首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although seed plants have gamma-tubulin, a ubiquitous component of centrosomes associated with microtubule nucleation in algal and animal cells, they do not have discrete microtubule organizing centers (MTOCs) comparable to animal centrosomes, and the organization of microtubule arrays in plants has remained enigmatic. Spindle development in basal land plants has revealed a surprising variety of MTOCs that may represent milestones in the evolution of the typical diffuse acentrosomal plant spindle. We have isolated and characterized the gamma-tubulin gene from a liverwort, one of the extant basal land plants. Sequence similarity to the gamma-tubulin gene of higher plants suggests that the gamma-tubulin gene is highly conserved in land plants. The G9 antibody to fission yeast gamma-tubulin recognized a single band of 55 kD in immunoblots from bryophytes. Immunohistochemistry with the G9 antibody clearly documented the association of gamma-tubulin with various MTOC sites in basal land plants (e.g., discrete centrosomes with and without centrioles and the plastid surface in monoplastidic meiosis of bryophytes). Changes in the distribution of gamma-tubulin occur in a cell cycle-specific manner during monoplastidic meiosis in the liverwort Dumortiera hirsuta. gamma-Tubulin changes its localization from the plastid surface in prophase I to the spindle, from the spindle to phragmoplasts and the nuclear envelope in telophase I, and back to the plastid surfaces in prophase II. In vitro experiments show that gamma-tubulin is detectable on the surface of isolated plastids and nuclei of D. hirsuta, and microtubules can be repolymerized from the isolated plastids. gamma-Tubulin localization patterns on plastid and nuclear surfaces are not affected by the destruction of microtubules by oryzalin. We conclude that gamma-tubulin is a highly conserved protein associated with microtubule nucleation in basal land plants and that it has a cell cycle-dependent distribution essential for the orderly succession of microtubule arrays.  相似文献   

2.
The quadripolar microtubule system (QMS) is a complex array that is associated with predivision establishment of quadripolarity in sporocytes of lower plants (bryophytes and lycopsids). The QMS unerringly predicts the polarity of the two meiotic divisions and plays a central role in development of both the mitotic apparatus (MA) and cytokinetic apparatus (CA) which together accomplish quadripartitioning of the sporocyte into four haploid spores. The QMS is typically, but not exclusively, associated with monoplastidy and precocious quadrilobing of the cytoplasm. In early meiotic prophase the single plastid divides and the resultant plastids migrate so that either the tips of two plastids or the four plastids resulting from a second division are located in the future spore domains. Microtubules that emanate from the plastid tips or from individual plastids in the spore domains interact in the future planes of cytokinesis and give rise to the QMS. The QMS, which encages the prophase nucleus, consists of at least four and usually six (when spore domains are in tetrahedral arrangement) bipolar spindle-like arrays of microtubules presumably with minus ends at plastids in spore domains and plus ends interacting in the future plane of cytokinesis. Each of the six arrays is essentially like the single axial microtubule system (AMS) that intersects the division site and is transformed into the spindle in monoplastidic mitosis in hornworts. As comparative data accumulate, it appears that the AMS is not unique to monoplastidic cell division but instead represents a basic microtubule arrangement that survives as spindle and phragmoplast in cell division of higher plants.  相似文献   

3.
Study of charophycean green algae, including the Coleochaetales, may shed light on the evolutionary history of characters they share with their land plant relatives. We examined the tubulin cytoskeleton during mitosis, cytokinesis, and growth in members of the Coleochaetales with diverse morphologies to determine if phragmoplasts occurred throughout this order and to identify microtubular patterns associated with cell growth. Species representing three subgroups of Coleochaete and its sister genus Chaetosphaeridium were studied. Cytokinesis involving a phragmoplast was found in the four taxa examined. Differential interference contrast microscopy of living cells confirmed that polar cytokinesis like that described in the model flowering plant Arabidopsis occurred in all species when the forming cell plate traversed a vacuole. Calcofluor labeling of cell walls demonstrated directed growth from particular cell regions of all taxa. Electron microscopy confirmed directed growth in the unusual growth pattern of Chaetosphaeridium. All four species exhibited unordered microtubule patterns associated with diffuse growth in early cell expansion. In subsequent elongating cells, Coleochaete irregularis Pringsheim and Chaetosphaeridium globosum (Nordstedt) Klebahn exhibited tubulin cytoskeleton arrays corresponding to growth patterns associated with tip growth in plants, fungi, and other charophycean algae. Hoop‐shaped microtubules frequently associated with diffuse growth of elongating cells in plants were not observed in any of these species. Presence of phragmoplasts in the diverse species studied supports the hypothesis that cytokinesis involving a phragmoplast originated in a common ancestor of the Coleochaetales, and possibly in a common ancestor of Charales, Coleochaetales, Zygnematales, and plants.  相似文献   

4.
In many bryophytes and vascular cryptogams mitosis and/or meiosis takes place in cells containing a single plastid. In monoplastidic cell division plastid polarity assures that nuclear and plastid division are infallibly coordinated. The two major components of plastid polarity are morphogenetic plastid migration and microtubule organization at the plastids. Before nuclear division the plastid migrates to a position intersecting the future division plane. This morphogenetic migration is a reliable marker of division polarity in cells with and without a preprophase band of microtubules (PPB). The PPB, which predicts the future division plane before mitosis, is a characteristic feature of land plants and its insertion into the cytokinetic apparatus marks the evolution of a cortical microtubule system and a commitment to meristematic growth. Microtubule systems associated with plastid division, the axial microtubule system (AMS) in mitosis and the quadripolar microtubule system (QMS) in meiosis, contribute to predictive positioning of plastids and participate directly in spindle ontogeny. Division polarity in monoplastidic sporocytes is remarkable in that division sites are selected prior to the two successive nuclear divisions of meiosis. Plastid arrangement prior to meiosis determines the future spore domains in monoplastidic sporocytes, whereas in polyplastidic sporocytes the spore nuclei play a major role in claiming cytoplasmic domains. It is hypothesized that predivision microtubule systems associated with monoplastidic cell division are early forming components of the mitotic apparatus that serve to orient the spindle and insure equal apportionment of nucleus and plastids. “Can it be supposed that cytoplasm would be intrusted with so important a task as the preparation of a chloroplast for each of the four nuclei that are later to preside over the spores before there is any indication that such nuclear division is to take place?” Bradley Moore Davis, 1899  相似文献   

5.
Mitosis is a fundamental process of eukaryotic cell proliferation. However, the molecular mechanisms underlying mitosis remain poorly understood in plants partly because of the lack of an appropriate model cell system in which loss-of-function analyses can be easily combined with high-resolution microscopy. Here, we developed an inducible RNA interference (RNAi) system and three-dimensional time-lapse confocal microscopy in the moss Physcomitrella patens that allowed in-depth phenotype characterization of the moss genes essential for cell division. We applied this technique to two microtubule regulators, augmin and γ-tubulin complexes, whose mitotic roles remain obscure in plant cells. Live imaging of caulonemal cells showed that they proceed through mitosis with continual generation and self-organization of acentrosomal microtubules. We demonstrated that augmin plays an important role in γ-tubulin localization and microtubule generation from prometaphase to cytokinesis. Most evidently, microtubule formation in phragmoplasts was severely compromised after RNAi knockdown of an augmin subunit, leading to incomplete expansion of phragmoplasts and cytokinesis failure. Knockdown of the γ-tubulin complex affected microtubule formation throughout mitosis. We conclude that postanaphase microtubule generation is predominantly stimulated by the augmin/γ-tubulin machinery in moss and further propose that this RNAi system serves as a powerful tool to dissect the molecular mechanisms underlying mitosis in land plants.  相似文献   

6.
γ-Tubulin is an essential component of the microtubule organizing center (MTOC) responsible for nucleating microtubules in both plants and animals. Whereas γ-tubulin is tightly associated with centrosomes that are inheritable organelles in cells of animals and most algae, it appears at different times and places to organize the myriad specialized microtubule systems that characterize plant cells. We have traced the distribution of γ-tubulin through the cell cycle in representative land plants (embryophytes) and herein present data that have led to a concept of the pleiomorphic and migratory MTOC. The many forms of the plant MTOC at spindle organization constitute pleiomorphism, and stage-specific “migration” is suggested by the consistent pattern of redistribution of γ-tubulin during mitosis. Mitotic spindles may be organized at centriolar centrosomes (only in final divisions of spermatogenesis), polar organizers (POs), plastid MTOCs, or nuclear envelope MTOCs (NE-MTOCs). In all cases, with the possible exception of centrosomes in spermatogenesis, the γ-tubulin migrates to broad polar regions and along the spindle fibers, even when it is initially a discrete polar entity. At anaphase it moves poleward, and subsequently migrates from polar regions (distal nuclear surfaces) into the interzone (proximal nuclear surfaces) where interzonal microtubule arrays and phragmoplasts are organized. Following cytokinesis, γ-tubulin becomes associated with nuclear envelopes and organizes radial microtubule systems (RMSs). These may exist only briefly, before establishment of hoop-like cortical arrays in vegetative tissues, or they may be characteristic of interphase in syncytial systems where they serve to organize the common cytoplasm into nuclear cytoplasmic domains (NCDs).  相似文献   

7.
Summary First and second division spindles and the three cell plates of moss meiosis are oriented in accordance with polarity established during meiotic prophase. Plastids are located at the second division poles and cytoplasmic infurrowing marks the planes along which the cytoplasm will cleave into four spores. Anaphase I spindles that terminate in two focal points of microtubules straddling opposite cleavage furrows reflect the unusual tetrahedral origin of the functionally bipolar spindle. The organelles (except for the plastids which remain in the four cytoplasmic lobes) are polarized in the first division equatorial region at the time of phragmoplast microtubule assembly and remain in a distinct band after microtubule disassembly. Prophasic spindles appear to be directly transformed into metaphase II spindles in the predetermined axes between mutually perpendicular pairs of plastids. Cell plates form by vesicle coalescence in the equatorial regions of the two sets of second division phragmoplasts at approximately the same time as a cell plate belatedly forms in the organelle band. The cytoplasmic markers (plastid migration, cytoplasmic lobing and infurrowing) that predict poles and cleavage planes in free cells lacking a preprophase band strongly strengthens the concept that division sites are capable of preserving preprogrammed signals that can be triggered later in the process of cell division.  相似文献   

8.
All land plants (embryophytes) use a phragmoplast for cytokinesis. Phragmoplasts are distinctive cytoskeletal structures that are instrumental in the deposition of new walls in both vegetative and reproductive phases of the life cycle. In meristems, the phragmoplast is initiated among remaining non-kinetochore spindle fibers between sister nuclei and expands to join parental walls at the site previously marked by the preprophase band of microtubules (PPB). The microtubule cycle and cell cycle are closely coordinated: the hoop-like cortical microtubules of interphase are replaced by the PPB just prior to prophase, the PPB disappears as the spindle forms, and the phragmoplast mediates cell plate deposition after nuclear division. In the reproductive phase, however, cortical microtubules and PPBs are absent and cytokinesis may be uncoupled from the cell cycle resulting in multinucleate cells (syncytia). Minisyncytia of 4 nuclei occur in microsporocytes and several (typically 8) nuclei occur in the developing megagametophyte. Macrosyncytia with thousands of nuclei may occur in the nuclear type endosperm. Cellularization of syncytia involves formation of adventitious phragmoplasts at boundaries of nuclear-cytoplasmic domains (NCDs) defined by radial microtubule systems (RMSs) emanating from non-sister nuclei. Once initiated in the region of microtubule overlap at interfaces of opposing RMSs, the adventitious phragmoplasts appear structurally identical to interzonal phragmoplasts. Phragmoplasts are constructed of multiple opposing arrays similar to what have been termed microtubule converging centers. The individual phragmoplast units are distinctive fusiform bundles of anti-parallel microtubules bisected by a dark mid-zone where vesicles accumulate and fuse into a cell plate.  相似文献   

9.
Summary Changes in the pattern of microtubules during the cell cycle of the hepaticReboulia hemisphaerica (Bryophyta) were studied by indirect immunofluorescence using conventional and confocal laser scanning microscopy (CLSM). The first indication that a cell is preparing for division is fusiform shaping of the nucleus accompanied by the appearance of well-defined polar organizers (POs) at the future spindle poles. Microtubules emanating from the POs ensheath the nucleus and eventually develop into the half-spindles of mitosis. Some of the microtubules from each PO pass tangential to the nucleus and interact in the region of the future mitotic equator. A preprophase band (PPB) forms in this region later in prophase and coexists with the prophase spindle. Thus, the plane of division appears to be determined by interaction of opposing arrays of microtubules emanating from POs. Prometaphase is marked by disappearance of the POs, loss of astral microtubules, and conversion of the fusiform spindle of prophase to a truncated, barrel-shaped spindle more typical of higher plants. Restoration of cortical microtubules in daughter cell occurs on the cell side distal to the new cell plate, but nucleation of microtubules is associated with the nuclear envelope and not with organized POs. At the next division POs appear at opposite poles of preprophase nuclei with no evidence of division and migration that is characteristic of cells with centriolar centrosomes. These data lend additional support for the view that mitosis in hepatics is transitional between green algae and higher plants.Abbreviations AMS axial microtubule system - CLSM confocal laser scanning microscopy - MTOC microtubule organizing center - PO polar organizer - PPB preprophase band of microtubules - QMS quadripolar microtubule system - TEM transmission electron microscopy  相似文献   

10.
R. C. Brown  B. E. Lemmon 《Protoplasma》1991,161(2-3):168-180
Summary Microsporogenesis inSelaginella was studied by fluorescence light microscopy and transmission electron microscopy. As in other examples of monoplastidic meiosis the plastids are involved in determination of division polarity and organization of microtubules. However, there are important differences: (1) the meiotic spindle develops from a unique prophase microtubule system associated with two plastids rather than from a typical quadripolar microtubule system associated with four plastids; (2) the division axes for first and second meiotic division are established sequentially, whereas as in all other cases the poles of second division are established before those of first division; and (3) the plastids remain in close contact with the nucleus throughout meiotic prophase and provide clues to the early determination of spindle orientation. In early prophase the single plastid divides in the plane of the future division and the two daughter plastids rotate apart until they lie on opposite sides of the nucleus. The procytokinetic plate (PCP) forms in association with the two slender plastids; it consists of two spindle-shaped microtubule arrays focused on the plastid tips with a plate of vesicles at the equatorial region and a picket row of microtubules around one side of the nucleus. Second plastid division occurs just before metaphase and the daughter plastids remain together at the spindle poles during first meiotic division. The meiotic spindle develops from merger of the component arrays of the PCP and additional microtubules emanating from the pair of plastid tips located at the poles. After inframeiotic interphase the plastids migrate to tetrahedral arrangement where they serve as poles of second division.Abbreviations AMS axial microtubule system - FITC fluorescein isothiocyanate - MTOC microtubule organizing center - PCP procytokinetic plate - QMS quadripolar microtubule system - TEM transmission electron microscope (microscopy)  相似文献   

11.
Controlling microtubule dynamics and spatial organization is a fundamental requirement of eukaryotic cell function. Members of the ORBIT/MAST/CLASP family of microtubule-associated proteins associate with the plus ends of microtubules, where they promote the addition of tubulin subunits into attached kinetochore fibers during mitosis and stabilize microtubules in the vicinity of the plasma membrane during interphase. To date, nothing is known about their function in plants. Here, we show that the Arabidopsis thaliana CLASP protein is a microtubule-associated protein that is involved in both cell division and cell expansion. Green fluorescent protein-CLASP localizes along the full length of microtubules and shows enrichment at growing plus ends. Our analysis suggests that CLASP promotes microtubule stability. clasp-1 T-DNA insertion mutants are hypersensitive to microtubule-destabilizing drugs and exhibit more sparsely populated, yet well ordered, root cortical microtubule arrays. Overexpression of CLASP promotes microtubule bundles that are resistant to depolymerization with oryzalin. Furthermore, clasp-1 mutants have aberrant microtubule preprophase bands, mitotic spindles, and phragmoplasts, indicating a role for At CLASP in stabilizing mitotic arrays. clasp-1 plants are dwarf, have significantly reduced cell numbers in the root division zone, and have defects in directional cell expansion. We discuss possible mechanisms of CLASP function in higher plants.  相似文献   

12.
Ontogeny of the meiotic spindle in hornworts was studied by light microscopy of live materials, transmission electron microscopy, and indirect immunofluorescence microscopy. As in monoplastidic meiosis of mosses and Isoetes, the single plastid divides twice, and the four resultant plastids migrate into the future spore domains where they organize a quadripolar microtubule system (QMS). Additionally, a unique axial microtubule system (AMS) was found to parallel the plastid isthmus at each division in meiosis, much as in the single plastid division of mitosis. This finding is used to make a novel comparison of mitotic and meiotic spindle development. The AMS contributes directly to development of the mitotic spindle, whereas ontogeny of the meiotic spindle is more complex. Nuclear division in meiosis is delayed until after the second plastid division; the first AMS disappears without spindle formation, and the two AMSs of the second plastid division contribute to development of the QMS. Proliferation of microtubules at each plastid results in the QMS consisting of four cones of microtubules interconnecting the plastids and surrounding the nucleus. The QMS contributes to the development of a functionally bipolar spindle. The meiotic spindle is comparable to a merger of two mitotic spindles. However, the first division spindle does not terminate in what would be the poles of mitosis; instead the poles converge to orient the spindle axis midway between pairs of non-sister plastids.  相似文献   

13.
Summary In uninucleate cells, cytokinesis follows karyokinesis, thereby reestablishing a specific nucleus-to-cytoplasm ratio. In multinucleate cells, cytokinesis is absent or infrequent; no plasmalemma boundary defines the cytoplasmic territory of an individual nucleus. Several genera of large multinucleate green algae were examined with epifluorescence light microscopy to determine whether the patterns of cytoplasmic organization establish nuclear cytoplasmic domains. Randomly spaced nuclei, singular mitotic events and cytoplasmic streaming characterize the organization of two genera,Derbesia andBryopsis (Caulerpales). The cells ofValonia, Valoniopsis, Boergesenia, Ventricaria (Siphonocladales), andHydrodictyon (Chlorococcales) display regularly spaced nuclei which undergo synchronous divisions in a stationary cytoplasm. In the cytoplasm of genera with regularly spaced nuclei, microtubules radiate from all nuclei in late telophase-early interphase. These internuclear microtubule arrays are not found in algal genera with randomly spaced nuclei. It is hypothesized that these microtubule arrays play a role in establishing the cytoplasmic domain of each nucleus in genera with regularly spaced nuclei. Loss of microtubule arrays during the events of mitosis correlated positively with the increasing randomization of nuclear patterns in algae grown in microtubule inhibitors. Cytoplasmic domains were maintained when cells were grown in the same media in the dark. This suggests that, after a round of division, regular nuclear spacing in certain multinucleate algae is reestablished by internuclear microtubule arrays, which are not, however, required to maintain spacing during interphase.Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

14.
Microtubules form arrays with parallel and antiparallel bundles and function in various cellular processes, including subcellular transport and cell division. The antiparallel bundles in phragmoplasts, plant-unique microtubule arrays, are mostly unexplored and potentially offer new cellular insights. Here, we report that the Physcomitrella patens kinesins KINID1a and KINID1b (for kinesin for interdigitated microtubules 1a and 1b), which are specific to land plants and orthologous to Arabidopsis thaliana PAKRP2, are novel factors indispensable for the generation of interdigitated antiparallel microtubules in the phragmoplasts of the moss P. patens. KINID1a and KINID1b are predominantly localized to the putative interdigitated parts of antiparallel microtubules. This interdigitation disappeared in double-deletion mutants of both genes, indicating that both KINID1a and 1b are indispensable for interdigitation of the antiparallel microtubule array. Furthermore, cell plates formed by these phragmoplasts did not reach the plasma membrane in ∼20% of the mutant cells examined. We observed that in the double-deletion mutant lines, chloroplasts remained between the plasma membrane and the expanding margins of the cell plate, while chloroplasts were absent from the margins of the cell plates in the wild type. This suggests that the kinesins, the antiparallel microtubule bundles with interdigitation, or both are necessary for proper progression of cell wall expansion.  相似文献   

15.
Endosperm is emerging as a system for investigating the genetic control of wall placement and deposition in plant development. Development of endosperm progresses in distinct stages from a wall-less syncytial stage to a cellular stage that is entirely typical of plant meristems where the division plane is predicted by a preprophase band of microtubules (PPB) and cytokinesis is completed by formation of a cell plate in association with a phragmoplast. Four developmentally different types of walls, each associated with a different microtubule system, are sequentially produced: (1) free growing walls deposited in the absence of mitosis and phragmoplasts; (2) walls guided by cytoplasmic phragmoplasts formed adventitiously in the absence of mitosis; (3) walls formed by interzonal phragmoplasts in a cell cycle that lacks PPBs; and (4) wall deposition driven by interzonal phragmoplasts in a cycle that includes PPBs. We are using methods of differential screening to isolate cDNA clones corresponding in temporal and spatial pattern to the types of wall development, and are studying mutants for clues to the genetic controls of wall development.  相似文献   

16.
Precise spatiotemporal control of microtubule nucleation and organization is critical for faithful segregation of cytoplasmic and genetic material during cell division and signaling via the primary cilium in quiescent cells. Microtubule-associated proteins (MAPs) govern assembly, maintenance, and remodeling of diverse microtubule arrays. While a set of conserved MAPs are only active during cell division, an emerging group of MAPs acts as dual regulators in dividing and nondividing cells. Here, we elucidated the nonciliary functions and molecular mechanism of action of the ciliopathy-linked protein CCDC66, which we previously characterized as a regulator of ciliogenesis in quiescent cells. We showed that CCDC66 dynamically localizes to the centrosomes, the bipolar spindle, the spindle midzone, the central spindle, and the midbody in dividing cells and interacts with the core machinery of centrosome maturation and MAPs involved in cell division. Loss-of-function experiments revealed its functions during mitotic progression and cytokinesis. Specifically, CCDC66 depletion resulted in defective spindle assembly and orientation, kinetochore fiber stability, chromosome alignment in metaphase as well as central spindle and midbody assembly and organization in anaphase and cytokinesis. Notably, CCDC66 regulates mitotic microtubule nucleation via noncentrosomal and centrosomal pathways via recruitment of gamma-tubulin to the centrosomes and the spindle. Additionally, CCDC66 bundles microtubules in vitro and in cells by its C-terminal microtubule-binding domain. Phenotypic rescue experiments showed that the microtubule and centrosome-associated pools of CCDC66 individually or cooperatively mediate its mitotic and cytokinetic functions. Collectively, our findings identify CCDC66 as a multifaceted regulator of the nucleation and organization of the diverse mitotic and cytokinetic microtubule arrays and provide new insight into nonciliary defects that underlie ciliopathies.

The ciliopathy-linked protein CCDC66 is only known for its ciliary functions. This study reveals that CCDC66 also has extensive non-ciliary functions, localizing to the spindle poles, spindle midzone, central spindle and midbody throughout cell division, where it regulates mitosis and cytokinesis by promoting microtubule nucleation and organization.  相似文献   

17.
BACKGROUND: In premitotic plant cells, the future division plane is predicted by a cortical ring of microtubules and F-actin called the preprophase band (PPB). The PPB persists throughout prophase, but is disassembled upon nuclear-envelope breakdown as the mitotic spindle forms. Following nuclear division, a cytokinetic phragmoplast forms between the daughter nuclei and expands laterally to attach the new cell wall at the former PPB site. A variety of observations suggest that expanding phragmoplasts are actively guided to the former PPB site, but little is known about how plant cells "remember" this site after PPB disassembly. RESULTS: In premitotic plant cells, Arabidopsis TANGLED fused to YFP (AtTAN::YFP) colocalizes at the future division plane with PPBs. Strikingly, cortical AtTAN::YFP rings persist after PPB disassembly, marking the division plane throughout mitosis and cytokinesis. The AtTAN::YFP ring is relatively broad during preprophase/prophase and mitosis; narrows to become a sharper, more punctate ring during cytokinesis; and then rapidly disassembles upon completion of cytokinesis. The initial recruitment of AtTAN::YFP to the division plane requires microtubules and the kinesins POK1 and POK2, but subsequent maintenance of AtTAN::YFP rings appears to be microtubule independent. Consistent with the localization data, analysis of Arabidopsis tan mutants shows that AtTAN plays a role in guidance of expanding phragmoplasts to the former PPB site. CONCLUSIONS: AtTAN is implicated as a component of a cortical guidance cue that remains behind when the PPB is disassembled and directs the expanding phragmoplast to the former PPB site during cytokinesis.  相似文献   

18.
R. C. Brown  B. E. Lemmon 《Protoplasma》1989,152(2-3):136-147
Summary The large megasporocytes ofIsoetes provide an exceptional system for studying microtubule dynamics in monoplastidic meiosis where plastid polarity assures coordination of plastid and nuclear division by the intimate association of MTOCs with plastids. Division and migration of the plastid in prophase establishes the tetrahedrally arranged cytoplasmic domains of the future spore tetrad and the four plastid-MTOCs serve as focal points of a unique quadripolar microtubule system (QMS). The QMS is a dynamic structure which functions in plastid deployment and contributes directly to development of both first and second division spindles. The nucleation of microtubules at discrete plastid-MTOCs is compared with centrosomal nucleation of microtubules in animal cells where growth of microtubules involves dynamic instability.Abbreviations AMS axial microtubule system - MTOC microtubule organizing center - N nucleus - QMS quadripolar microtubule system - P plastid - PPB preprophase band of microtubules  相似文献   

19.
Cell division is fundamental to all organisms and the green alga used here exhibits both key animal and plant functions. Specifically, we analyzed the molecular and cellular dynamics of early embryonic divisions of the multicellular green alga Volvox carteri (Chlamydomonadales). Relevant proteins related to mitosis and cytokinesis were identified in silico, the corresponding genes were cloned, fused to yfp, and stably expressed in Volvox, and the tagged proteins were studied by live-cell imaging. We reveal rearrangements of the microtubule cytoskeleton during centrosome separation, spindle formation, establishment of the phycoplast, and generation of previously unknown structures. The centrosomes participate in initiation of spindle formation and determination of spindle orientation. Although the nuclear envelope does not break down during early mitosis, intermixing of cytoplasm and nucleoplasm results in loss of nuclear identity. Finally, we present a model for mitosis in Volvox. Our study reveals enormous dynamics, clarifies spatio-temporal relationships of subcellular structures, and provides insight into the evolution of cell division.

Analysis of cell divisions of the microalga Volvox reveals enormous dynamics of cytoskeletal and membranous structures with coordination of intranuclear spindle formation by cytosolic centrosomes.

IN A NUTSHELLBackground: Mitosis, a type of cell division, is fundamental to all eukaryotic life and must be carried out very accurately. Even though the process of mitosis itself is highly conserved among eukaryotes, there are significant differences between animals, fungi, plants, and algae. From an evolutionary point of view, the green alga Volvox carteri used here possesses both key animal and plant functions and it exhibits important features of the last common eukaryotic ancestor that have been lost in other lineages. Prior to our work, a comprehensive in vivo analysis of the entire process of cell division in green algae was lacking.Question: How exactly does cell division work in green algae? How do the cytosolic centrosomes deal with the persistent nuclear envelope in this process? What is the relationship between different microtubular structures?Findings: Our study reveals enormous dynamics during mitosis, clarifies spatio-temporal relationships of subcellular structures, and provides insights into evolution of cell division. Although the nuclear envelope does not break down during early mitosis of Volvox, it becomes permeable and the nucleus temporarily loses its identity. Two microtubule-organizing centers, the centrosomes, located immediately outside the nuclear envelope participate in initiation of the mitotic spindle formation inside the nuclear envelope. This process also defines the orientation of the mitotic spindle. In cytokinesis, an algae-specific microtubule structure, the phycoplast, replaces the spindle. The microtubules of the phycoplast may play a direct role in promoting the cell membrane invagination of the cleavage furrow.Next steps: How are the massive rearrangements of subcellular structures regulated? What happens at the nuclear pores when the nuclear envelope becomes permeable at the onset of mitosis? What determines in later embryogenesis which cells then divide asymmetrically rather than symmetrically?  相似文献   

20.
Microtubule associated proteins (MAPs) are proteins that physically bind to microtubules in eukaryotes. MAPs play important roles in regulating the polymerization and organization of microtubules and in using the ensuing microtubule arrays to carry out a variety of cellular functions. In plants, MAPs manage the construction, repositioning, and dismantling of four distinct microtubule arrays throughout the cell cycle. Three of these arrays, the cortical array, the preprophase band, and the phragmoplast, are prominent to plants and are responsible for facilitating cell wall deposition and modification, transducing signals, demarcating the plane of cell division, and forming the new cell plate during cytokinesis. This review highlights important aspects of how MAPs in plants establish and maintain microtubule arrays as well as regulate cell growth, cell division, and cellular responses to the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号