首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrastructural study showed that the sequence of developmental events occurring during spermatozoid maturation in Coleochaete pulvinata Braun was similar in a number of respects to sperm development in the Charales and lower land plants. Elaboration of cytoskeletal components and associated flagellar basal bodies occurs early, and is followed by an extensive decrease in cytoplasmic volume and increases in densities of cytoplasm and nucleoplasm. Volume decrease and density increases appear to result from exocytosis involving dictyosome vesicles and perhaps endoplasmic reticulum. Elongation of flagella is accompanied by deposition of flagellar and body scales as in the Charales. During final stages of sperm maturation, the MLS undergoes changes in organization of the lamellar strip, which may also occur in archegoniates. In mature sperm of C. pulvinata the MLS and basal bodies are so occluded by dense material that determination of absolute orientation (configuration) is difficult. Thus, absolute orientation of the flagellar apparatus was determined by study of mid-stage spermatids, and found to be the same as previously described by Sluiman for zoospores of C. pulvinata. Finally, it is proposed that the large complex, striated fiber which connects basal bodies in C. pulvinata has been evolutionarily reduced in the Charales and Phaeoceros sp., ultimately disappearing from most embryophytic lines of descent.  相似文献   

2.
Study of charophycean green algae, including the Coleochaetales, may shed light on the evolutionary history of characters they share with their land plant relatives. We examined the tubulin cytoskeleton during mitosis, cytokinesis, and growth in members of the Coleochaetales with diverse morphologies to determine if phragmoplasts occurred throughout this order and to identify microtubular patterns associated with cell growth. Species representing three subgroups of Coleochaete and its sister genus Chaetosphaeridium were studied. Cytokinesis involving a phragmoplast was found in the four taxa examined. Differential interference contrast microscopy of living cells confirmed that polar cytokinesis like that described in the model flowering plant Arabidopsis occurred in all species when the forming cell plate traversed a vacuole. Calcofluor labeling of cell walls demonstrated directed growth from particular cell regions of all taxa. Electron microscopy confirmed directed growth in the unusual growth pattern of Chaetosphaeridium. All four species exhibited unordered microtubule patterns associated with diffuse growth in early cell expansion. In subsequent elongating cells, Coleochaete irregularis Pringsheim and Chaetosphaeridium globosum (Nordstedt) Klebahn exhibited tubulin cytoskeleton arrays corresponding to growth patterns associated with tip growth in plants, fungi, and other charophycean algae. Hoop‐shaped microtubules frequently associated with diffuse growth of elongating cells in plants were not observed in any of these species. Presence of phragmoplasts in the diverse species studied supports the hypothesis that cytokinesis involving a phragmoplast originated in a common ancestor of the Coleochaetales, and possibly in a common ancestor of Charales, Coleochaetales, Zygnematales, and plants.  相似文献   

3.
Summary Ultrastructural observations reveal that the spermatozoids of the hornwortsNotothylas andPhaeoceros contain two mitochondria and not one as described previously. Mitochondrial ontogeny and nuclear metamorphosis during spermiogenesis in these plants differ from all other archegoniates. The discovery that the posterior region of the coiled nucleus (when viewed from the anterior aspect) lies to the left of the anterior, in striking contrast to the dextral coiling of the nucleus of spermatozoids of other embryophytes, underlines the isolated nature of the hornworts among land plants. As the blepharoplast develops, the numerous ovoid mitochondria initially present in the nascent spermatid fuse to form a single elongated organelle which is positioned subjacent to the MLS and extends down between the nucleus and plastid. At the onset of nuclear metamorphosis, the solitary mitochondrion has separated into a larger anterior mitochondrion (AM) associated with the MLS and a much smaller posterior mitochondrion (PM) adjacent to the plastid. The PM retains its association with the plastid and both organelles migrate around the periphery of the cell as the spline MTs elongate. By contrast, in moss spermatids, where mitochondria undergo similar fusion and division, the AM is approximately the same size as the PM and the latter is never associated with the spline. As in other archegoniates, except mosses, spline elongation precedes nuclear metamorphosis in hornworts. Irregular strands of condensed chromatin compact basipetally to produce an elongated cylindrical nucleus which is narrower in its mid-region. During this process excess nucleoplasm moves rearward. It eventually overarches the inner surface of the plastid and entirely covers the PM.Abbreviations ABB anterior basal body - AM anterior mitochondrion - LS lamellar strip - MLS multilayered structure - MT microtubule - PBB posterior basal body - PM posterior mitochondrion  相似文献   

4.
This study provides data on cell division in Coleochaete orbicularis, an important taxon in evolutionary theories deriving land plants from green algae. Vegetative growth in discoid species of Coleochaete results from marginal cell division in two planes—radial and circumferential. Like many algae and certain of the simple land plants, Coleochaete is monoplastidic. Prior to mitosis, the single plastid migrates to a position where it will divide and be distributed into the daughter cells. Unlike monoplastidic cell division in hornworts, mosses, and lycopsids; microtubule nucleation is not intimately associated with the plastids. Instead, microtubule organization is associated with centriolar centrosomes throughout the cell cycle, as is common in algae. The cytokinetic apparatus lacks preprophase bands of microtubules, but includes typical phragmoplasts consisting of brushlike arrays of microtubules on either side of a dark zone. However, the origin and role of phragmoplasts is unusual. Phragmoplasts appear to develop among microtubules that emanate from the polar centrosomes rather than from nuclear envelopes and/or plastids. The function of phragmoplasts in Coleochaete is unclear, as the process of cytokinesis is not strictly centrifugal. Some infurrowing occurs in radial division, and cytokinesis appears to be entirely centripetal by infurrowing in circumferential division. The cortical arrays of microtubules differ from those typical of land plants in that they develop as a network in association with centrosomes after mitosis.  相似文献   

5.
Coaxial centrioles and a microtubule organizing center (MTOC) constitute each centrosome in spermatid mother cells of Marchantia polymorpha. During cell division the centrosome separates at its midregion and the two centrioles undergo a planar rotation that brings them to lie somewhat staggered and nearly parallel with their proximal ends embedded in osmiophilic granular material similar in appearance to that of the MTOC. Microtubules of the multilayered structure (MLS) arise in this material below the posterior centriole and parallel to its long axis. The rotation of centrioles and the initiation of S1 tubules below the posterior centriole determine polarity of the incipient blepharoplast. Lower MLS strata are formed under the anterior centriole by the compaction of granular, osmiophilic matrix. Formation and growth of S2 vertical lamellae occur at the left front edge of the MLS in association with MTOC-like matrix localized near the cell membrane. The MLS enlarges to about 0.4 μm wide by 0.6 μm long and is ovoid in outline except for a short distal projection underlying the posterior centriole. Subsequently the lamellae are transformed into homogenous, osmiophilic matrix that contributes directly to the expansion of all MLS strata including microtubules. The stratum of lamellae is interpreted as a planar MTOC subject to morphogenetic control. Each of the four strata grows proximally while the tapering distal projection lengthens beneath the posterior basal body. Dense matrix above the MLS, apparently elaborated by the S2 layer, is organized into cartwheel and triplet components of the basal bodies’ proximal extensions. Organization of triplet tubules proceeds from proximal to distal toward preexisting triplets. Osmiophilic matrix contributes to the formation of microtubule keels and osmiophilic crests and may serve as a cementing material that stabilizes the spatial relationships of blepharoplast components. After full expansion of the MLS’ lower strata, the S2 layer is reorganized into lamellae. Flagellar growth in Marchantia is postulated to involve a process whereby subunits or their precursors are elaborated by the MLS, translocated to the distal end of the flagellum and incorporated into the axonemal tubules. When MLS microtubules elongate to form a long, narrow band, the distal half of the S2 layer is again in the osmiophilic matrix state.  相似文献   

6.
采用透射电镜技术和免疫荧光标记技术对水蕨精子发生的超微结构以及中心体蛋白和微管蛋白在精子发生过程中的动态表达进行了观察。研究发现:(1)生毛体分化早期周围有放射状微管分布,这与线粒体向生毛体的聚集有关。(2)免疫荧光观察表明,中心体蛋白仅定位于生毛体、基体和鞭毛带上,自生毛体至基体阶段呈现明亮的荧光标记,在核塑形、鞭毛形成至精子成熟阶段,中心体蛋白荧光标记随着鞭毛的发生而逐渐减弱,至游动精子阶段中心体蛋白荧光标记信号几乎消失。(3)微管蛋白早期荧光标记与中心体蛋白标记形相同,在生毛体、鞭毛带、基体等运动细胞器上呈现明亮荧光标记,但微管蛋白随着鞭毛的发生其荧光标记越来越强。从二者的时空表达特征可以推断,中心体蛋白主要是运动细胞器的组织者,而非这些运动细胞器的结构成分,其功能是参与或负责中心粒、基体和鞭毛的发生。  相似文献   

7.
Electron microscopic examination of thin sections showed that the blepharoplast of a young spermatid of Phaeoceros consists of two side-by-side centrioles and an accumulation of osmiophilic, granular matrix at their proximal ends. Lying between these nearly parallel organelles is a dark-staining body that will later disappear at the onset of flagellogenesis. For a brief period the centrioles are oriented perpendicular to the nuclear surface so that the granular matrix at their proximal ends is confluent with the nuclear envelope; furthermore, the nucleoplasm immediately in front of the centrioles becomes densely staining. The multilayered structure (MLS) develops directly under the centrioles. It comprises a band of 12 microtubules (the S1 stratum) and three lower strata (S2–4) whose constitutent lamellae are oriented at an oblique angle to the S1 axis. While the S1 tubules grow rearward over the nucleus which forms a beak adjacent to the posterior end of the lamellar strata, the centrioles are transformed into basal bodies with the distal growth of the axonemes and the proximal growth of the central cartwheels and lowermost triplets. The proximal ends of the basal bodies and the S1 tubules overlying the lamellar strata are invested with osmiophilic matrix that extends down to the S2 layer and may temporarily occlude the lamellar plates. At the onset of nuclear elongation an anterior mitochondrion becomes situated close beneath the lamellar strata which extend laterally beyond the S1 tubules.  相似文献   

8.
Spermatozoid-forming cells of Coleochaete scutata were found in packets of four arranged in concentric internal bands. Spermatozoids, which occur singly in antheridial cells, are spherical to ovoid, approximately 7 μm long by about 3.9 μm wide. As compared to relatively unspecialized zoospores, male gametes undergo a number of specialized cellular changes during development. The spherical nuclei and cytoplasm of mature spermatozoids are increased in density. Posterior plastids are reduced and contain large starch grains. Many small mitochondria are clustered near the cell anterior. The plasmalemma is covered with a layer of flattened, diamond-shaped scales, while body scales of zoospores are pyramidal. The two flagella of both zoospores and spermatozoids are covered with flattened, diamond-shaped scales and hairs. The spermatozoids contain an anterior multilayered structure (MLS) structurally similar to, though smaller than, the MLS observed in zoospores. An asymmetrical cytoskeleton consisting of a band of 30–45 microtubules extends from the MLS down one side of the spermatozoid close to the plasmalemma. An immature MLS was observed in an early stage of spermatozoid development. The finding of an MLS and asymmetrical cytoskeleton in specialized male gametes as well as relatively unspecialized zoospores of Coleochaete strengthens assumptions of homology between MLSs of green algal reproductive cells and those found in flagellated spermatozoids of archegoniate plants. The structure of the spermatozoid of Coleochaete supports the hypothesis that this alga may be relatively close to the phylogenetic line which led directly to archegoniates.  相似文献   

9.
Complete nuclear-encoded (18S) small subunit rRNA gene sequences were determined for four charophycean green algae, Chlorokybus atmophyticus, Coleochaete orbicularis, Klebsormidium flaccidum, and Nitella sp. Chlorokybus atmophyticus and Coleochaete orbicularis have been previously suggested to represent the most basal and most derived taxa within the charophytes, respectively. However, parsimony analysis of our 18S rDNA sequences along with a selection of other complete green algal and land plant 18S rDNA sequences yields a gene tree topology in which Chlorokybus is the most basal taxon, followed by the branching of Coleochaete and Klebsormidium. Two “sister” clades then diverge, one including Nitella and the land plants, and the second, members of the Chlorophyceae and Pleurastrophyceae. Despite producing slightly diiferent gene tree topologies than those inferred from parsimony, distance analyses of the 18S rDNA sequences also do not indicate a strong affinity between the land plants and Coleochaete. Rather, Klebsormidium and Coleochaete are virtually equidistant from the land plant taxa. Other data are needed in order to assess the unexpected findings reported here, particularly the position of Coleochaete.  相似文献   

10.
The genus Coleochaete Bréb. is considered to be a key taxon in the evolution of green algae and embryophytes (land plants), but only a few of the approximately 15 species have been studied with molecular phylogenetic methods. We report here the sequences of the gene rbcL from six new cultures of Coleochaete and two of Chaetosphaeridium Klebahn. These sequences were combined with 32 additional sequences, and phylogenetic analyses were performed with maximum likelihood, distance optimality, and parsimony methods. Important subgroups within Coleochaete include two primary lineages, one marked by fully corticated zygotes and the other by naked or weakly corticated zygotes. In the first lineage there is a subclade with tightly joined filaments and distinctive (“T‐shaped”) cell division, an assemblage of strains that resembles the endophytic species Coleochaete nitellarum Jost, and a clade with loosely joined filaments and “Y‐shaped” cell divisions. Consistent with recent multigene phylogenies, these analyses support the monophyly of the Coleochaetales, place the Charales as the sister taxon to land plants, and indicate that Chaetosphaeridium is far more closely related to Coleochaete than to Mesostigma Lauterborn.  相似文献   

11.
《Journal of phycology》2001,37(Z3):31-31
Lewandowski, J. D. & Delwiche, C. F. Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA The evolutionary relationships of the algal genera Mesostigma and Chaetosphaeridium to other algae and land plants are currently controversial. A close evolutionary relationship between land plants and two orders of the charophycean algae, the Charales and Coleochaetales, is supported by morphological, ultrastructural, biochemical, genomic, and phylogenetic data. A number of phylogenetic analyses support a monophyletic Coleochaetales, with Coleochaete and Chaetosphaeridum as sister groups. Mesostigma was traditionally viewed as a member of the prasinophytes and has recently been considered as a lineage possibly basal to the charophycean algae, or sister to all green algae. By contrast, recent analyses of small subunit ribosomal RNA gene sequences have been interpreted as evidence of an alternative classification with Mesostigma forming a clade with Chaetosphaeridium to the exclusion of Coleochaete and other charophycean lineages. The shared presence of introns in two chloroplast tRNA genes (tRNAAla and tRNAIle) among charophytes Coleochaete and Nitella and the liverwort Marchantia supports a monophyletic group containing the Coleochaetales, the Charales, and land plants. Through isolation and sequence analysis of the tRNAAla and tRNAIle genes in Chaetosphaeridium, we have identified introns similar in sequence and position to those found in Coleochaete. These data and the published absence of these introns in Mesostigma lend new support to a monophyletic Coleochaetales including the genera Coleochaete and Chaetosphaeridium.  相似文献   

12.
RNA editing affects messenger RNAs and transfer RNAs in plant mitochondria by site-specific exchange of cytidine and uridine bases in both seed and nonseed plants. Distribution of the phenomenon among bryophytes has been unclear since RNA editing has been detected in some but not all liverworts and mosses. A more detailed understanding of RNA editing in plants required extended data sets for taxa and sequences investigated. Toward this aim an internal region of the mitochondrial nad5 gene (1104 nt) was analyzed in a large collection of bryophytes and green algae (Charales). The genomic nad5 sequences predict editing in 30 mosses, 2 hornworts, and 7 simple thalloid and leafy liverworts (Jungermanniidae). No editing is, however, required in seven species of the complex thalloid liverworts (Marchantiidae) and the algae. RNA editing among the Jungermanniidae, on the other hand, reaches frequencies of up to 6% of codons being modified. Predictability of RNA editing from the genomic sequences was confirmed by cDNA analysis in the mosses Schistostega pennata and Rhodobryum roseum, the hornworts Anthoceros husnotii and A. punctatus, and the liverworts Metzgeria conjugata and Moerckia flotoviana. All C-to-U nucleotide exchanges predicted to reestablish conserved codons were confirmed. Editing in the hornworts includes the removal of genomic stop codons by frequent reverse U-to-C edits. Expectedly, no RNA editing events were identified by cDNA analysis in the marchantiid liverworts Ricciocarpos natans, Corsinia coriandra, and Lunularia cruciata. The findings are discussed in relation to models on the phylogeny of land plants. Received: 2 April 1998 / Accepted: 4 August 1998  相似文献   

13.
Thalli of four species of the charophycean green alga Coleochaete Bréb.; C. irregularis, C. soluta, C. orbicularis, and C. scutata, were examined using light and electron microscopy. The parenchymatous nature of the plant bodies of C. orbicularis and C. scutata became apparent when the degree of cellular association in these species was compared with that of parenchymatous land plant tissues, the pseudoparenchymatous thalli of C. soluta, and the branched filaments of C. irregularis. Coleochaete soluta was shown to be morphologically and phylogenetically transitional between the more primitive branched filamentous species (C. irregularis) and the more advanced discoid species (C. orbicularis and C. scutata). The branching patterns observed in C. soluta suggested a possible pathway for the evolutionary development of land plant parenchyma from branched, filamentous charophycean green algae.  相似文献   

14.
The multilayered structure (MLS), best-known from the flagellar apparatus of charophycean green algae and land plant motile cells, is reported for the first time in members of the Dinophyceae. The MLSs in two dinoflagellates, Katodinium campylops (Harris) Fott and Woloszynskia pascheri (Suchlandt) von Stosch, are similar to other MLSs in possessing the microtubular spline and lamellar strip. Also, as in the majority of MLS-containing organisms, 1) the MLS of each dinoflagellate is closely associated with basal bodies; 2) the spline microtubules possess “keel-like” extensions and 3) extend beyond the MLS, forming a microtubular rootlet that runs beneath the cell surface in a posterior direction; and 4) a mitochondrion is associated with the MLS (K. campylops only) The size, location, and general construction of the MLSs of K. campylops and W. pascheri suggest that they may be homologous to previously described MLSs.  相似文献   

15.
The genus Coleochaete Bréb. is a relatively small group of freshwater microscopic green algae with about 15 recognized species. Although Coleochaete has long been considered to be a close relative of embryophytes, a comprehensive study of the genus has not been published since Pringsheim's 1860 monograph. As part of a systematic study of Coleochaete, we investigated four accessions of the genus that are morphologically similar to the endophytic species C. nitellarum Jost. Each of the four cultures was determined to be capable of endophytic growth in Nitella C. A. Agardh, a member of the closely related order Charales. Maximum likelihood and maximum parsimony analyses were performed on nucleotide data from the chloroplast genes atpB and rbcL that were sequenced from 16 members of the Coleochaetales and from other members of the Charophyceae, embryophytes, and outgroup taxa. These analyses indicate that the Coleochaetales are monophyletic and that the endophytic accessions are members of the scutata group of species. In addition, cell size and nucleotide data suggest that at least three different endophytic species may be represented. Herbivory, nutritional benefits, and substrate competition are three hypotheses that could explain the evolution and maintenance of the endophytic habit in Coleochaete. These data also imply that diversity in the genus may be markedly underestimated.  相似文献   

16.
As in other hepatics, the young spermatid of Blasia pusilla contains a well-developed blepharoplast comprising a four-layered multilayered structure (MLS) and two overlying dimorphic basal bodies. The asymmetrical spline (S1 or upper stratum of the MLS) numbers 20 or 21 microtubules (MTs) at its anterior tip and reduces to eight at the posterior limit of the lamellar strip (LS). Behind this the shank of the spline is five or six tubules in width over most of its length, approximately one revolution of the circumference of the gamete. The three-microtubule spline aperture underlies the anterior basal body and like those of most hepatics, it is closed at its anterior end. The asymmetrical LS (approx. 2.0 μm in length) is characterized by a right-hand posterior notch which lies below the spline aperture at the region of the cartwheel configuration of the anterior basal body (ABB). The staggered dimorphic basal bodies overlap for approximately one third of their lengths. Both lie parallel to the long axis of the spline. As in other hepatics, the ABB (1.2 μm in length) is subapical and comprises an anterior hub extension with progressive rearward additions of lateral, dorsal and ventral triplets. Over most of its length (2.1 μm) the longer posterior basal body (PBB) consists of a distinct central hub and three ventral triplets. Transition zones of both basal bodies contain stellate configurations into which the two central axonemal MTs frequently extend. The blepharoplast of Blasia shows several features in common with leafy, simple thalloid and complex thalloid liverworts. Compared with the few Metzgeriales observed thus far, the LS is less elongate and the basal bodies less staggered. Dimensions of basal body components and spline dimensions, however, are comparable to those of most leafy and thalloid hepatics. Striking similarities with the complex thalloid liverworts include a posterior notch in the LS and a spline aperture three MTs wide.  相似文献   

17.
An ultrastructural study of motile cell development in the green alga Trentepohlia aurea has revealed the presence of multilayered structures (MLS) associated With flagellar bases. These MLS are ultrastructurally similar to MLS described in pteridophyte and bryophyte sperm and in the zoospore of the green algae Coleochaete and Klebsormidium. However, 2 MLS are found in each biflagellate motile cell of T. aurea, while other previously described MLS occur singly in biflagellate motile cells. In addition, the MLS of T. aurea consist of fewer microtubules and are structurally simpler than most other MLS described. The MLS of Trentepohlia may represent a stage in the evolutionary development of the MLS of land plants. The presence or absence of the MLS in motile cells of green algae may be a useful character in phylogenetic studies.  相似文献   

18.
Summary

Within the unpaired testis, spermatogonia, spermatocytes, spermatids and spermatozoa were found. In early spermatids, mitochondria take perinuclear positions and centrioles a diplosomal arrangement. Rootlet-like striated differentiations occur in slightly more advanced stages. Then a conical cytoplasmic projection develops, supported by a single row of closely spaced microtubules. At this stage of maturation, giant Golgi stacks occur within the cytoplasm of the cytophore which is rich in different elongate structures and oval dense bodies. With progressive differentiation, the nucleus elongates and its chromatin condenses into twisted lamellae. Two centrioles, which change their diplosomal configuration and come to lie in line to each other, and rootlet-like structures remain near the tip of the median cytoplasmic outgrowth. Mitochondria start to fuse into a single long cylindrical mitochondrial rod extending beside the lengthening nucleus. Bone-shaped rods, smaller dense sticks and dense bodies migrate into the outgrowth. Spermatozoa are totally ensheathed by cortical microtubules. These tubules show different arrangements along the cell body. The thread-like nucleus extends along the cell, the first quarter excepted, whereas the single mitochondrion extends over two thirds of the cell. Two strings with linearly arranged oval dense bodies run in the median to post-median cell segment; four rows of bone-shaped rods and two rows of smaller electron-dense sticks extend from the frontal end up to the beginning of the last third of the cell. All the different longitudinal cords run in the gaps between 4 sets of microtubules. Ciliary axonemes or lateral bristles were not observed. The present findings substantiate the hypotheses, that spermatozoa in the Macrostomida are aciliate and that Myozona takes an isolated position within the Macrostomidae. The occurrence of two centrioles, which come to lie in line to each other and which stay in the tip of the cytoplasmic outgrowth in spermatids, may indicate that biciliate spermatozoa are characteristic for the Rhabditophora (= Macrostomorpha+Trepaxonemata) and not an evolutionary novelty of the Trepaxonemata.  相似文献   

19.
Sperm formation was studied in the fern, Marsilea, and the cycad, Zamia, with particular emphasis on the centrioles. In Marsilea, the mature sperm possesses over 100 flagella, the basal bodies of which have the typical cylindrical structure of centrioles. Earlier observations by light microscopy suggested that these centrioles arise by fragmentation of a body known as the blepharoplast. In the youngest spermatids the blepharoplast is a hollow sphere approximately 0.8 µ in diameter. Its wall consists of closely packed immature centrioles, or procentrioles. The procentrioles are short cylinders which progressively lengthen during differentiation of the spermatid. At the same time they migrate to the surface of the cell, where each of them puts out a flagellum. A blepharoplast is found at each pole of the spindle during the last antheridial mitosis, and two blepharoplasts are found in the cytoplasm before this mitosis. Blepharoplasts are also found in the preceding cell generation, but their ultimate origin is obscure. Before the last mitosis the blepharoplasts are solid, consisting of a cluster of radially arranged tubules which bear some structural similarity to centrioles. In Zamia, similar stages are found during sperm formation, although here the number of flagella on each sperm is close to 20,000 and the blepharoplast measures about 10 µ in diameter. These observations are discussed in relation to theories of centriole replication.  相似文献   

20.
C. Yang  G. Li  Z. -H. Zhai 《Protoplasma》2000,213(1-2):108-117
Summary The development of the locomotory cytoskeletal system of sperm is carefully coordinated with the development of the sperm inGinkgo biloba. Here we report further ultrastructural characterization of the locomotory cytoskeletal system in the developing spermatid and mature spermatozoid, particularly with respect to the initiation and early development of the flagellar apparatus. A multilayered structure (MLS) assembles from an electron-dense matrix that self-organizes after blepharoplast breakup and then further elongates. At the tail of the assembling MLS, the spline microtubules connect to an anterior beak of the nuclear envelope. Nuclear-pore complexes are found on the nuclear envelope close to this beak. The mitochondria which elongate and line up one behind the other are tightly associated with the MLS. The MLS ofG. biloba is composed of an upper layer of parallel spline microtubules and a lower layer consisting of a fibrous lamellar strip composed of paralled fibers about 9 nm in diameter. Higher-magnification images show that the fully assembled fibers of the lamellar strip consist of subunits which suggest that protofilaments are involved in the assembly processes. A unique cytoskeletal system of the spermatozoid inG. biloba is given by the anterior bundle of microtubules. This bundle, in which microtubules are arranged parallel to each other, forms between the plasmalemma and the MLS and is about 214–392 nm in cross section. These microtubules expand spirally along the MLS band. Other details of cellular fine structure of the mature spermatozoid are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号