首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the bacterial strains isolated from diseased sunflower leaves, eight were studied in some detail. A fluorescent pseudomonad isolated from necrotic tissues and its reisolates belong to group Ia of phytopathogenic pseudomonads which includes Pseudomonas syringae bacterium. A study of host range indicated that the pathogen infects only sunflower but not the other plant species. Based on the pathogenicity study and biochemical and physiological tests, it was concluded that the pathogen belongs to the bacterium Pseudomonas syringae pv. helianthi.  相似文献   

2.
3.
It has been demonstrated that for a nonpathogenic, leaf-associated bacterium, effectiveness in the control of bacterial speck of tomato is correlated with the similarity in the nutritional needs of the nonpathogenic bacterium and the pathogen Pseudomonas syringae pv. tomato. This relationship was investigated further in this study by using the pathogen Xanthomonas campestris pv. vesicatoria, the causal agent of bacterial spot of tomato, and a collection of nonpathogenic bacteria isolated from tomato foliage. The effects of inoculation of tomato plants with one of 34 nonpathogenic bacteria prior to inoculation with the pathogen X. campestris pv. vesicatoria were quantified by determining (i) the reduction in disease severity (number of lesions per square centimeter) in greenhouse assays and (ii) the reduction in leaf surface pathogen population size (log10 of the number of CFU per leaflet) in growth chamber assays. Nutritional similarity between the nonpathogenic bacteria and X. campestris pv. vesicatoria was quantified by using either niche overlap indices (NOI) or relatedness in cluster analyses based upon in vitro utilization of carbon or nitrogen sources reported to be present in tomato tissues or in Biolog GN plates. In contrast to studies with P. syringae pv. tomato, nutritional similarity between the nonpathogenic bacteria and the pathogen X. campestris pv. vesicatoria was not correlated with reductions in disease severity. Nutritional similarity was also not correlated with reductions in pathogen population size. Further, the percentage of reduction in leaf surface pathogen population size was not correlated with the percentage of reduction in disease severity, suggesting that the epiphytic population size of X. campestris pv. vesicatoria is not related to disease severity and that X. campestris pv. vesicatoria exhibits behavior in the phyllosphere prior to lesion formation that is different from that of P. syringae pv. tomato.  相似文献   

4.
A Gram-positive bacterium was isolated from a rottingPleurotus ostreatus fruiting body that markedly reduced the level of extracellular toxins (i.e., tolaasins) produced byPseudomonas tolaasii, the most destructive pathogen of cultivated mushrooms. The isolated bacterium is saprophytic but not parasitic nor pathogenic toP. ostreatus. A low ratio, ca. 10−3 cells of the isolated bacterium for oneP. tolaasii cells, was sufficient for detoxification in vitro. Inoculation of the isolated bacterium prevents the development of bacterial disease inP. ostreatus andAgaricus bisporus. The suppression of the disease development, however requires the initial cell density equivalent to ca. 10−1 cells of the isolated bacterium for one cells of the pathogen. The effects is ascribed to the inactivation of tolaasin by the live, suppressive bacterial cells, and not to metabolites secreted from the organism into culture media. Examination by conventional bacteriological tests and with testing kits, i.e., MicroStationTMSystem Release 3.5 (Biolog Inc., Hayward, CA), ATB Expression (bioMerieux Inc. Japan) and VITEK (bioMerieux Inc. Japan), failed to assign the organism to any defined bacterial genus. The suppressive bacterium may be useful in future for the development of biocontrol system and/or the construction of genetically modified edible fungi resistant to the disease caused byP. tolaasii.  相似文献   

5.
Pseudomonas syringae pv. tagetis, a plant pathogen being considered as a biological control agent of Canada thistle (Cirsium arvense), produces tagetitoxin, an inhibitor of RNA polymerase which results in chlorosis of developing shoot tissues. Although the bacterium is known to affect several plant species in the Asteraceae and has been reported in several countries, little is known of its genetic diversity. The genetic relatedness of 24 strains of P. syringae pv. tagetis with respect to each other and to other P. syringae and Pseudomonas savastanoi pathovars was examined using 16S–23S rDNA intergenic spacer (ITS) sequence analysis. The size of the 16S–23S rDNA ITS regions ranged from 508 to 548 bp in length for all 17 P. syringae and P. savastanoi pathovars examined. The size of the 16S–23S rDNA ITS regions for all the P. syringae pv. helianthi and all the P. syringae pv. tagetis strains examined were 526 bp in length. Furthermore, the 16S–23S rDNA ITS regions of both P. syringae pv. tagetis and P. syringae pv. helianthi had DNA signatures at specific nucleotides that distinguished them from the 15 other P. syringae and P. savastanoi pathovars examined. These results provide strong evidence that P. syringae pv. helianthi is a nontoxigenic form of P. syringae pv. tagetis. The results also demonstrated that there is little genetic diversity among the known strains of P. syringae pv. tagetis. The genetic differences that do exist were not correlated with differences in host plant, geographical origin, or the ability to produce toxin.  相似文献   

6.
A fluorescent pseudomonad inciting brown angular leaf spots on iron wood (Parotia persica) in Mazandaran forest was isolated and identified as a pathovar of Pseudomonas syringae. Strains assimilated adonitol and L-tartrate but not lactate or D-tartrate as carbon sources for growth. The electrophoretic profiles of cell proteins of strains isolated from iron wood were very similar but differred markedly from protein profile of P. syringae pv. syringae.  相似文献   

7.
A bacterium consistently isolated from rotting onions in the field and in storage was shown by biochemical and pathogenicity tests to be Pseudomonas cepacia. In experiments to determine the mode of entry of the pathogen only injured bulbs developed a soft rot after a 10 min soak in a suspension of P. cepacia (approx. 108 cfu/ml).  相似文献   

8.
A bacterial leaf streak disease characterized by reddish, narrow (1–2 mm wide) streaks of variable size, and occasionally with bleached centers, was found in sugarcane (Saccharum, interspecific hybrid) fields in northern Iran. The incitant bacterium was identified as Pseudomonas syringae pv. syringae (P. s. syringae). The disease is similar in aetiology to the sugarcane ‘red streak’ disease reported recently from Japan. Cultivardependent variations in symptoms were noted., Difference in pathogenicity as well as in electrophoretic profile of cell proteins between strains of P.s. syringae causing red streak in sugarcane and those causing canker on stone fruit trees, were observed.  相似文献   

9.
A genomic library ofPseudomonas syringae pv.aptata strain NCPPB 2664, which causes bacterial blight of sugar beet, lettuce and other plants, was constructed in the cosmid vector pCPP31. The 13.4 kbEcoRI fragment of the cosmid pHIR11, containing thehrp (hypersensitiveresponse andpathogenicity) gene cluster of the closely related bacteriumPseudomonas syringae pv.syringae strain 61, was used as a probe to identify a homologoushrp gene cluster inP. syringae pv.aptata. Thirty of 2500 cosmid clones, screened by colony hybridization, gave a strong hybridization signal with the probe, but none of these conferred to the non-pathogenic bacterium,Pseudomonas fluorescens, the ability to elicit the hypersensitive response (HR) in tobacco. Southern blot analysis ofEcoRI-digested genomic DNA ofP. syringae pv.aptata showed hybridizing bands of 12 kb and 4.4 kb. Only a 12 kb fragment hybridized in digests of the cosmids. Cosmid clone pCPP1069 was mutagenized with Tn10-minitet and marker-exchanged into the genome ofP. syringae pv.aptata. Three resulting prototrophic mutant strains failed to elicit the HR in tobacco and to cause disease in lettuce. The DNA flanking the Tn10-minitet insertions from mutated derivatives of pCPP1069 hybridized with the 10.6 kbBglII fragment of pHIR11. These results indicate thatP. syringae pv.aptata harbourshrp genes that are similar to, but arranged differently from, homologoushrp genes ofP. syringae pv.syringae.Abbreviations HR hypersensitive response - Hrp mutant unable to induce HR and pathogenicity - Psa Pseudomonas syringae pv.aptata - Pss Pseudomonas syringae pv.syringae - Ea Erwinia amylovora  相似文献   

10.
Pseudomonas syringae is a common foliar bacterium responsible for many important plant diseases. We studied the population structure and dynamics of the core genome of P. syringae via multilocus sequencing typing (MLST) of 60 strains, representing 21 pathovars and 2 nonpathogens, isolated from a variety of plant hosts. Seven housekeeping genes, dispersed around the P. syringae genome, were sequenced to obtain 400 to 500 nucleotides per gene. Forty unique sequence types were identified, with most strains falling into one of four major clades. Phylogenetic and maximum-likelihood analyses revealed a remarkable degree of congruence among the seven genes, indicating a common evolutionary history for the seven loci. MLST and population genetic analyses also found a very low level of recombination. Overall, mutation was found to be approximately four times more likely than recombination to change any single nucleotide. A skyline plot was used to study the demographic history of P. syringae. The species was found to have maintained a constant population size over time. Strains were also found to remain genetically homogeneous over many years, and when isolated from sites as widespread as the United States and Japan. An analysis of molecular variance found that host association explains only a small proportion of the total genetic variation in the sample. These analyses reveal that with respect to the core genome, P. syringae is a highly clonal and stable species that is endemic within plant populations, yet the genetic variation seen in these genes only weakly predicts host association.  相似文献   

11.
The type three effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola (Pma) triggers an RPM1‐mediated immune response linked to phosphorylation of RIN4 (RPM1‐interacting protein 4) in Arabidopsis. However, the effector–resistance (R) gene interaction is not well established with different AvrRpm1 effectors from other pathovars. We investigated the AvrRpm1‐triggered immune responses in Nicotiana species and isolated Rpa1 (R esistance to P seudomonas syringae pv. a ctinidiae 1) via a reverse genetic screen in Nicotiana tabacum. Transient expression and gene silencing were performed in combination with co‐immunoprecipitation and growth assays to investigate the specificity of interactions that lead to inhibition of pathogen growth. Two closely related AvrRpm1 effectors derived from Pseudomonas syringae pv. actinidiae biovar 3 (AvrRpm1Psa) and Pseudomonas syringae pv. syringae strain B728a (AvrRpm1Psy) trigger immune responses mediated by RPA1, a nucleotide‐binding leucine‐rich repeat protein with an N‐terminal coiled‐coil domain. In a display of contrasting specificities, RPA1 does not respond to AvrRpm1Pma, and correspondingly AvrRpm1Psa and AvrRpm1Psy do not trigger the RPM1‐mediated response, demonstrating that separate R genes mediate specific immune responses to different AvrRpm1 effectors. AvrRpm1Psa co‐immunoprecipitates with RPA1, and both proteins co‐immunoprecipitate with RIN4. In contrast with RPM1, however, RPA1 was not activated by the phosphomimic RIN4T166D and silencing of RIN4 did not affect the RPA1 activity. Delivery of AvrRpm1Psa by Pseudomonas syringae pv. tomato (Pto) in combination with transient expression of Rpa1 resulted in inhibition of the pathogen growth in N. benthamiana. Psa growth was also inhibited by RPA1 in N. tabacum.  相似文献   

12.
GacS/GacA is a conserved two-component system that functions as a master regulator of virulence-associated traits in many bacterial pathogens, including Pseudomonas spp., that collectively infect both plant and animal hosts. Among many GacS/GacA-regulated traits, type III secretion of effector proteins into host cells plays a critical role in bacterial virulence. In the opportunistic plant and animal pathogen Pseudomonas aeruginosa, GacS/GacA negatively regulates the expression of type III secretion system (T3SS)-encoding genes. However, in the plant pathogenic bacterium Pseudomonas syringae, strain-to-strain variation exists in the requirement of GacS/GacA for T3SS deployment, and this variability has limited the development of predictive models of how GacS/GacA functions in this species. In this work we re-evaluated the function of GacA in P. syringae pv. tomato DC3000. Contrary to previous reports, we discovered that GacA negatively regulates the expression of T3SS genes in DC3000, and that GacA is not required for DC3000 virulence inside Arabidopsis leaf tissue. However, our results show that GacA is required for full virulence of leaf surface-inoculated bacteria. These data significantly revise current understanding of GacS/GacA in regulating P. syringae virulence.  相似文献   

13.
The efficacy of a bacterial strain as a biocontrol agent in the field may be related to the ecological similarity between the biocontrol agent and the target pathogen. Therefore, a number of different Pseudomonas syringae strains were evaluated for their antagonistic activities in vitro (agar-diffusion assay) and in planta (greenhouse assay) against the target pathogen, Pseudomonas syringae pv. glycinea. Six strains of five different pathovars were found to be antagonistic in vitro as well as in planta. The epiphytic fitness of the antagonistic Pseudomonas syringae strain 22d/93 and its two antibiotic-resistant mutants were examined on soybean plants in the fields. After adaptation the parental strain and its mutants had the ability to establish and maintain large epiphytic populations (about 106 cfu/g FW) over the whole growing season after a single spray inoculation. The epiphytic behaviors of the mutants and the parent were not significantly different. The introduced bacteria did not influence the total bacterial population size. When the antagonist was coinoculated with the pathogen, the development of the pathogen was significantly reduced during the whole growing season. When the antagonistic strain was inoculated 4 weeks in advance of the pathogen, this antagonistic effect could be markedly enhanced. The final population size of the pathogen reached just 104 cfu/g FW and was significantly reduced to 0.12% compared to the pathogen alone. This study demonstrates that biological control of foliar pathogens through colonization of the host plants with near isogenic or ecologically similar antagonistical strains seems to be a realistic goal.  相似文献   

14.
During spring and summer of 2004 and 2005, a new disease of alfalfa was observed for the first time in some areas of the Kurdistan province in Iran. Symptoms were initially yellowed area on leaves, within which water‐soaked, irregular spots developed. These spots eventually coalesced to produce large necrotic areas. Symptoms on petiole and stem include water‐soaked lesions, which later turned brown. Gram negative and rod‐shaped bacteria were isolated from infected tissues. From the results of LOPAT tests (levan production, oxidase reaction, potato soft rot, arginine dihydrolase and tobacco hypersensitivity) and other phenotypic, biochemical and physiological properties investigated, the causal bacterium have been identified as Pseudomonas syringae pv. syringae. Pathogenicity of selected strains was confirmed by injecting a bacterial suspension into leaf tissue from the underside of leaves.  相似文献   

15.
The epiphyte Pseudomonas syringae pv. syringae 22d / 93 (Pss22d), isolated from soybean leaves, had been characterized as a promising and species‐specific biocontrol strain in vitro and in planta against the plant pathogen P. syringae pv. glycinea (Psg), which causes bacterial blight of soybean. Three toxins are known to be produced by Pss22d: syringomycin, syringopeptin and 3‐methylarginine (MeArg). In contrast to syringopeptin and syringomycin, MeArg inhibited the growth of Psg in vitro. To examine if the toxins produced by Pss22d are responsible for antagonistic effects in planta, the pathogen Psg was co‐inoculated with either Pss22d wild‐type, a syringopeptin/syringomycin‐negative double mutant (Pss22d.ΔsypA/syrE), or a MeArg‐negative mutant (Pss22d.1) into wounds of pin‐pricked leaves of greenhouse‐grown soybean plants, respectively. In all three cases, the wild‐type Pss22d and its toxin‐deficient mutants prevented development of disease symptoms normally caused by Psg. These results indicated that neither syringopeptin, nor syringomycin, nor MeArg was required for Pss22d’s antagonistic activity in planta. Consequently, factors other than the three toxins may contribute to the intra‐species antagonism in planta.  相似文献   

16.
Summary Some plant pathogens produce toxins which cause disease in infected plants. One of the pathogenic toxins, tabtoxin, is produced by Pseudomonas syringae pv. tabaci, which causes wildfire of tobacco. A tabtoxin resistance gene (ttr) coding for an acetyltransferase isolated from Pseudomonas syringae pv. tabaci was fused to the 35S promoter of the cauliflower mosaic virus (CaMV) to construct a chimeric gene for introduction into tobacco cells by Agrobacterium-mediated transformation. The transgenic tobacco plants showed high specific-expression of the ttr gene and no chlorotic symptoms caused by tabtoxin treatment or with infection by Pseudomonas syringae pv. tabaci. These results demonstrate a successful approach to obtain disease-resistant plants by detoxification of the pathogenic toxins which play an important role in pathogenesis.  相似文献   

17.
Pseudomonas syringae pv. actinidiae is a reemerging pathogen which causes bacterial canker of kiwifruit (Actinidia sp.). Since 2008, a global outbreak of P. syringae pv. actinidiae has occurred, and in 2010 this pathogen was detected in New Zealand. The economic impact and the development of resistance in P. syringae pv. actinidiae and other pathovars against antibiotics and copper sprays have led to a search for alternative management strategies. We isolated 275 phages, 258 of which were active against P. syringae pv. actinidiae. Extensive host range testing on P. syringae pv. actinidiae, other pseudomonads, and bacteria isolated from kiwifruit orchards showed that most phages have a narrow host range. Twenty-four were analyzed by electron microscopy, pulse-field gel electrophoresis, and restriction digestion. Their suitability for biocontrol was tested by assessing stability and the absence of lysogeny and transduction. A detailed host range was performed, phage-resistant bacteria were isolated, and resistance to other phages was examined. The phages belonged to the Caudovirales and were analyzed based on morphology and genome size, which showed them to be representatives of Myoviridae, Podoviridae, and Siphoviridae. Twenty-one Myoviridae members have similar morphologies and genome sizes yet differ in restriction patterns, host range, and resistance, indicating a closely related group. Nine of these Myoviridae members were sequenced, and each was unique. The most closely related sequenced phages were a group infecting Pseudomonas aeruginosa and characterized by phages JG004 and PAK_P1. In summary, this study reports the isolation and characterization of P. syringae pv. actinidiae phages and provides a framework for the intelligent formulation of phage biocontrol agents against kiwifruit bacterial canker.  相似文献   

18.
Some ice-nucleating bacterial strains, including Pantoea ananatis (Erwinia uredovora), Pseudomonas fluorescens, and Pseudomonas syringae isolates, were examined for the ability to shed ice nuclei into the growth medium. A novel ice-nucleating bacterium, Pseudomonas antarctica IN-74, was isolated from Ross Island, Antarctica. Cell-free ice nuclei from P. antarctica IN-74 were different from the conventional cell-free ice nuclei and showed a unique characterization. Cell-free ice nuclei were purified by centrifugation, filtration (0.45 μm), ultrafiltration, and gel filtration. In an ice-nucleating medium in 1 liter of cell culture, maximum growth was obtained with the production of 1.9 mg of cell-free ice nuclei. Ice nucleation activity in these cell-free ice nuclei preparations was extremely sensitive to pH. It was demonstrated that the components of cell-free ice nuclei were protein (33%), saccharide (12%), and lipid (55%), indicating that cell-free ice nuclei were lipoglycoproteins. Also, carbohydrate and lipid stains showed that cell-free ice nuclei contained both carbohydrate and lipid moieties.  相似文献   

19.
20.
Coronafacoyl phytotoxins are secondary metabolites that are produced by various phytopathogenic bacteria, including several pathovars of the Gram‐negative bacterium Pseudomonas syringae as well as the Gram‐positive potato scab pathogen Streptomyces scabies. The phytotoxins are composed of the polyketide coronafacic acid (CFA) linked via an amide bond to amino acids or amino acid derivatives, and their biosynthesis involves the cfa and cfa‐like gene clusters that are found in P. syringae and S. scabies, respectively. The S. scabies cfa‐like gene cluster was previously reported to contain several genes that are absent from the P. syringae cfa gene cluster, including one (oxr) encoding a putative F420—dependent oxidoreductase, and another (sdr) encoding a predicted short‐chain dehydrogenase/reductase. Using gene deletion analysis, we demonstrated that both oxr and sdr are required for normal production of the S. scabies coronafacoyl phytotoxins, and structural analysis of metabolites that accumulated in the Δsdr mutant cultures revealed that Sdr is directly involved in the biosynthesis of the CFA moiety. Our results suggest that S. scabies and P. syringae use distinct biosynthetic pathways for producing coronafacoyl phytotoxins, which are important mediators of host‐pathogen interactions in various plant pathosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号