首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main goal of the study was to assess germination requirements in a threatened daffodil to elaborate a detailed protocol for plant production from seeds, a key tool for conservation. Experiments were carried out both in the laboratory and outdoor conditions. In Pseudonarcissi section, endemic Iberian species of Narcissus studied heretofore have different levels of morphophysiological dormancy (MPD). Embryo length, radicle emergence, and shoot emergence were analyzed to determine the level of MPD. Both interpopulational variability and seed storage duration were also studied. Mean embryo length in fresh seeds was 1.32 mm and the embryo had to grow until it reached at least 2.00 mm to germinate. Embryo growth occurs during warm stratification, after which the radicle emerges when temperatures go down. Seed dormancy was broken in the laboratory at 28/14°C in darkness followed by 15/4°C, but the germination percentage varies depending on the population. In outdoor conditions, seed dispersal occurs in June, the embryo grows during the summer and then the radicle emerges in autumn. The radicle system continues to grow during the winter months, but the shoot does not emerge until the beginning of the spring because it is physiologically dormant and requires a cold period to break dormancy. Early cold temperatures interrupt embryo growth and induce dormancy in seeds with an advanced embryo development. Seeds of N. eugeniae have deep simple epicotyl MPD. In addition, we found that embryo growth and germination were improved by seed storage duration.  相似文献   

2.
Temperature requirements for embryo growth and germination were determined for seeds of Osmorhiza occidentalis, O. chilensis, and Erythronium grandiflorum collected in western North America (Utah). Initially, embryos were 1.2, 0.6, and 0.8 mm in length, respectively, and they grew to 9.4, 9.2, and 4.1 mm, respectively, before germination occurred. Embryo growth and germination occurred during cold stratification (1, 5, 5/1 C), without a warm stratification pretreatment. However, warm stratification pretreatments at 30/15 C increased rates of embryo growth in O. occidentalis and E. grandiflorum seeds moved to low temperatures and germination rates in all three species. Optimum germination temperatures were 1, 5, or 5/1 C; gibberellic acid did not substitute for cold stratification. Thus, seeds of the three species have deep complex morphophysiological dormancy (MPD). In comparison, two species each of Osmorhiza and Erythronium from eastern North America have nondeep complex MPD and require warm followed by cold stratification for germination. Thus, disjunct species in genera with an Arcto-Tertiary distribution pattern can have different types of MPD. It is suggested that deep complex may have been derived from nondeep complex MPD.  相似文献   

3.

Background and Aims

Only very few studies have been carried out on seed dormancy/germination in the large monocot genus Narcissus. A primary aim of this study was to determine the kind of seed dormancy in Narcissus hispanicus and relate the dormancy breaking and germination requirements to the field situation.

Methods

Embryo growth, radicle emergence and shoot growth were studied by subjecting seeds with and without an emerged radicle to different periods of warm, cold or warm plus cold in natural temperatures outdoors and under controlled laboratory conditions.

Key Results

Mean embryo length in fresh seeds was approx. 1·31 mm, and embryos had to grow to 2·21 mm before radicle emergence. Embryos grew to full size and seeds germinated (radicles emerged) when they were warm stratified for 90 d and then incubated at cool temperatures for 30 d. However, the embryos grew only a little and no seeds germinated when they were incubated at 9/5, 10 or 15/4 °C for 30 d following a moist cold pre-treatment at 5, 9/5 or 10 °C. In the natural habitat of N. hispanicus, seeds are dispersed in late May, the embryo elongates in autumn and radicles emerge (seeds germinate) in early November; however, if the seeds are exposed to low temperatures before embryo growth is completed, they re-enter dormancy (secondary dormancy). The shoot does not emerge until March, after germinated seeds are cold stratified in winter.

Conclusion

Seeds of N. hispanicus have deep simple epicotyl morphophysiological dormancy (MPD), with the dormancy formula C1bB(root) – C3(epicotyl). This is the first study on seeds with simple MPD to show that embryos in advanced stages of growth can re-enter dormancy (secondary dormancy).  相似文献   

4.
Osmorhiza longistylis is an herbaceous perennial that grows in woodlands of eastern and central North America. In northcentral Kentucky seeds ripen in early to mid July, and dispersal begins in September and October. Although most of the seeds are shed during late autumn and winter, some remain on the dead shoots for up to 18 months. Seeds are dormant at maturity due to an underdeveloped embryo. Embryos grew at low (5 C) temperatures, but only after seeds were given a period of warm (30/15 C) stratification. With an increase in the length of the warm treatment, there was an increase in the number of embryos that grew to full length during a 12-wk period at 5 C and an increase in the percentage of seeds that germinated. Seeds given 12 wk of warm stratification required more than 8 wk at 5 C to overcome dormancy. Embryos in freshly-matured seeds averaged 0.60 mm long, but those in seeds given 12 wk warm plus 12 wk cold stratification averaged 8.86 mm. Lengths of embryos of seeds kept moist at 30/15 and 5 C for 24 wk averaged 0.63 and 0.89 mm, respectively. Regardless of age and dispersal time, imbibed seeds must be exposed to high (i.e., summer or autumn) and then to low (i.e., winter) temperatures before they will germinate. Consequently, germination occurs only in spring.  相似文献   

5.
Freshly matured seeds of Osmorhiza claytonii exhibit a type of morphophysiological dormancy (MPD). Under natural conditions, embryo growth begins in late September and early October and continues until mid***- to late February, with the peak in October and November. Most seeds germinate between mid-February and late March. Embryos did not grow in seeds incubated for 24 weeks at 30/15 (warm stratification) or 5 C (cold stratification). However, in seeds given 12 weeks at 30/15 and then 12 weeks at 5 C, embryo length increased 1,246% while seeds were at 5 C. Zero to 7 days of warm followed by 24 weeks of cold stratification resulted in 2%–27% germination of fresh seeds, whereas 2 to 12 weeks of warm followed by 24 weeks of cold stratification resulted in 80%–98% germination. Warm plus cold stratification was required for embryo growth and germination of seeds that remained undispersed for a year in the field. GA3 was partially effective in substituting for warm stratification. The name “nondeep complex MPD” is proposed for the type of MPD found in O. claytonii and a few other species, making a total of eight types of MPD presently known.  相似文献   

6.
We tested the hypothesis that seeds of the monocarpic perennial Ferula gummosa from the Mediterranean area and central Asia have deep complex morphophysiological dormancy. We determined the water permeability of seeds, embryo morphology, temperature requirements for embryo growth and seed germination and responses of seeds to warm and cold stratification and to different concentrations of GA3. The embryo has differentiated organs, but it is small (underdeveloped) and must grow inside the seed, reaching a critical embryo length, seed length ratio of 0.65–0.7, before the seed can germinate. Seeds required 9 weeks of cold stratification at <10°C for embryo growth, dormancy break and germination to occur. Thus, seeds have morphophysiological dormancy (MPD). Furthermore, GA3 improved the germination percentage and rate at 5°C and promoted 20 and 5% germination of seeds incubated at 15 and 20°C, respectively. Thus, about 20% of the seeds had intermediate complex MPD. For the other seeds in the seed lot, cold stratification (5°C) was the only requirement for dormancy break and germination and GA3 could not substitute for cold stratification. Thus, about 80% of the seeds had deep complex MPD.  相似文献   

7.
Seeds of Delphinium fissum subsp. sordidum are physiologically dormant at maturity, with underdeveloped embryos; thus they have morphophysiological dormancy (MPD). The aims of this study were to determine the requirements for embryo growth, dormancy break and germination, to characterise the type of seed dormancy and to evaluate the effects of light, seed age, pollination mechanism, and inter-annual and inter-population variability on germinative ability. After 3 months of incubation at 5°C (cold stratification) in darkness conditions, the mean embryo length increased from 5.6 to 2.07 mm, with 76% of seeds germinating. Conversely, embryos of seeds incubated during 3 months at 20/7 or 28/14°C hardly grew and no germination was recorded. Since cold stratification was the only requirement for the loss of MPD, and both dry storage in laboratory conditions and warm stratification prior to cold stratification shortened the cold stratification period required for germination, it could be concluded that D. fissum subsp. sordidum seeds have intermediate complex MPD. Cold stratification and incubation in darkness conditions promoted higher germination percentages than those in light. In addition, germinative ability increased with seed age up to 8 months (reaching 96% at 5°C in darkness), showed a pronounced inter-annual and inter-population variability, as well as a significant decrease in seeds coming from pollination by geitonogamy. High temperatures (25/10 or 28/14°C) induced seeds to secondary dormancy, so seedling emergence in the greenhouse was restricted to February–March. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter. This study is the first one to document a gradual increase in germination percentage with seed age for plant species with intermediate complex MPD.  相似文献   

8.
In contrast to previous reports, the endocarps ("seed coats") of Sambucus species are not impermeable to water; thus, the seeds do not have physical dormancy. Seeds of the North American species Sambucus canadensis and S. pubens and of the European species S. racemosa have spatulate shaped embryos that are ~60% fully developed (elongated) at seed maturity. The embryo has to extend to the full length of the seed to germinate. Embryos in freshly matured seeds of S. canadensis and in those of S. pubens grew better at 25°/15°C than at 5°C, whereas the rate of embryo growth in S. racemosa was higher at 5°C than at 25°/15°C. Seeds of all three species germinated to significantly higher percentages in light (14-h photoperiod) than in darkness. Fresh seeds of neither species germinated during 2 wk of incubation over a range of thermoperiods. Warm followed by cold stratification broke dormancy in seeds of S. canadensis and in those of S. pubens. Thus, seeds of these two North American species have deep simple morphophysiological dormancy (MPD). In comparison, seeds of the European species S. racemosa required a cold stratification period only for dormancy break, and thus they have intermediate complex MPD. GA(3) was much more effective in breaking dormancy in seeds of S. racemosa than it was in those of S. canadensis or S. pubens.  相似文献   

9.
BACKGROUND AND AIMS: The European Chaerophyllum temulum and two North American Chaerophyllum species have a trans-Atlantic disjunct distribution. This work aimed to resolve requirements for dormancy break and germination of C. temulum seeds and to compare dormancy traits with those of the two North American congeners. METHODS: Phenology of germination and embryo growth was studied by regularly exhuming seeds sown in natural conditions. Temperature requirements for embryo growth, breaking of dormancy and germination were determined by incubating seeds under controlled laboratory conditions. Additionally the effect of GA(3) on germination was tested to determine the specific dormancy type. KEY RESULTS: In natural conditions, embryo growth starts in early winter. Seedlings emerge in late winter shortly after the embryos reached the critical ratio for embryo length to seed length (E : S) of approx. 0.95. Growth of the embryo only occurs during a prolonged incubation period at 5 degrees C. After stratification at 5 degrees C, which breaks physiological and morphological dormancy, seeds can germinate at a wide range of temperatures. GA(3) did not substitute for cold stratification in seeds placed at 23 degrees C. CONCLUSIONS: Chaerophyllum temulum has deep complex morphophysiological dormancy. This dormancy type differs considerably from that of the two North American congeners.  相似文献   

10.
Osmorhiza aristata is an herbaceous perennial that grows primarily in Japan, through southern China, to the Himalayas. It closely resembles the eastern North American species O. claytonii and O. longistylis, and, together, the three species are an example of the well-known North American-Asian pattern of disjunction. Requirements for dormancy break and embryo growth were determined for seeds of O. aristata collected in Japan during the summers of 1998-2000. Embryos in fresh seeds were ca. 0.5 mm long, and they had to grow to 9 mm before the radicle emerged from the mericarp. Embryo growth and germination occurred during cold stratification at 5°C, the optimum temperature for germination. Gibberellic acid did not substitute for cold stratification. Thus, O. aristata seeds have deep complex morphophysiological dormancy (MPD). The type of MPD in O. aristata is similar to that in two western North American congeners but different from that in eastern North American congeners (nondeep complex MPD). Mapping the types of MPD onto a phylogeny of the genus suggests that nondeep complex MPD is derived from deep complex MPD. Although eastern North American-Asian disjuncts often exhibit morphological stasis, the taxa may differ greatly in physiological traits, such as seed dormancy.  相似文献   

11.

Background and Aims

Little is known about morphological (MD) or morphophysiological (MPD) dormancy in cold desert species and in particular those in Liliaceae sensu lato, an important floristic element in the cold deserts of Central Asia with underdeveloped embyos. The primary aim of this study was to determine if seeds of the cold desert liliaceous perennial ephemeral Eremurus anisopterus has MD or MPD, and, if it is MPD, then at what level.

Methods

Embryo growth and germination was monitored in seeds subjected to natural and simulated natural temperature regimes and the effects of after-ripening and GA3 on dormancy break were tested. In addition, the temperature requirements for embryo growth and dormancy break were investigated.

Key Results

At the time of seed dispersal in summer, the embryo length:seed length (E:S) ratio was 0·73, but it increased to 0·87 before germination. Fresh seeds did not germinate during 1 month of incubation in either light or darkness over a range of temperatures. Thus, seeds have MPD, and, after >12 weeks incubation at 5/2 °C, both embryo growth and germination occurred, showing that they have a complex level of MPD. Since both after-ripening and GA3 increase the germination percentage, seeds have intermediate complex MPD.

Conclusions

Embryos in after-ripened seeds of E. anisopterus can grow at low temperatures in late autumn, but if the soil is dry in autumn then growth is delayed until snowmelt wets the soil in early spring. The ecological advantage of embryo growth phenology is that seeds can germinate at a time (spring) when sand moisture conditions in the desert are suitable for seedling establishment.  相似文献   

12.
Dormancy-breaking and seed germination studies in genus Lilium reveal that the majority of Lilium spp. studied have an underdeveloped embryo at maturity, which grows inside the seed before the radicle emerges. Additionally, the embryo, radicle or cotyledon has a physiological component of dormancy; thus, Lilium seeds have morphophysiological dormancy (MPD). A previous study suggested that seeds of Lilium polyphyllum have MPD but the study did not investigate the development of the embryo, which is one of the main criteria to determine MPD in seeds. To test this hypothesis, we investigated embryo growth and emergence of radicles and epicotyls in seeds over a range of temperatures. At maturity, seeds had underdeveloped embryos which developed fully at warm temperature within 6 weeks. Immediately after embryo growth, radicles also emerged at warm temperatures. However, epicotyls failed to emerge soon after radicle emergence. Epicotyls emerged from >90% seeds with an emerged radicle only after they were subjected to 2 weeks of cold moist stratification. The overall temperature requirements for dormancy-breaking and seed germination indicate a non-deep simple epicotyl MPD in L. polyphyllum.  相似文献   

13.
In an investigation of seed germination in Cardiocrinum cordatum var. glehnii, embryos in fresh seeds in October were underdeveloped and did not grow until September of the following year. Then, they grew rapidly and had fully elongated by early November. In the second spring after dispersal, radicles emerged under snow in late March and after snowmelt in April. Cotyledons emerged soon after radicles. In several laboratory experiments, embryos grew at 15°/5°C (light 12 h/ dark 12 h) following 25°/15°C. Radicles emerged from seeds with fully elongated embryos at 5°-15°C after cold stratification at 0°-5°C. Cotyledons emerged in 2 wk from seeds with a radicle at 15°/5°C to 30°/20°C. Although seeds require c. 18-19 mo after dispersal to germinate in nature, under controlled conditions, they required only 9 mo with a sequence of 25°/15°C → 15°/5°C → 0°-5°C → 15°/5°C. This is practical knowledge for propagation of plants from seeds. GA(3) treatment partially substituted for the high temperature requirement. Based on dormancy-breaking requirements, the seeds have deep simple morphophysiological dormancy (MPD). A literature review of seed dormancy in taxa of Liliaceae s. str. showed that phylogenetic position in this case is not a good predictor of level of MPD.  相似文献   

14.
Fruits (drupes) of Symphoricarpos orbiculatus ripen in autumn and are dispersed from autumn to spring. Seeds (true seed plus fibrous endocarp) are dormant at maturity, and they have a small, linear embryo that is underdeveloped. In contrast to previous reports, the endocarp and seed coat of S. orbiculatus are permeable to water; thus, seeds do not have physical dormancy. No fresh seeds germinated during 2 wk of incubation over a 15°/6°-35°/20°C range of thermoperiods in light (14-h photoperiod); gibberellic acid and warm or cold stratification alone did not overcome dormancy. One hundred percent of the seeds incubated in a simulated summer → autumn → winter → spring sequence of temperature regimes germinated, whereas none of those subjected to a winter → spring sequence did so. That is, cold stratification is effective in breaking dormancy only after seeds first are exposed to a period of warm temperatures. Likewise, embryos grew at cold temperatures only after seeds were exposed to warm temperatures. Thus, the seeds of S. orbiculatus have nondeep complex morphophysiological dormancy. As a result of dispersal phenology and dormancy-breaking requirements, in nature most seeds that germinate do so the second spring following maturity; a low to moderate percentage of the seeds may germinate the third spring. Seeds can germinate to high percentages under Quercus leaf litter and while buried in soil; they have little or no potential to form a long-lived soil seed bank.  相似文献   

15.
Aims There are a number of mechanisms that regulate germination; among these, seed dormancy, one of the most important, is an adaptative mechanism in plants to promote survival by dispersing germination in space and time until environmental conditions are favourable for germination. The main goals of this study were to determine the temperature requirements for seed dormancy release and germination of Gentiana lutea subsp. lutea, to identify the class and level of seed dormancy and to suggest an optimal germination protocol.Methods Seeds belonging to two different localities were subjected to various pre-treatments, including cold stratification (0 and 5°C), warm stratification (25/10°C) and different combinations of these, and then incubated at a range of constant temperatures (5–25°C) and 25/10°C. Embryo growth during pre-treatments and incubation conditions were assessed at different times by measuring the embryo to seed length ratio (E:S ratio). The final germination percentage (FGP) and the germination rate (t 50) were calculated.Important findings Fleshy mature seeds of G. lutea subsp. lutea have linear underdeveloped embryos. Cold stratification at 0°C was effective in overcoming the physiological dormancy (PD) and promoted embryo growth and subsequent germination. After cold stratification at 0°C, both the root and the shoot emerged readily under a wide range of temperatures. G. lutea subsp. lutea seeds showed an intermediate complex morphophysiological dormancy (MPD). As regards the optimal germination protocol for this taxon, we suggest a period of cold stratification at ca. 0°C followed by seed incubation at 10–20°C. The optimal germination temperatures found for seeds of this taxon, as well as its pre-chilling requirement at 0°C, suggest that it is well adapted to a temperate climate; this behavior highlights an increasing threat from global warming for G. lutea, which could reduce the level of natural emergence in the field, prejudicing also the long-term persistence of the natural populations in Sardinia.  相似文献   

16.

Background and Aims

Lomatium dissectum (Apiaceae) is a perennial, herbaceous plant of wide distribution in Western North America. At the time of dispersal, L. dissectum seeds are dormant and have under-developed embryos. The aims of this work were to determine the requirements for dormancy break and germination, to characterize the type of seed dormancy, and to determine the effect of dehydration after embryo growth on seed viability and secondary dormancy.

Methods

The temperature requirements for embryo growth and germination were investigated under growth chamber and field conditions. The effect of GA3 on embryo growth was also analysed to determine the specific type of seed dormancy. The effect of dehydration on seed viability and induction of secondary dormancy were tested in seeds where embryos had elongated about 4-fold their initial length. Most experiments examining the nature of seed dormancy were conducted with seeds collected at one site in two different years. To characterize the degree of variation in dormancy-breaking requirements among seed populations, the stratification requirements of seeds collected at eight different sites were compared.

Key Results

Embryo growth prior to and during germination occurred at temperatures between 3 and 6 °C and was negligible at stratification temperatures of 0·5 and 9·1 °C. Seeds buried in the field and exposed to natural winter conditions showed similar trends. Interruption of the cold stratification period by 8 weeks of dehydration decreased seed viability by about 30 % and induced secondary dormancy in the remaining viable seeds. Comparison of the cold stratification requirements of different seed populations indicates that seeds collected from moist habitats have longer cold stratification requirements that those from semiarid environments.

Conclusions

Seeds of L. dissectum have deep complex morphophysiological dormancy. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter.Key words: Apiaceae, cold stratification, Lomatium dissectum, morphophysiological dormancy, secondary dormancy, seed germination  相似文献   

17.
Seeds with deep simple double morphophysiological dormancy (MPD) need cold stratification during the first winter after dispersal for radicle emergence, followed by the summer for root and bud development and finally a second winter for shoot emergence. In a previous study, we demonstrated that Trillium camschatcense seeds have this type of dormancy with radicles emerging from most seeds after the first winter. However, radicles also emerged from a few seeds in autumn during the same year as dispersal. We thought that temperatures after seed dispersal played a role in radicle emergence before the first winter. To confirm our idea, we investigated germination phenology outdoors, relationships between temperatures after seed dispersal and radicle emergence in the first year outdoors, radicle emergence in the first winter under varied temperatures using incubators, and shoot emergence from seeds with an emerged radicle in the first year outdoors. Our phenology study confirmed that T. camschatcense seeds have deep simple double MPD. Over 7 years, 0.2–7.5% of radicles emerged in the first year before winter and these percentages were moderately positively correlated with temperatures, especially minimum temperatures. Increasing August and September temperatures increased radicle emergence in the laboratory. Shoots emerged from seeds with an emerged radicle in the first year after the first winter. With increased autumn temperatures in warmer regions or with global warming, we predict that germination phenology may shift: increased radicle emergence in the first year and shoot emergence following the first (and not second) winter.  相似文献   

18.
To better understand the germination ecophysiology of the genus Lonicera , the dormancy class, temperature requirements for embryo growth and radicle emergence and phenology of seedling emergence were determined for Lonicera caerulea var. emphyllocalyx . At maturity, seeds have an underdeveloped embryo (approximately 28% of the length of full-grown embryos). Embryos in fresh seeds grew to full length at 15, 20, 20/10 and 25/15°C within 3 weeks, but failed to grow at ≤ 10°C and at 30°C. Radicles emerged from 86–100% of freshly matured seeds in light at 15, 20, 20/10 and 25/15°C within 28 days, but failed to emerge at 10°C. Radicles emerged equally well in a 12 h photoperiod and in continuous darkness at 25/15°C. Rapid embryo growth and germination over a range of conditions indicate that seeds of this taxon have morphological dormancy (MD); this is the first report of MD in a species of Lonicera . Seeds are dispersed in summer, at which time high temperatures promote embryo growth. Embryos grow to the critical length for germination in approximately 1 month; the peak of seedling emergence occurs in early autumn. Radicles emerged within 2 months from 98% of seeds buried at soil depths of 2 cm and 10 cm in the field in August in Sapporo, Japan; thus, seeds have no potential to form a persistent soil seed bank. However, seeds sown too late in autumn for embryos to grow remained viable and germinated the following summer when temperatures were high enough to promote embryo growth.  相似文献   

19.
We used a double germination phenology or “move-along” experiment (sensu Baskin and Baskin, 2003) to characterize seed dormancy in two medicinal woodland herbs, Collinsonia canadensis L. (Lamiaceae) and Dioscorea villosa L. (Dioscoreaceae). Imbibed seeds of both species were moved through the following two sequences of simulated thermoperiods: (a) 30/15 °C→20/10 °C→15/6 °C→5 °C→15/6 °C→20/10 °C→30/15 °C, and (b) 5 °C→15/6 °C→20/10 °C→30/15 °C→20/10 °C→15/6 °C→5 °C. In each sequence, seeds of both species germinated to high rates (>85%) at cool temperatures (15/6 and 20/10 °C) only if seeds were previously exposed to cold temperatures (5 °C). Seeds kept at four control thermoperiods (5, 15/6, 20/10, 30/15 °C) for 30 d showed little or no germination. Seeds of both species, therefore, have physiological dormancy that is broken by 12 weeks of cold (5 °C) stratification. Morphological studies indicated that embryos of C. canadensis have “investing” embryos at maturity (morphological dormancy absent), whereas embryos of D. villosa are undeveloped at maturity (morphological dormancy present). Because warm temperatures are required for embryo growth and cold stratification breaks physiological dormancy, D. villosa seeds have non-deep simple morphophysiological dormancy (MPD). Neither species afterripened in a 6-month dry storage treatment. Cold stratification treatments of 4 and 8 weeks alleviated dormancy in both species but C. canadensis seeds germinated at slower speeds and lower rates compared to seeds given 12 weeks of cold stratification. In their natural habitat, both species disperse seeds in mid- to late autumn and germinate in the spring after cold winter temperatures alleviate endogenous dormancy.  相似文献   

20.
9种形态生理休眠的种子脱水对萌发和胚胎生长的影响 在具有形态生理种子休眠(MPD)的物种中,吸胀种子脱水对胚胎生长和萌发的影响鲜为人知。我们研究了9种不同MPD水平的种子对脱水的反应。对每个物种进行对照实验,使种子永久保持水化并暴露在最佳层积-培养顺序中以促进胚胎生长。同时也开展了室温条件下脱水中断种子层积处理1个月的实验。研究结果显示,具有非深度简单MPD的白藤铁线莲(Clematis vitalba)和高山茶藨子(Ribes alpinum)的胚生长 和种子活力均不受干燥影响,但干燥使高山茶藨子的萌发力下降了16%。具有深度简单上胚轴MPD的黄 水仙(Narcissus pseudonarcissus)种子在不同的胚生长阶段呈现脱水耐受性,但其萌发力略有下降。具有不同 MPD复杂水平的物种对脱水的反应更为多变:具有中度复杂MPD的Delphinium fissum亚种与具有深度复杂MPD的峨参(Anthriscus sylvestris)和熊根芹(Meum athamanticum),具有脱水耐受性。与之相反,具有非深度复杂MPD的鹅莓(Ribes uva-crispa)、中度复杂MPD的Lonicera pyrenaica和深度复杂MPD的Chaerophyllum aureum,脱水后萌发力下降。虽然具有MPD简单水平的种子能够具备脱水耐受性,但一些具有复杂水平MPD的种子也具有很高的耐受性。因此,脱水不诱导胚生长后期的次生休眠。9种植物中大多数的吸胀种子的脱水耐受性可能表征其对地中海地区气候变化的适应性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号