紫外线B辐射对几种植物种间竞争的影响   总被引:8,自引:3,他引:8  
岳明  王勋陵 《应用生态学报》2003,14(8):1322-1326
对大田条件下增强的紫外线B(UV-B 280~315nm,约相当于15%臭氧层衰减)对小麦和野燕麦等4个种对的竞争性平衡的影响进行了研究.结果表明,对照和UV-B处理时小麦和野燕麦的密度制约死亡规律没有显著差异,相对较大的竞争压力加强了UV-B对这两个物种生物量降低的效应.UV-B辐射处理后,按单株生物量和地上部生物量。UV-B增强了小麦对野燕麦的竞争优势,但是以单株籽粒数及籽粒重为依据的k1-2值在紫外辐射处理后却下降.竞争性平衡的改变伴随着两者总生物量的显著下降,特别是在较高的密度条件下.紫外辐射对其它3个种对的竞争性平衡有着不同程度与方向上的影响.一般情况下UV-B使竞争性平衡向有利于单子叶植物的方向发展.这一结果暗示,竞争胁迫,特别是种间竞争对正确评估UV-B辐射增强对农田生态系统的影响是至关重要的.  相似文献   

2.

Background and Aims

In tropical lowland rain forest (TLRF) the leaves of most monocots differ from those of most dicots in two ways that may reduce attack by herbivores. Firstly, they are tougher. Secondly, the immature leaves are tightly folded or rolled until 50–100 % of their final length. It was hypothesized that (a) losses of leaf area to herbivorous invertebrates are generally greatest during leaf expansion and smaller for monocots than for dicots, and (b) where losses after expansion are appreciable any difference between monocots and dicots then is smaller than that found during expansion.

Methods

At six sites on four continents, estimates were made of lamina area loss from the four most recently mature leaves of focal monocots and of the nearest dicot shoot. Measurements of leaf mass per unit area, and the concentrations of water and nitrogen were made for many of the species. In Panama, the losses from monocots (palms) and dicots were also measured after placing fully expanded palm leaflets and whole dicot leaves on trails of leaf-cutter ants.

Key Results

At five of six sites monocots experienced significantly smaller leaf area loss than dicots. The results were not explicable in terms of leaf mass per unit area, or concentrations of water or nitrogen. At only one site was the increase in loss from first to fourth mature leaf significant (also large and the same in monocots and dicots), but the losses sustained during expansion were much smaller in the monocots. In the leaf-cutter ant experiment, losses were much smaller for palms than for dicots.

Conclusions

The relationship between toughness and herbivory is complex; despite the negative findings of some recent authors for dicots we hypothesize that either greater toughness or late folding can protect monocot leaves against herbivorous insects in tropical lowland rain forest, and that the relative importance varies widely with species. The difficulties of establishing unequivocally the roles of leaf toughness and leaf folding or rolling in a given case are discussed.Key words: anti-herbivore defences, dicots, herbivory, leaf folding, leaf rolling, leaf toughness, monocots, palms, tropical rain forest  相似文献   

3.
The influence of enhanced UV-B radiation (approximating a 15% ozone layer reduction) on competitive interaction between spring wheat (Triticum aestivum) and wild oat (Avena fatua) was examined in the field. The density-dependent mortality of both wheat and wild oat did not exhibit a significant difference between control and UV-B treatment conditions. A relatively high degree of competitive stress enhanced the effects of UV-B stress on biomass reduction. The relative competitive status of wheat in terms of total biomass increased under UV-B enhancement while it decreased when based upon grain production. Shifts in competitive balance occurred with significant changes in total biomass, especially when plants grew at higher densities in monocultures and mixtures. The sensitivity of wild oat to intensification of UV-B radiation at higher densities in mixtures was greater than that at lower densities. At all densities examined, wheat grown in mixture was significantly less sensitive to UV-B radiation than that in monoculture, and just the opposite for wild oat. The density of monocultures did not alter the response index (RI) of wheat and wild oat to enhanced UV-B radiation.  相似文献   

4.
Mixtures and monocultures of wheat (Triticum aestivum) and wild oat (Avena fatua), a common weedy competitor of wheat, were exposed to enhanced solar UV-B radiation simulating a 20% reduction in stratospheric ozone to assess the timing and seasonal development of the UV-B effects on light competition in these species. Results from two years of field study revealed that UV-B enhancement had no detectable effect on the magnitude or timing of seedling emergence in either species. End-of-season measurements showed significant UV-B inhibition of leaf insertion height in wild oat in mixture and monoculture in the second year (irrigated year) but not in the first year (drought year). Leaf insertion height of wheat was not affected by UV-B in either year. The UV-B treatment had no detectable effect on monoculture or total (combined species) mixture LAI but did significantly increase (5–7%) the fractional contribution of wheat to the mixture LAI after four weeks of growth in both years. In addition, the UV-B treatment had subtle effects on LAI height profiles with early season mixtures showing significant reductions in wild oat LAI in lower canopy layers in both years while midseason Year 2 mixtures showed significant reductions in wild oat LAI in upper canopy layers. The changes in canopy structure were found to significantly increase (6–7%) the proportional simulated clear sky canopy photosynthesis and light interception of wheat in mixture. These findings, and others, indicate that the effects of UV-B enhancement on competition are realized very early in canopy development and provide additional support for the hypothesis that UV-B enhancement may shift the balance of competition between these species indirectly by altering competitive interactions for light.  相似文献   

5.
Evidence regarding the interaction of ultraviolet-B (UV-B, 280-320 nm) radiation and plant competition in terrestrial ecosystems is examined. The competitive interactions of some species pairs were affected even by ambient solar UV-B radiation (as exists without ozone depletion), when compared to control pairs grown without UV-B. Also, the total shoot biomass of these species pairs was depressed under ambient UV-B. Relatively large increases in UV-B radiation (approximating a 40% ozone layer reduction when weighted with the generalized plant action spectrum) altered the competitive interactions of some species pairs grown in pots under field conditions, but did not affect the total shoot biomass production of those pairs. Recent field experiments have examined the competitive interactions of wheat ( Triticum aestivum L. cv. Bannock) and wild oat ( Avena fatua L.) under a simulated increased UV-B regime resulting from a 16% ozone layer reduction when weighted with the generalized plant action spectrum. This increase in UV-B altered the competitive interactions of these two species without affecting the total shoot biomass production of the species pair. The manner in which increased UV-B affected the relative competitive abilities of the two species was highly dependent upon the environmental conditions during the early life stages of the plants. The implications of these results for both agricultural and natural plant communities are discussed.  相似文献   

6.
The flowering plants (Magnoliophyta) are separated into two large classes distinguished by the morphology of their embryos. The embryos of monocots (class Liliopsida) have a single terminal cotyledon, while the embryos of dicots (class Magnoliopsida) usually have two lateral cotyledons. The cotyledons of monocots and dicots also differ in form, and there are no true intermediates. In addition, the third leaf of Nymphaealean seedlings appears to be identical to the single cotyledon of monocots. From this it is concluded that the cotyledons of monocots and dicots are not homologous. In addition, dissimilarity of cotyledons and succeeding leaves in dicots, together with recent genetic studies, suggests that the two cotyledons of dicots are not homologous with the succeeding leaves of the same plant. This interpretation is consistent with the view that the Nymphaealean embryo’s third leaf is homologous to the first leaf (cotyledon) of monocots. Because dicotyledonous embryos are common among seed plants and are present in the Gnetopsids, the most likely scenario is that the dicots share a widespread seed plant symplesiomorphy and that the monocots have lost this character state. A less parsimonious hypothesis of monocotyledonous embryos as plesiomorphic for angiosperms is also discussed. Genetic analysis of early embryo development in a variety of vascular plants may be the only way to conclusively determine the evolutionary origin of the distinctive difference between monocot and dicot embryos.  相似文献   

7.
Abstract. To document the relationship between a plant's position in the canopy and its leaf nutrient content, leaf nitrogen and phosphorus were determined for 30 species growing in mature evergreen lowland rain forest at La Selva Biological Station, Costa Rica. Species that grow either in the understory, midstory, or the canopy were selected. Species were further separated into three life forms: self-supporting monocots, self-supporting dicots, and climbers. Mass-based nutrient concentrations were expected to decrease with stature, as has been reported in studies of other forests. In fact, mass-based nitrogen and phosphorus did not vary significantly among the three adult-stature classes, although area-based values differed greatly: canopy plants averaged 60 % more nitrogen and 90 % more phosphorus per unit leaf area than understory plants. Differences in leaf characteristics were evident among the three life forms. Most notably, area-based phosphorus and leaf specific mass were lowest in climbers, intermediate in self-supporting dicots, and highest in self-supporting monocots. These results support the characterization of climbers as investing in inexpensive structures, perhaps in order to gain competitive advantage in light capture by allocating resources to maximize elongation rates.  相似文献   

8.
Aims The relative plant type sensitivity and selected community interactions under increased UV-B radiation where examined. Specifically, we investigated: (i) if there are differences among growth forms in regard to their sensitivity to UV-B radiation, (ii) if increased UV-B radiation influences the plant competitive balance in plant communities and (iii) the response mechanisms of the UV-B radiation-sensitive species that might increase their fitness.Methods To answer our research questions, we used a mechanistic model that, for the first time, integrated the effects of increased UV-B radiation from molecular level processes, whole plant growth and development, and community interactions.Important findings In the model simulations, species types exhibited different levels of sensitivity to increased UV-B radiation. Summer C3 and C4 annuals showed similar growth inhibition rates, while biennials and winter C3 annuals were the most sensitive. Perennials exhibited inhibitions in growth only if increased UV-B radiation results in increases in metabolic rates. In communities, species sensitive to UV-B radiation may have a competitive disadvantage compared to resistant plant species. But, sensitive species may have a wide array of responses that can increase their fitness and reproductive success in the community, such as, increased secondary metabolites production, changes in timing of emergence and reproduction, and changes in seed size. While individual plants may exhibit significant inhibitions in growth and development, in communities, these inhibitions can be mitigated by small morphological and physiological adaptations. Infrequent or occasional increased UV-B radiation events should not have any lasting effect on the structure of the community, unless other environmental factors are perturbing the dynamic equilibrium.  相似文献   

9.
Phosphorus responses of C3 and C4 species   总被引:2,自引:0,他引:2  
An hypothesis was formulated that phosphorus (P) partitioningin tissues of C4 leaves would permit C4 plants to resist P deficiencybetter than C3 plants. To test this hypothesis, 12 C3, C4, andC3–C4 intermediate species were grown at adequate, deficient,and severely deficient P supply in a solid-phase-buffered sandculture system to characterize photosynthetic and growth responses.Species differed considerably in response to P stress. The growthof C3 species was more sensitive to P supply than C4 species,but C3 and C4 species had similar photosynthetic P use efficiency,and C4 species did not have low leaf P content, contrary toour hypothesis. In fact, leaf photosynthetic rates were notcorrelated with growth responses. Moncots had lower leaf P contentand better maintenance of leaf production under P stress thandicots, because of greater inhibition of branching (dicots)than of tillering (monocots). The most P efficient species inthis survey was Brachiaria, a C4 monocot that increased rootbiomass allocation under stress while maintaining P allocationto the shoot. It is concluded that C4 species are not inherentlymore P efficient than C3 species, but that monocots are moreP efficient than dicots, because of contrasting P and biomassallocation under stress. Key words: Phosphorus deficiency, C3 plants, C4 plants, growth response  相似文献   

10.
As an initial step towards evaluating whether mycorrhizas influence composition and diversity in calcareous fen plant communities, we surveyed root colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytic fungi (DSE) in 67 plant species in three different fens in central New York State (USA). We found colonization by AMF and DSE in most plant species at all three sites, with the type and extent of colonization differing between monocots and dicots. On average, AMF colonization was higher in dicots (58±3%, mean±SE) than in monocots (13±4%) but DSE colonization followed the opposite trend (24±3% in monocots and 9±1% in dicots). In sedges and cattails, two monocot families that are often abundant in fens and other wetlands, AMF colonization was usually very low (<10%) in five species and completely absent in seven others. However, DSE colonization in these species was frequently observed. Responses of wetland plants to AMF and DSE are poorly understood, but in the fen communities surveyed, dicots appear to be in a better position to respond to AMF than many of these more abundant monocots (e.g., sedges and cattails). In contrast, these monocots may be more likely to respond to DSE. Future work directed towards understanding the response of these wetland plants to AMF and DSE should provide insight into the roles these fungal symbionts play in influencing diversity in fen plant communities.  相似文献   

11.
Summary Changes in plant growth and competitive balance between pairs of competing species were documented as a result of supplementary ultraviolet-B radiation (principally in the 290–315 nm waveband) under field conditions. This component of the terrestrial solar spectrum would be intensified if the atmospheric ozone layer were reduced. A method for calculating and statistically analyzing relative crowding coefficients was developed and used to evaluate the competitive status of the species pairs sown in a modified replacement series. The effect of the supplementary UV-B irradiance was generally detrimental to plant growth, and was reflected in decreased leaf area, biomass, height and density as well as changes in competitive balance for various species. For some species, interspecific competition apparently accentuated the effect of the UV-B radiation, while more intense intraspecific competition may have had the same effect for other species. A few species when grown in a situation of more severe mutual interspecific competition exhibited enhanced growth under the UV-B radiation treatment. This, however, was usually associated with a detrimental effect of the radiation on its competitor and thus was likely the result of its improved competitive circumstance rather than a beneficial physiological effect of the radiation.  相似文献   

12.
The stimulatory role of lumichrome, a rhizosphere metabolite, was assessed on the growth of legume and cereal seedlings. At a very low nanomolar concentration (5 nm), lumichrome elicited growth promotion in cowpea, soybean, sorghum, millet and maize, but not in common bean, Bambara groundnut and Sudan grass. In soybean and cowpea only, 5 nm lumichrome caused early initiation of trifoliate leaf development, expansion in unifoliate and trifoliate leaves, increased stem elongation and, as a result, an increase in shoot and plant total biomass relative to control. Lumichrome (5 nm) also increased leaf area in maize and sorghum, and thus raised shoot and total biomass but there was no effect on the leaf area of the other cereals. Root growth was also stimulated in sorghum and millet by the supply of 5 nm lumichrome. By contrast, the application of a higher dose of lumichrome (50 nm) depressed development of unifoliate leaves in soybean, the second trifoliate leaf in cowpea, and shoot biomass in soybean. The 50 nm concentration also consistently decreased root development in cowpea and millet, but had no effect on the other species. These data show that lumichrome is a rhizosphere signal molecule that affects seedling development in both monocots and dicots.  相似文献   

13.
Increasing surface levels of UV-B resulting from stratospheric ozone reduction directly affect tropospheric photochemistry. There may also be indirect tropospheric effects due to changes in emission of organic compounds from vegetation. We treated woody and herbaceous isoprene-emitting species in the field with supplemental UV-B simulating 30% ozone depletion. For Quercus gambelii, photosynthesis and isoprene emission were significantly greater in elevated UV-B treatments when expressed on a leaf area basis, but not on a leaf mass basis. Leaves of Mucuna pruriens, however, showed no significant differences in photosynthesis or isoprene emission between treatments, nor when exposed for 45 min to acute high levels of UV-B. Elevated UV-B during growth did not elicit significant isoprene emission from Acer platanoides, a non-emitting species. Other potential UV-B effects, such as changes in leaf area or species composition, which may influence regional isoprene emissions, should be examined.  相似文献   

14.
15.
The presence of specific glycine-rich proteins (GRP) related to petunia GRP1 (ptGRP1) was examined in three species of monocots (wheat, barley and maize) and five species of dicots (rape, turnip, soybean, crabapple and tomato). Protein blot analysis showed that anti-ptGRP1 antibody cross-reacted with a single different polypeptide in all species except maize. The molecular mass of these polypeptides ranged from 14 to 55 kDa. Tissue-print immunoblots of rape petioles and stems showed that the rape ptGRP1 homologue, like ptGRP1, is primarily located in the vascular tissue, and that its expression decreases with developmental age of the tissue. In barley, the ptGRP1 homologue is found in leaf vascular bundles, and may also be present in the surrounding bundle sheaths. Unlike the dicots examined, expression of the protein did not appear to decrease significantly with developmental age.  相似文献   

16.
Aims Information about how species respond to extreme environments, such as high UV-B radiation, is very useful in estimating natural ecosystem structure and functions in alpine areas. Our aim is to examine the effect of enhanced UV-B radiation on the fitness of an alpine meadow annual species on Qinghai-Tibet Plateau.Methods Plants of Cerastium glomeratum Thuill. were exposed to ambient (control) or ambient plus supplemental UV-B radiation (enhanced), simulating a 9% ozone depletion over Gannan, China (102°53′E, 34°55′N, 2900 m in altitude), up to leaf senescence and fruit maturation. Plant height, flower phenology, biomass allocation and reproductive parameters of the species were measured.Important findings Plant height in C. glomeratum was reduced by enhanced UV-B radiation at early growth stages and compensated with ongoing development. Fruit biomass, aboveground biomass, total biomass and reproductive effort (fruit dry mass/aboveground biomass) were not affected by enhanced UV-B radiation, but a significant increase in root/shoot ratio was found. Enhanced UV-B radiation delayed onset of flowering by 1 day and shortened duration of flowering by 5 days in C. glomeratum. But because of the long period of flowering time (83–88 days), this did not make any significant effect on flower number, seed number, pollination success (number of seeds per fruit) or reproductive success (fruit to flower ratio) in C. glomeratum. Enhanced UV-B radiation had no effect on seed germination and seed mass either. And the high production and low germination rate of the seed might be the strategy of C. glomeratum to survive the extreme environments on alpine meadow. All these results showed that C. glomeratum was tolerant to enhanced UV-B radiation.  相似文献   

17.
高原鼢鼠对高寒草甸植被特征及生产力的影响   总被引:6,自引:0,他引:6  
张堰铭  刘季科 《兽类学报》2002,22(3):201-210
本研究结果表明,高原鼢鼠栖息10年的斑块,植物群落的物种数减少,植物物种多样性指数下降,地上、地下总生物量显降低,单子叶和可利用双子叶植物生物量极显减少,但不可利用双子叶植物生物量显增加。高原鼢鼠去除5年后,斑块内植物群落的单子叶植物物种数增加,而双子叶植物下降,植物群落物种多样性指数下降,地上、地下总生物量显增加,单子叶和可利用双子叶植物生物量增加极显,不可利用双子叶植物生物量显降低。高原鼢鼠栖息10年的斑块,净初级生产量较未栖息地区减少68.98%。高原鼢鼠去除5年后,净初级生产量增加,但仅达到未栖息地区的58.69%。  相似文献   

18.
《植物生态学报》2017,41(4):471
Aims Exotic plant invasions are important components of global change, threatening both the stability and function of invaded ecosystems. Shifts in competitive ability of invasive plants versus their native congeners have been documented. Enhanced UV-B radiation and nitrogen (N) deposition might interact with soil biota communities impacting the invasion process of exotic plant species. To understand the potential effects by UV-B and N with soil biota on plant growth would enhance our understanding of the mechanisms in plant invasions in the context of global change.
Methods We conducted a full-factorial pot experiment in the native range (China) of Triadica sebifera invading US to investigate how UV-B radiation, N and soil biota together determined their seedling growth.
Important findings The results showed that UV-B radiation, N and soil sterilization together impacted the growth of T. sebifera seedlings. UV-B radiation induced changes in biomass allocation with larger leaf biomass observed in response to UV-B radiation. In addition, N increased aboveground biomass and decreased root biomass simultaneously. Soil biota imposed positive effects on growth of T. sebifera, and the addition of N amplified these positive effects. The negative effects by UV-B radiation on growth of T. sebifera showed no response to N addition. Plant height, leaf biomass and total biomass of the invasive T. sebifera populations out- performed those of the native ones. In addition, invasive T. sebifera populations weakened the dependence of root/shoot ratio and root biomass on local soil microorganisms than native populations, but enhanced that of leaf area ratio.  相似文献   

19.
20.
Summary Root cation-exchange capacities (CEC) are related to tissue nutrient content of several native Utah range plants. The root CEC values for dicotyledonous species were found to be significantly larger than for monocotyledonous species (grasses). The relative amounts of monovalent and divalent cations taken up are strongly correlated with root CEC. Dicot species tend to take up divalent ions more efficiently than monocots, but monocots take up relatively more monovalent cations than dicots. The relationship of root CEC to cation uptake helps explain differential distribution of grass lands and shrublands in common climatic zones and has important implications for range revegetation programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号