首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Incongruence between phylogenetic estimates based on nuclear and chloroplast DNA (cpDNA) markers was used to infer that there have been at least two instances of chloroplast transfer, presumably through wide hybridization, in subtribe Helianthinae. One instance involved Simsia dombeyana, which exhibited a cpDNA restriction site phenotype that was markedly divergent from all of the other species of the genus that were surveyed but that matched the restriction site pattern previously reported for South American species of Viguiera. In contrast, analysis of sequence data from the nuclear ribosomal DNA internal transcribed spacer (ITS) region showed Simsia to be entirely monophyletic and placed samples of S. dombeyana as the sister group to the relatively derived S. foetida, a result concordant with morphological information. A sample of a South American species of Viguiera was placed by ITS sequence data as the sister group to a member of V. subg. Amphilepis, which was consistent with cpDNA restriction site data. Samples of Tithonia formed a single monophyletic clade based on ITS sequence data, whereas they were split between two divergent clades based on cpDNA restriction site analysis. The results suggested that cpDNA transfer has occurred between taxa diverged to the level of morphologically distinct genera, and highlight the need for careful and complete assessment of molecular data as a source of phylogenetic information.  相似文献   

2.
Differences between the genera Colpodium Trin. and Catabrosa P. Beauv. are discussed. Colpodium drakensbergense Hedberg & I. Hedberg is transferred to Catabrosa drakensbergense (Hedberg & I. Hedberg) Soreng & Fish and a lectotype is chosen for the species. This leaves only two Colpodium species in Africa (Ethiopia, Kenya and Tanzania), and extends the range of Catabrosa from northwestern Africa to southern Africa.  相似文献   

3.
The hypothesised hybrid origin of the High Arctic grass × Pucciphippsia vacillans from the putative parents Puccinellia vahliana, Phippsia algida or Phippsia concinna was investigated by analyses of morphological, cytological, and enzymatic data. Chromosome counts showed that × P. vacillans from Svalbard is triploid (2n = 21) and sterile, supporting the hypothesis of a hybrid origin. Enzymatic investigations showed that × P. vacillans is identical to Phippsia in most enzyme markers and furthermore that all four taxa are closely related. Additive banding pattern in one enzyme system (6-PGD) as well as some morphological traits indicated that × P. vacillans is a Puccinellia × Phippsia hybrid. × Pucciphippsia vacillans is morphologically intermediate between Phippsia algida and Puccinellia vahliana in several individual characters as well as in a multivariate analysis, indicating that Phippsia algida is the more probable Phippsia parent. Mature seeds have never been observed in × P. vacillans and the taxon has no known mode of vegetative reproduction. This investigation suggests that it might be a sterile first-generation hybrid wherever it occurs in Svalbard. The close genetic relationship between × Pucciphippsia, Phippsia, and Puccinellia vahliana has implications for their generic delimitation and might suggest that only one genus is involved.  相似文献   

4.
Chloroplast DNA restriction site variation was studied in 31 New World species ofIpomoea, representing a majority of the New World sections and series within the genus. Using 14 endonucleases, a total of 124 phylogenetically informative restriction sites was detected. Dollo parsimony, Wagner parsimony, and bootstrap methods were employed to construct phylogenetic trees and evaluate confidence intervals of monophyletic groups. With a few exceptions, groups circumscribed on the basis of morphological variation are in agreement with groupings based on restriction site variation. Relationships between subgeneric groupings, however, disagree substantially with those proposed in the past. Although conflicting hypotheses for some intersectional relationships are not presently resolvable, cpDNA restriction site analyses propose the following refinements of existing classification schemes.Ipomoea ser.Setosae is divided into distantly related groups, as is sect.Pharbitis. SeriesTyrianthinae, a proposed segregate of sect.Pharbitis, is associated with sect.Calonyction and the Tricolor complex (subg.Quamoclit).Ipomoea sect.Batatas is segregated from other herbaceous groups of the heterogeneous subg.Quamoclit sensu lato and aligned as a derivative ofI. setosa, subg.Eriospermum. To test for homology of key characters weighted in traditional schemes, morphological features were studied with respect to their distribution on lineages defined by restriction site data. Characters such as setose sepals, foliose-pubescent sepals, and erect growth habit, among others, are interpreted as having multiple origins, while 3-locular ovaries, 4-locular ovaries, and long-haired seeds have evolved only once.  相似文献   

5.
Phylogenetic analysis of plastid DNA restriction site and rearrangement mutations suggests a number of major revisions to taxonomy and phylogenetic concepts in the hard pines. Total genomic DNA from 18 species that sampled all nine subsections was digested with 19 restriction enzymes, blotted, and probed with 70% of the Douglas-fir (Pseudotsuga menziesii) chloroplast genome, or, with clones encompassing the entire chloroplast genome of Pinus contorta. A total of 204 site mutations and five rearrangement mutations were generated, of which 126 were phylogenetically informative. Wagner parsimony analyses revealed 11 clades that were strongly supported by bootstrap and decay index analyses. All North American species except P. resinosa formed a distinct monophyletic group that was strongly separated from the Eurasian species. Within the Eurasian clade subsect. Sylvestres was polyphyletic; its Mediterranean species were closely allied with members of sect. Pinea. Sect. Pinea appeared polyphyletic as well; both species of its subsect. Leiophyllae showed a close affinity to Mesoamerican pines of subsect. Oocarpae in sect. Pinus. Within the North American pines subsects. Ponderosae and Oocarpae were polyphyletic. Despite its shallow fossil record, subsect. Contortae emerged as a sister group to all of the North American pines apart from P. resinosa, which was allied with Eurasian species of subsect. Sylvestres. The remaining North American subsections formed two groups: a poorly resolved clade with subsects. Ponderosae and Sabinianae, and sequentially nested clades represented by: P. radiata; P. taeda; representatives of subsects. Oocarpae and Ponderosae from Mesoamerica, and subsect. Leiophyllae. We present estimates of divergence times for each of these major clades based on molecular clocks calibrated using two hard pine fossil observations.  相似文献   

6.
Chloroplast DNA restriction site variation provided data with which to compare the Galápagos Island endemic Scalesia to potential sister groups within subtribe Helianthinae. Pappobolus is suggested by these data to be the most likely sister group to Scalesia. It is an Andean endemic genus that includes the South American species once regarded as a subgenus of Helianthus and later assigned to Helianthopsis. Two other groups considered as potential sister groups based on their geographic distribution in South America were not placed near Scalesia in the most parsimonious tree. Viguiera sect. Diplostichis appears to be relatively basal within subtribe Helianthinae, and the South American species of Viguiera, although previously classified in more than one subgenus, appear to form a single, monophyletic group that is not the sister group to Scalesia. The minimum of ten restriction site differences between Scalesia and Pappobolus of approximately 525 sites surveyed yielded an estimated sequence divergence of 0.19%, and an estimated time of divergence of approximately 1.9–6.2 million years.  相似文献   

7.
We used ITS and trnL sequence data, analyzed separately and combined by MP, to explore species relationships and concepts in Trema (Celtidaceae), a pantropical genus of pioneer trees. Whether Trema is monophyletic or includes Parasponia is still unresolved. Three clades within Trema received moderate to high support, one from the New World and two from the Old World, but their relationships were not resolved. In the New World, specimens of T. micrantha formed two groups consistent with endocarp morphology. Group I, with smaller brown endocarps, is a highly supported clade sister to T. lamarckiana. Group II, with larger black endocarps, is poorly resolved with several subclades, including the highly supported T. integerrima clade. Both Old World clades contain Asian and African species, with three or more species in each region. Trema orientalis is not monophyletic: specimens from Africa formed a highly supported clade sister to T. africana, while those from Asia were sister to T. aspera from Australia.  相似文献   

8.
A cladistic analysis of chloroplast DNA restriction site variation among representatives of all subfamilies of the grass family (Poaceae), using Joinvillea (Joinvilleaceae) as the outgroup, placed most genera into two major clades. The first of these groups corresponds to a broadly circumscribed subfamily Pooideae that includes all sampled representatives of Ampelodesmeae, Aveneae, Brachypodieae, Bromeae, Diarrheneae, Meliceae, Poeae, Stipeae, and Triticeae. The second major clade includes all sampled representatives of four subfamilies (Panicoideae [tribes Andropogoneae and Paniceae], Arundinoideae [Arundineae], Chloridoideae [Eragrostideae], and Centothecoideae [Centotheceae]). Within this group (the “PACC” clade), the Panicoideae are resolved as monophyletic and as the sister group of the clade that comprises the other three subfamilies. Within the latter group, Danthonia (Arundinoideae) and Eragroslis (Chloridoideae) are resolved as a stable monophyletic group that excludes Phragmites (Arundinoideae); this structure is inconsistent with the Arundinoideae being monophyletic as currently circumscribed. The PACC clade is placed within a more inclusive though unstable clade that includes the woody Bambusoideae (Bambuseae) plus several disparate tribes of herbaceous grasses of uncertain affinity that are often recognized as herbaceous Bambusoideae (Brachyelytreae, Nardeae, Olyreae, Oryzeae, and Phareae). Among eight most-parsimonious trees resolved by the analysis, four include a monophyletic Bambusoideae sensu lato (comprising Bambuseae and all five of these herbaceous tribes) as the sister group of the PACC clade; in the other four trees these bambusoid elements are not resolved as monophyletic, and the PACC clade is nested among these tribes. These results are consistent with those of previous analyses that resolve a basal or near-basal branch within the family between Pooideae and all other grasses. However, resolution by the present analysis of the PACC clade, which includes Centothecoideae, Chloridoideae, and Panicoideae, but excludes Bambusoideae, is inconsistent with the results of previous analyses that place Bambusoideae and Panicoideae in a monophyletic group that excludes Centothecoideae and Chloridoideae.  相似文献   

9.
Jørgensen, A., Madsen, H., Nalugwa, A., Nyakaana, S., Rollinson, D., Stothard, J. R. & Kristensen, T. K. A molecular phylogenetic analysis of Bulinus (Gastropoda: Planorbidae) with conserved nuclear genes. —Zoologica Scripta, 40, 126–136. Mutational saturation of inspected DNA loci and topological incongruence in the phylogenetic inferences have previously confounded attempts to resolve the evolutionary relationships within the freshwater snail genus Bulinus. Traditionally, the 37 species of Bulinus are placed within the four species groups and the evolutionary divergence between groups is substantial. With an intention to shed new light on species group relationships, the present study was designed to investigate the basal divergences in the phylogeny of Bulinus using highly conserved nuclear genes. The resolved phylogeny inferred that the four species groups of Bulinus were monophyletic and Shimodaira‐Hasegawa topology tests found them to be significantly supported. The Bulinus truncatus/tropicus species complex and Bulinus wrighti (Bulinus reticulatus group) formed a well‐supported sister‐group relationship. The Bulinus africanus species group was the sister‐group to the clade (Bulinus truncatus/tropicus + B. wrighti) with the Bulinus forskalii species group as the sister‐group to these taxa. The sister‐group relationship between Indoplanorbis and Bulinus was non‐significant and the basal clade support of Bulinus improved upon exclusion of Indoplanorbis. The finding of basal long branches of Bulinus species originating from Madagascar strongly suggests the presence of additional cryptic species and an evolutionary scenario influenced by this island’s geological vicariance from the African mainland. Speciation by polyploidy was inferred to have evolved within a clade in the Bulinus truncatus/tropicus species complex. Although the monophyletic status of each species group was firmly supported, it was difficult to establish species group concepts equally across the variations and place this precisely in a specific temporal framework.  相似文献   

10.
11.
Restriction site mapping of chloroplast DNA from 31 species representing 26 genera of theRanunculaceae was performed using eleven restriction endonucleases. The chloroplast genome varies in length from approximately 152 to 160 kb. Length variants are frequent in theRanunculaceae and range from usually less than 300 bp to rarely 1.5 kb. The inverted repeat is extended into the large single copy (LSC) region by 4–4.5 kb inAnemone, Clematis, Clematopsis, Hepatica, Knowltonia, andPulsatilla. Several inversions are present in the LSC-region of the cpDNA in all these genera and inAdonis. The frequency of restriction site mutations varies within the chloroplast genome in theRanunculaceae between 4 and 32 mutations per kilobase, and is lowest in the inverted repeat and the regions containing the ATPase-genes and the genespsaA, psaB, psbA, rpoB, andrbcL. A total of 547 phylogenetically informative restriction sites was utilized in cladistic analyses of the family using Wagner, Dollo, and weighted parsimony. These three parsimony analyses result in different tree topologies. Four, six, and one equally most parsimonious trees were obtained with Wagner, Dollo, and weighted parsimony, respectively. The amount of support for the monophyletic groups was evaluated using bootstrapping and decay analysis. All three parsimony methods suggest thatHydrastis is the sister group to the remainder of theRanunculaceae, and that theAnemone-Clematis group, which shares several derived cpDNA rearrangements, is monophyletic. Only a few of the traditional groups in theRanunculaceae are supported by cpDNA restriction side data. Only Dollo parsimony provides support for the hypothesis thatThalictroideae andRanunculoideae are monophyletic.  相似文献   

12.
13.
Vuji?, A., Ståhls, G., A?anski, J., Bartsch, H., Bygebjerg, R. & Stefanovi?, A. (2013). Systematics of Pipizini and taxonomy of European Pipiza Fallén: molecular and morphological evidence (Diptera, Syrphidae). —Zoologica Scripta, 42, 288–305. In the present work the monophyly and molecular phylogenetic relationships of the genera of tribe Pipizini (Syrphidae) were investigated based on mitochondrial cytochrome c oxidase subunit I (COI) and nuclear 28S rDNA sequences, and the relationships among species of genus Pipiza Fallén, 1810 based on mtDNA COI sequences. Molecular phylogenetic analyses of Pipizini supported Pipiza as monophyletic and as sister group to all other Pipizini, and resolved other Pipizini genera as monophyletic lineages except for genus Heringia Rondani, 1856. To recognize the distinctness and maintain the monophyly the genus Heringia was redefined, generic rank was assigned to Neocnemodon Goffe, 1944 stat. n., and the genus Claussenia Vuji? & Ståhls gen. n., type‐species Claussenia hispanica (Strobl, 1909), was described. A revision of the European Pipiza species, including a discussion of taxonomic characters and a morphological redefinition of all included species, is presented. One new species, Pipiza laurusi Vuji? & Ståhls sp. n. was described. The taxa Pipiza carbonaria Meigen, 1822; Pipiza fasciata, Meigen 1822; Pipiza lugubris (Fabricius, 1775), Pipiza noctiluca (Linneaues, 1758), Pipiza notata Meigen, 1822 were redefined. Lectotypes are designated for 17 taxa, and neotypes were designated for seven taxa. Fourteen new synonymies were proposed. Male genitalia were illustrated for all the species, and a key of the 12 European species for males and females was provided. Geometric morphometrics of wing landmarks and extended sampling of mtDNA COI sequences was employed to delimitate taxa of the P. noctiluca and P. lugubris complexes. Despite subtle morphological differences, wing geometric morphometrics variables of wing size and shape showed highly significant differences among species within P. noctiluca and P. lugubris complexes, which were supported by the molecular data.  相似文献   

14.
Restriction sites for six enzymes were mapped for the plastid DNAs of 25 species of Eragrostideae, one species of Cynodonteae (Eustachys distichophylla), and one species of Pooideae. Of the 124 restriction sites observed, 67 were variably present and shared by two or more species. These data were analyzed by the parsimony method using equal and unequal weights and by bootstrap analysis. The cladistic analyses established that members of the Muhlenbergiinae, including the genera Muhlenbergia, Blepharoneuron, Bealia, Chaboissaea, Lycurus, and Pereilema, share seven restriction site mutations and are strongly supported by the data as a monophyletic subtribe. Surprisingly, Redfieldia flexuosa also clustered with the Muhlenbergiinae in the analysis, perhaps indicative of a past interspecific hybridization event. The restriction sites data also weakly support a relationship (six shared mutations) between Erioneuron, Munroa, and Dasyochloa.  相似文献   

15.
We present the first parsimony analyses of the Neotropical family Quiinaceae using nucleotide sequence data from the non-coding trnL intron and trnL-trnF intergenic spacer of the plastid genome, analysed separately as well as in combination with morphology. Both molecules and combined data recover Quiinaceae as a well-supported monophyletic group. Quiinaceae form a polytomy together with their potential sister groups, the monophyletic Ochnaceae s.str. and the monotypic Medusagynaceae from the Seychelles in the Indian Ocean. Froesia is resolved as sister to the rest of the family. Other members of the family, Lacunaria, Quiina, and Touroulia, are all recovered as monophyletic despite the inclusion of strikingly distinctive representatives (L. oppositifolia and Q. pteridophylla). Relationships among the last three genera, however, are yet uncertain. Optimising characters of breeding system onto the molecular phylogeny reveals that bisexual flowers (Froesia) are the ancestral state in Quiinaceae, whereas androdioecy (Quiina, Touroulia) and dioecy (Lacunaria) are derived breeding systems.  相似文献   

16.
The genus Peganum (Zygophyllaceae) consists of six species and one subspecies; three of which are distributed in China, P. harmala Linn, P. nigellastrum Bunge and P. multisectum (Maxim.) Bobr. A probable new or intermediate species, Peganum sp., has been suggested in the wild in northwest China. Traditional classification in genus Peganum has focused on hairs on the plant surface. In this study, seed coat characteristics of Peganum species were investigated using light and scanning electron microscopy, demonstrating clear differences in morphology between species. In addition, DNA sequence data from two sequences (chloroplast: trnL‐F, psbA‐trnH) were used to differentiate Peganum sp. and study polygenetic relationships. Diversity in DNA sequences among Peganum species was found, with inter‐specific sequence divergence ranging from 0.6% to 5.6% in psbA‐trnH, and 0.0% to 1.8% in trnL‐F. The variations within species were low: from 0.0% to 0.4% in psbA‐trnH and 0.0% to 0.4% in trnL‐F. Therefore, Peganum species can now be easily identified as separate entities based on variations in DNA sequences. Phylogenetic trees were constructed from the combined data set for the two gene fragments, and the results indicate that Peganum sp. is monophyletic and sister to P. harmala and P. nigellastrum, while P. multisectum is also monophyletic. DNA data further confirmed that P. multisectum is an independent species and that a new species, Peganum sp., exists within the genus Peganum growing wild in China.  相似文献   

17.
Parasitoid wasps of the subfamily Telenominae (Hymenoptera: Platygastroidea, Platygastridae) develop as immatures within the eggs of other insects (Lepidoptera, Hemiptera, Diptera and Neuroptera). Rearing records indicate that individual species are restricted to attack hosts within only one of these four main groups. We conducted a phylogenetic analysis of the group using sequence data from multiple genes (18S, 28S, COI, EF‐1α) to assess the pattern of shifts among host groups and to test the monophyly of and relationships among genera and species‐groups. Telenominae sensu Masner—that is, including only the nominate tribe Telenomini—is not monophyletic. Representatives of the Psix group of genera (Psix Kozlov & Lê and Paratelenomus Dodd) form a monophyletic group that is sister to Gryon Haliday (Scelioninae: Gryonini) and are excluded from the subfamily. The remaining telenomines are monophyletic. The genus Phanuromyia Dodd and the crassiclava group of Telenomus Haliday, both recorded as parasitoids of planthopper eggs (Hemiptera: Auchenorrhyncha, Fulgoroidea), form a monophyletic group that is sister to all other telenomines exclusive of the Psix group. Twenty‐nine species of the crassiclava and aradi groups of Telenomus are transferred to Phanuromyia as new combinations. Basal elements of the remaining species are all in groups reared from the eggs of true bugs (Heteroptera), primarily the stink bugs (Pentatomoidea) and seed bugs (Lygaeoidea). A shift to parasitism of lepidopteran eggs evolved within a single clade, occurring either one or two times. From this clade a small group of species, the Telenomus tabanivorus group, subsequently shifted to parasitism of egg masses of true flies (Tabanidae and Stratiomyiidae). Aholcus Kieffer and Platytelenomus Dodd both belong to the clade of lepidopteran parasitoids and are considered as junior synonyms of Telenomus (new synonymy for Aholcus). The monophyletic status of the two core genera, Telenomus and Trissolcus could not be resolved using these data. The phylogenetic pattern of host shifts suggests comparisons among taxa that may be fruitful in elucidating mechanisms by which parasitoids locate their hosts, the proximate factors that determine the host range, and the changes in these factors that influence host changes.  相似文献   

18.
A phylogenetic analysis was conducted on chloroplast DNA restriction site variation in 34 genera of grasses (familyPoaceae), including 28 genera from subfam.Pooideae (representing tribesAveneae, Brachypodieae, Bromeae, Meliceae, Poeae, Stipeae, andTriticeae) and representatives of three other subfamilies,Arundinoideae, Oryzoideae, andPanicoideae. Analyses of all 34 genera always distinguishedPooideae as monophyletic, regardless of which nonpooid genus functioned as outgroup; six separate analyses of all 28 pooid genera, each including one of the six nonpooid genera as outgroup, resolved five identically-constituted clades withinPooideae (in four cases), or (in the other two cases) yielded results that were less well resolved, but not in conflict with those of the other four analyses. The four best-resolved analyses distinguishedMeliceae as the earliest diverging lineage withinPooideae, andStipeae as the next. Above the point of divergence ofStipeae is a dichotomy between supertribeTriticodae (including tribesBrachypodieae, Bromeae, andTriticeae), and a clade comprisingPoeae andAveneae. The analysis supports some tribal realignments, specifically the assignment ofBriza, Chascolytrum, Microbriza, andTorreyochloa toAveneae, andArctagrostis, Catabrosa, andSesleria toPoeae. The analysis also suggests that the pooid spikelet (i.e., glumes shorter than lemmas and florets two or more) is plesiomorphic inPooideae, and that spikelets with one floret, and those with glumes longer than the first lemma, each have evolved more than once withinPooideae. Results also indicate that small chromosomes and chromosome numbers based on x=c. 10–12 are plesiomorphic withinPooideae. Alternative states of these characters (chromosomes large, chromosome numbers based on x=7) are interpreted as synapomorphies or parallelisms of clades that includeTriticodae, Aveneae, andPoeae. Lanceolate lodicule shape may be a synapomorphy of the clade that includesStipeae, Triticodae, Aveneae, andPoeae, and loss of lodicule vascularization a synapomorphy of the entirePooideae.  相似文献   

19.
As part of our ongoing phylogenetic study of genusHypericum, nuclear ribosomal DNA internal transcribed spacer sequences were analyzed for 36 species ofHypericum as ingroup and two species ofThornea as outgroup. This sampling included most of the previously described species from both Korea and Japan. The ITS phylogeny suggested that the surveyedHypericum species belong to a monophyletic section,Trigynobrathys, and a polyphyletic section,Hypericum. In addition, two monotypic sections,Sampsonia andRoscyna, were identified. Members of sectionHypericum occur in four different lineages worldwide, which imply at least four independent origins. The Korean and Japanese species of sectionHypericum form a monophyletic group, except forH. vulcanicum. Instead, that particular species belongs to a distinct monophyletic group withH. scoreri andH. formosa from other geographic areas, and is a sister to sectionTrigynobrathys. The Korean and Japanese species of sectionTrigynobrathys show a monophyletic origin.H. sampsonii is now recognized as a distinct section rather than being a member of sectionsHypericum orDrosocarpium, as had been indicated previously. Our results differ somewhat from those of recent morphological and cytological studies. The phylogenetic relationships among Korean and Japanese species have now been mostly resolved via ITS phylogeny.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号