首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absorption or screening of ultraviolet-B (UV-B) radiation by the epidermis may be an important protective method by which plants avoid damage upon exposure to potentially harmful UV-B radiation. In the present study we examined the relationships among epidermal screening effectiveness, concentration of UV-absorbing compounds, epidermal anatomy and growth responses in seedlings of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.). Seedlings of each species were grown in a greenhouse at the University of Maryland under either no UV-B radiation or daily supplemental UV-B radiation levels of 4, 8 or 11 kJ m?2 of biologically effective UV-B (UV-BBE) radiation. Loblolly pine seedlings were subsequently grown in the field under either ambient or supplemental levels of UV-B radiation. At the conclusion of the growing season, measurements of epidermal UV-B screening effectiveness were made with a fiber-optic microprobe. In loblolly pine, less than 0.5% of incident UV-B radiation was transmitted through the epidermis of fascicle needles and about 1% was transmitted in primary needles. In contrast, epidermal transmittance in sweetgum ranged from about 20% in leaves not preconditioned to UV-B exposure, to about 10% in leaves grown under UV-B radiation. The concentration of UV-absorbing compounds was unaffected by UV-B exposure, but generally increased with leaf age. Increases in epidermal thickness were observed in response to UV-B treatment in loblolly pine, and this accounted for over half of the variability in UV-B screening effectiveness. In spite of the low levels of UV-B penetration into the mesophyll, delays in leaf development (both species) and final needle size (loblolly pine) were observed. Seedling biomass was reduced by supplemental UV-B radiation in loblolly pine. We hypothesize that the UV-induced growth reductions were manifested by changes in either epidermal anatomy or epidermal secondary chemistry that might negatively impact cell elongation.  相似文献   

2.
The effects of ultraviolet-B radiation on loblolly pine   总被引:11,自引:0,他引:11  
Summary Depletion of stratospheric ozone and the resulting increase in ultraviolet-B (UV-B) radiation may negatively impact the productivity of terrestrial ecosystems. This concern has led to a number of studies that report the influence of supplementing UV-B radiation on plant growth and development. However, only two of these field studies have included tree species and both were singleseason experiments. In this study, loblolly pine (Pinus taeda L.) from seven seed sources was grown under natural and supplemental levels of UV-B radiation. Irradiation treatments were continued for three seasons on plants from four of the seven groups and for 1 year only for three groups. The supplemental irradiances simulated those that would be anticipated with stratospheric ozone reductions of 16% and 25% over Beltsville, Md. The effects of UV-B radiation during the 1st year on plant growth varied among the seed sources. The growth of plants from two of the seven seed sources tested showed significant reductions following a single irradiation season and plants from one group tended to be larger under increased UV-B radiation. However, after 3 years of supplemental irradiation, plant biomass was reduced in all four groups by 12–20% at the highest simulated ozone depletion. These results suggest that the effects of UV-B radiation may accumulate in trees and that increased UV-B radiation could significantly reduce the growth of loblolly pine over its lifetime. However, they also point to a need for multiple season research in any analysis of potential consequences of global change on the long-term growth of trees.  相似文献   

3.
The effect of UV-B on the photosynthetic apparatus of coniferous trees: Picea abies (L.) Karst., Picea pungens (Engelm.), Pinus sylvestris (L.), Pinus cembra (L.) and Abies alba (Mill.) was investigated. Three and four-year-old plantlets coming from different latitudes, longitudes and altitudes were used. The experiment was carried out in greenhouse. Two doses of ultraviolet-B irradiation were applied: control=0, low dose=11.32 and high dose=22.64 kJ·m−2·d−1 UV-BBE (biologically effective irradiance of UV-B). Measurements of chlorophyll fluorescence, gas exchange, chlorophyll and flavonoids content were carried out. Response of forest trees to an increased UV-B radiation depends on species, location of place of pantalets collecting and UV-B dose. Pinus cembra, Picea abies and Pinus sylvestris from high altitude (1000 m a.s.l.) were less sensitive to UV-B than these from plain location. The altitude determined adaptation of forest coniferous trees to an enhanced UV-B radiation much more than the latitudinal gradient. Permanent discoloration was observed only on the young needles of the fir plantlets that were grown in light limiting conditions. Photosynthetic parameters were affected by the UV-B radiation. Both maximal and the steady state fluorescence of chlorophyll were reduced as a consequence of elevated UV-B in case of some species. The chlorophyll content was enhanced, increased or was not affected according to species and to locations. The flavonoids content in the needles increased with chlorophyll content at both UV-B treatments. An opposite trend was found in the control. The increased content of screening pigments in the needles of all the tested coniferous trees was detected. Picea abies and Picea pungens photosynthesis response curves to the light and to the intercellular CO2 concentration did not change significantly under increased UV-B because of higher concentration in screening pigments in leaves. The increased concentration of flavonoids in forest litter may lead to changes in the biogeochemical cycle in the forest ecosystem.  相似文献   

4.
The effects of enhanced UV‐B radiation on the needle anatomy of loblolly pine (Pinus taeda L.) and Scots pine (Pinus sylvestris L.) were studied in the field under supplemental UV‐B radiation supplied by a modulated irradiation system. The supplemental UV‐B levels were designed to simulate either a 16 or 25% loss of stratospheric ozone over College Park, Maryland. Enhanced UV‐B radiation caused different responses in these two species. The needles of loblolly pine had larger amounts of tannin in the lumen of epidermal cells and more wall‐bound phenolics in the outer epidermal walls of UV‐B‐treated needles, whereas the most pronounced effect on Scots pine needles was increased cutinization. In both species, the outer epidermal cell walls thickened and the needle cross‐sectional and mesophyll areas decreased (statistically significantly only in Scots pine). This suggests that more carbon may have been allocated to the protection mechanisms at the expense of photosynthetic area. The difference in response between these species suggests that the response to UV‐B radiation is not mediated by a single mechanism and that no generalization with regard to the effects of UV‐B on conifers can be made.  相似文献   

5.
The effects of enhanced UV-B (290-320 nm) radiation on two native Mediterranean pines (Pinus pinea L., Pinus halepensis Mill.) were recorded during a one-year field study. Plants received ambient or ambient plus supplemental UV-B radiation (simulating a 15% stratospheric ozone depletion over Patras. Greece, 38.3°N. 29.1°E) and only natural precipitation, i.e. they were simultaneously exposed to other natural stresses. particularly water stress during summer. Supplemental UV-B irradiation started in early February, 1993 and up to late June, no effects were observed on growth and photochemical efficiency of photosystem II, as measured by chlorophy II fluorescence induction. Water stress during the summer was manifested in the control plants as a decline in the ratio of variable to maximum fluorescence (Fv/Fm), the apparent photon yield for oxygen evolution (φl) and the photosynthetic capacity at 5% CO2 (Pm). In addition, a partial needle loss was evident. Under supplemental UV-B radiation, however, the decreases in Fv/Fm, φi, and Pm. as well as needle losses were significantly less. Soon after the first heavy autumn rains. photosynthetic parameters in both control and UV-B treated plants recovered to similar values. but the transient summer superiority of UV-B irradiated plants resulted in a significant increase in their dry weight measured at plant harvest. during late January. 1994. Plant height. UV-B absorbing compounds, photosynthetic pigments and relative water content measured at late spring. late summer and at plant harvest, were not significantly affected by supplemental UV-B radiation. The results indicate that enhanced UV-B radiation may be beneficial for Mediterranean pines through a partial alleviation of the adverse effects of summer drought.  相似文献   

6.
Clones 02 and 4430 of Tradescantia were tested in field, greenhouse and controlled environment chambers as monitors for the potentially hazardous UV-B irradiation increase that could result from stratospheric ozone decrease. In addition to about 16 hr of solar emissions at about 2100 micro-einsteins·m−2·s−1 (400–700 nm) and 15 hr at about 1800 micro-einsteins·m−2·s−1 in the field and greenhouse, respectively, plants were given 7 hr of supplemental UV-B irradiation per day for 27 days. After the first 7 days of UV-B irradiation exposure, cumulative data were recorded for 20 days. Cuttings of Tradescantia plants in controlled-environment, exposed to 16 hr of simulated solar emission of about 800 micro-einsteins·m−2·s−1 (400–700 nm), were also exposed to 10 hr of supplemental UV-B irradiation per day for 1 or 2 days. All plants were checked for somatic aberrations (color changes in the flower petals and stamen hairs), number of hairs per stamen, and cells per hair. Pollen germination and pollen tube growth were noted after a 90-min UV-B irradiation period.Somatic aberrations occurred infrequently in the petals and were judged unreliable criteria for use in monitoring enhanced UV-B irradiation environments. The number of aberrant events within stamen hairs, however, was significantly increased by the UV-B irradiation treatments. while pollen germination and pollen tube growth were significantly reduced. These data indicate that color changes in stamen hairs and pollen viability are useful criteria for monitoring UV-B irradiation changes.  相似文献   

7.
8.
Levizou  E.  Manetas  Y. 《Plant Ecology》2001,154(1-2):179-186
Seedlings of two Mediterranean plants, the slow-growing, evergreen sclerophyll Ceratonia siliqua L. and the fast growing drought semi-deciduous Phlomis fruticosa L., were grown for one year in the field at ambient or ambient plus supplemental UV-B radiation (equivalent to a 15% ozone depletion) and two levels of applied fertilizers (NPK). The effects on growth, morphological, anatomical and physiological parameters were measured at final plant harvest. Additional nutrients increased leaf nitrogen, improved growth and reduced the root/shoot ratio in both plants, yet these effects were more pronounced in the fast growing P. fruticosa. A nutrient-induced increase in chlorophyll content was also observed in this plant. The growth responses to UV-B radiation were different for the two species. Growth in C. siliqua was not affected by UV-B radiation at both nutrient levels and the same was true for P. fruticosa at low nutrients. However, at the high nutrient level, supplemental UV-B radiation improved growth in P. fruticosa, indicating a strong interaction between the treatments. Photosystem II (PSII) photochemical efficiency, methanol-extractable UV-B absorbing capacity, total phenolics and tannins were not affected by either treatment in both plants. It is concluded that nutrient levels can strongly modify the UV-B radiation effects on growth of P. fruticosa. We presume that this may be correlated to the fast growing habit of this species.  相似文献   

9.
Several studies have found the photosynthetic integration in clonal plants to response to resource heterogeneity, while little is known how it responses to heterogeneity of UV-B radiation. In this study, the effects of heterogeneous UV-B radiation (280–315 nm) on gas exchange and chlorophyll fluorescence of a clonal plant Trifolium repens were evaluated. Pairs of connected and severed ramets of the stoloniferous herb T. repens were grown under the homogeneity (both of ramets received only natural background radiation, ca. 0.6 kJ m−2 d−1) and heterogeneity of UV-B radiation (one of the ramet received only natural background radiation and the other was exposed to supplemental UV-B radiation, 2.54 kJ m−2 d−1) for seven days. Stomatal conductance (g s), intercellular CO2 concentration (C i) and transpiration rate (E) showed no significant differences in connected and severed ramets under homogenous and heterogeneous UV-B radiation, however, net photosynthetic rate (P N) and maximum photosynthetic rate (P max) of ramets suffered from supplemental increased UV-B radiation and that of its connected sister ramet decreased significantly. Moreover, additive UV-B radiation resulted in a notable decrease of the minimal fluorescence of dark-adapted state (Fo), the electron transport rate (ETR) and photochemical quenching coefficient (qP) and an increase of nonphotochemical quenching (NPQ) under supplemental UV-B radiation, while physiological connection reverse the results. In all, UV-B stressed ramets could benefit from unstressed ramets by physiological integration in photosynthetic efficiency, and clonal plants are able to optimize the efficiency to maintain their presence in less favourable sites.  相似文献   

10.
Cell and chloroplast structural changes in palisade cells from mature leaves of Brassica napus L. cv. Paroll were quantified following exposure of plants to enhanced ultraviolet-B (280–320 nm; 13 kJ m?2 day?1 biologically effective UV-B) radiation at two different levels of photosynthetically active radiation (PAR, 400–700 nm; 200 and 700 μmol m?2 s?1). Short-term changes in leaf ultrastructure after 30 min and longer term changes after one day and one week were analyzed using stereological techniques incorporating light and electron microscopy and mathematical reconstruction of a mean cell for each sample. Ultraviolet-B together with either relatively high or low PAR resulted in cell structural changes resembling those typical of plants under shade conditions, with the most marked response occurring after 30 min of UV-B radiation. The ultrastructural changes at the cellular level were generally similar in both the relatively high and low PAR plus UV-B radiation treatments. The surface areas of all three thylakoid types, the appressed, non-appressed and margin thylakoids increased in the palisade tissue under supplemental UV-B irradiation. Although the appressed and non-appressed thylakoids increased in surface area, they did not increase equally, leaving open the possibility that the two thylakoid types have independent regulatory systems or different sensitivity to UV-B radiation. Increased thylakoid packing (mm2 thylakoid membrane per mm2 leaf surface) in UV-B-exposed plants may increase the statistical probability of photon interception. An increased level of UV-absorbing pigments after one week of supplemental UV-B radiation did not prevent or significantly ameliorate UV effects. Our data supported the assumption that UV-B radiation may have a regulatory role besides damaging effects and that an increased UV-B environment will likely increase this regulatory influence of UV-B radiation.  相似文献   

11.
 Cultivation of Scots pine (Pinus sylvestris L.) seedlings under simulated global radiation including the UV-B band (280 – 320 nm; 220 mW m–2 UV-BBE) led to increased formation of the diacylated flavonol glucosides 3″,6″-di-p-coumaroyl-astragalin and 3″,6″-di-p-coumaroyl-isoquercitrin in primary and cotyledonary needles, respectively. 3″,6″-Di-p-coumaroyl-astragalin was also the main constitutive diacylated flavonol glucoside in both needle types. This compound predominantly accumulated in primary needles upon UV-B irradiation, and reached concentrations of 2.4 μmol g–1 fresh weight (fw). Its concentration was only weakly affected in cotyledonary needles. 3″,6″-Di-p-coumaroyl-isoquercitrin was mainly induced in cotyledonary needles with maximum concentrations of 0.8 to 0.9 μmol g–1 fw, but was virtually unaffected in primary needles under the same irradiation conditions. Pulse labelling with L-(U-14C)phenylalanine revealed that these metabolites were formed de novo. Phenylalanine ammonia-lyase (EC 4.3.1.5) and chalcone synthase (EC 2.3.1.74) were only slightly induced by the UV-B treatment. The results described here represent the first report on UV-B-induced flavonoid biosynthesis in a conifer species. Received: 5 December 1995 / Accepted: 20 March 1996  相似文献   

12.
The effects of ultraviolet-B (UV-B between 290 and 320 nm) on photosynthesis and growth characteristics were investigated in field grown cassava (Manihot esculentum Crantz). Plants were grown at ambient and ambient plus a 5.5kJ m?2 d?1 supplementation of UV-B radiation for 95 d. The supplemental UV-B fluence used in this experiment simulated a 15% depletion in stratospheric ozone at the equator (0°N). Carbon dioxide exchange, oxygen evolution, and the ratio of variable to maximum fluorescence (Fv/Fm) were determined for fully expanded leaves after 64–76 d of UV-B exposure. AH plants were harvested after 95 d of UV-B exposure, assayed for chlorophyll and UV-B absorbing compounds, and separated into leaves, petioles, stems and roots. Exposure to UV-B radiation had no effect on in situ rates of photosynthesis or dark respiration. No difference in the concentration of UV-B absorbing compounds was observed between treatments. A 2-d daytime diurnal comparison of Fv to Fm ratios indicated a significant decline in Fv/Fm ratios and a subsequent increase in photoinhibition under enhanced UV-B radiation if temperature or PPF exceeded 35°C or 1800μmol m?2 s?1, respectively. However, UV-B effects on fluorescence kinetics appeared to be temporal since maximal photosynthetic rates as determined by oxygen evolution at saturated CO2 and PPF remained unchanged. Although total biomass was unaltered with UV-B exposure, alterations in the growth characteristics of cassava grown with supplemental UV-B radiation are consistent with auxin destruction and reduced apical dominance. Changes in growth included an alteration of biomass partitioning with a significant increase in shoot/root ratio noted for plants receiving supplemental UV-B radiation. The increase in shoot/root ratio was due primarily to a significant decrease in root weight (–32%) with UV-B exposure. Because root production determines the harvest-able portion of cassava, UV-B radiation may still influence the yield of an important tropical agronomic species, even though photosynthesis and total dry biomass may not be directly affected.  相似文献   

13.
Effects of increased UV-B radiation on activities of primary photosynthetic carboxylating enzymes and on contents of soluble proteins were studied in soybean (Glycine max [L.] Merr. cv. Bragg), pea (Pisum sativum L. cv. Little Marvel), tomato (Lycopersicon esculentum L. cv. Rutgers), and sweet corn (Zea mays L. cv. Golden Cross Bantam). The purpose was to evaluate the responses of agronomic crops to increases in solar UV-B radiation. Plants were grown and exposed under greenhouse conditions for 6 h daily to supplemental UV-B radiation which was provided by Westinghouse FS-40 fluorescent sun lamps filtered with 0.127-mm film of cellulose acetate (UV-B treated) or Mylar S (Mylar control). Three UV-B levels were tested: 1.09 (treatment T1), 1.36 (treatment T2), and 1.83 (treatment T3) UV-Bseu where 1 UV-Bseu equals 16.0 mW-m2 weighted by EXP-[(λ-265)/21]2. These UV-B levels corresponded to 6%,21%, and 36%, respectively, of decrease in stratospheric ozone content, based on the interpolations of UV-B irradiances at a solar elevation angle of 60°. Leaves of plants of soybean, pea, and tomato exposed to UV-B radiation were generally low in RuBP carboxylase activity. On a fresh weight basis, all three UV-B radiation levels significantly reduced the enzyme activity in soybean and pea, whereas tomato plants showed significant reduction in RuBP carboxylase activity only when exposed to 1.83 and 1.36 UV-Bseu. An apparent decrease in soluble proteins was observed in leaf extracts of soybean and pea plants exposed to 1.36 and 1.83 UV-Bseu whereas higher amounts of proteins were detected in leaves of tomato plants grown under UV-B radiation. Leaves of sweet corn plants grown under Mylar control were low in PEP carboxylase activity and proteins as compared with those of control plants receiving no supplemental UV and UV-B treatment. Activities of PEP carboxylase in crode extracts from leaves of sweet corn were significantly suppressed under 1.36 and 1.83 UV-Bseu as compared with the no UV control. Some stimulation of PEP carboxylase activity was observed in corn plants exposed to 1.09 UV-Bseu.  相似文献   

14.
Leaf anatomical characteristics are important in determining the degree of injury sustained when plants are exposed to natural and enhanced levels of ultraviolet-B (UV-B) radiation (280–320 nm). The degree to which leaf anatomy can adapt to the increasing levels of UV-B radiation reaching the earth's surface is poorly understood in most tree species. We examined four tree species, representing a wide range of leaf anatomical characteristics, to determine responses of leaf area, specific leaf weight, and leaf tissue parameters after exposure to ambient and enhanced levels of UV-B radiation. Seedlings were grown in a greenhouse with photosynthetically active radiation of 39 mol m?2 day?1 and under one of three daily irradiances of biologically effective UV-B radiation (UV-BBE) supplied for 10 h per day: (1) approximate ambient level received at Pullman, Washington on June 21 (1 x ); two times ambient (2 x ), or three times ambient (3 x ). We hypothesized the response of each species to UV-B radiation would be related to inherent anatomical differences. We found that the conifers responded anatomically to nearly an equal degree as the broad-leaved trees, but that different tissues were involved. Populus trichocarpa, an indeterminate broadleaf species, showed significantly thicker palisade parenchyma in recently mature leaves at the 3 x level and in older leaves under the 2 x level. In addition, individual leaf area was generally greater with increased UV-B irradiance. Quercus rubra, a semi-determinate broadleaf species, exhibited significantly thicker palisade parenchyma at the 2 x and 3 x levels as compared to controls. Psuedotsuga menziesii, an evergreen coniferous species with bifacially flattened needles, and Pinus ponderosa, an evergreen coniferous species with a complete hypodermis, showed no significant change in leaf area or specific leaf weight under enhanced UV-B radiation. Epidermal thickness was unchanged in P. menziesii. However, P. ponderosa increased the thickness and number of hypodermal layers produced, presumably decreasing penetration of UV-B radiation into the leaf. We concluded that differences in inherent leaf anatomy of the four species examined are important in the responses to enhanced levels of UV-B radiation.  相似文献   

15.
The combined effects of UV-B irradiation and foliar treatment with selenium on two buckwheat species, common (Fagopyrum esculentum Moench) and tartary [Fagopyrum tataricum (L.) Gaertn.] buckwheat, that underwent different intensity of breeding, were examined. Plants grown outdoors under three levels of UV-B radiation were studied for 9 weeks, from sowing to ripening. At week 7 they were sprayed with solution containing 1 g(Se) m−3 that presumably mitigates UV-B stress. Morphological, physiological, and biochemical parameters of the plants were monitored. Elevated UV-B radiation, corresponding to a 17 % reduction of the ozone layer, induced synthesis of UV absorbing compounds. In both buckwheat species it also caused a reduction in amounts of chlorophyll a during the time of intensive growth, an effect, which was increased in tartary buckwheat in the presence of selenium. The respiratory potential, measured as terminal electron transport system activity, was lower in plants subjected to enhanced UV-B radiation during the time of intensive growth. The effective quantum yield of photosystem 2 was also reduced due to UV-B radiation in both buckwheat species and was mitigated by the addition of Se. Se treatment also mitigated the stunting effect of UV-B radiation and the lowering of biomass in common buckwheat.  相似文献   

16.
The effect of supplementary UV-B radiation on Korean pine (Pinus koraiensis Sieb. et Zucc) was investigated. Compared with the control, the T1, T2, and T3 UV-B treatments increased by 1.40, 2.81, and 4.22 kJ m?2 d?1, respectively. Gas-exchange parameters, photosynthetic pigment concentrations, contents of secondary metabolites, epicuticular wax, free radical, malondialdehyde (MDA), and the activities of antioxidant enzymes were determined after 40 d of exposure. The concentrations of chlorophyll (Chl) a, Chl b, total Chl, carotenoid (Car), and the ratio Chl a/b in the pine needles were in the following order: T1 > T2 > T3. Compared with the control, the contents of flavonoids and epicuticular wax significantly decreased in all levels of supplementary UV-B radiations (p<0.05). Moreover, the contents of hydrogen peroxide (H2O2) and MDA significantly increased with the enhanced UV-B radiations (p<0.05). Korean pine can increase the catalase, ascorbate peroxidase, and superoxide dismutase activities to prevent oxidative stress by supplementary UV-B radiation. However, its defence mechanism is not efficient enough to prevent UV-Binduced damage.  相似文献   

17.
Effects of UV-B irradiated algae on zooplankton grazing   总被引:2,自引:0,他引:2  
De Lange  Hendrika J.  L&#;rling  Miquel 《Hydrobiologia》2003,491(1-3):133-144
We tested the effects of UV-B stressed algae on grazing rates of zooplankton. Four algal species (Chlamydomonas reinhardtii, Cryptomonas sp., Scenedesmus obliquus and Microcystis aeruginosa) were used as food and fed to three zooplankton species (Daphnia galeata, Bosmina longirostris and Brachionus calyciflorus), representing different taxonomic groups. The phytoplankton species were cultured under PAR conditions, and under PAR supplemented with UV-B radiation at two intensities (0.3 W m–2 and 0.7 W m–2, 6 hours per day). Ingestion and incorporation experiments were performed at two food levels (0.1 and 1.0 mg C l–1) using radiotracer techniques. The effect of food concentration on ingestion and incorporation rate was significant for all three zooplankton species, but the effect of UV-B radiation was more complex. The reactions of the zooplankton species to UV-B stressed algae were different. UV-B stressed algae did not affect Daphnia grazing rates. For Bosmina the rates increased when feeding on UV-B stressed Microcystis and decreased when feeding on UV-B stressed Chlamydomonas, compared with non-stressed algae. Brachionus grazing rates were increased when feeding on UV-B stressed Cryptomonas and UV-B stressed Scenedesmus, and decreased when feeding on UV-B stressed Microcystis, compared with non-stressed algae. These results suggest that on a short time scale UV-B radiation may result in increased grazing rates of zooplankton, but also in decreased grazing rates. Long term effects of UV-B radiation on phytoplankton and zooplankton communities are therefore difficult to predict.  相似文献   

18.
Elevated levels of both ozone and UV-B radiation are typical for high-altitude sites. Few studies have investigated their possible interaction on plants. This study reports interactive effects of O3 and UV-B radiation in four-year-old Norway spruce and Scots pine trees. The trees were cultivated in controlled environmental facilities under simulated climatic conditions recorded on Mt Wank, an Alpine mountain in Bavaria, and were exposed for one growing season to simulated ambient or twice-ambient ozone regimes at either near ambient or near zero UV-B radiation levels. Chlorotic mottling and yellowing of current year needles became obvious under twice-ambient O3 in both species at the onset of a high ozone episode in July. Development of chlorotic mottling in relation to accumulated ozone concentrations over a threshold of 40 nL L–1 was more pronounced with near zero rather than ambient UV-B radiation levels. In Norway spruce, photosynthetic parameters at ambient CO2 concentration, measured at the end of the experiment, were reduced in trees cultivated under twice-ambient O3, irrespective of the UV-B treatment. Effects on photosynthetic capacity and carboxylation efficiency were restricted to trees exposed to near zero levels of UV-B radiation, and twice-ambient O3. The data indicate that UV-B radiation, applied together with O3, ameliorates the detrimental effects of O3. The data also demonstrate that foliar symptoms develop more rapidly in Scots pine than in Norway spruce at higher accumulated ozone concentrations. Symbols and abbreviations: LSD, least significant difference; PAS300, UV-B irradiance weighted according to the plant action spectrum of Green et al. (1974) normalized at 300 (nm); AOT40, (AOT = accumulated over threshold) reflects the sum of hourly ozone concentrations above 40 nL L–1 during daylight hours (> 50 Wm–2) ( Kärenlampi & Skärby 1996 ); A350, net photosynthesis at ambient CO2; G350, stomatal conductance for water vapour at ambient CO2; A2500, net photosynthesis at saturating CO2 (maximal potential photosynthetic activity); CE, carboxylation efficiency; ROS, reactive oxygen species; RuBP, ribulose 1,5-bisphosphate; Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase; GLM, general linear model.  相似文献   

19.
UV-B (290 nm) tolerance of Daphnia pulex, conditioned to four different food levels (Chlorophyta), was tested under standardized conditions with an artificial radiation source. Parameters measured were survival, percentage of egg bearing Daphnia and the number of juveniles produced after irradiation. UV-B tolerance of Daphnia pulex was found to be significantly improved with increasing food concentrations at all three parameters. The impact of the four different food concentrations on the photoreactivation system was tested with simultanous UV-B and white-light irradiation of Daphnia. Survival rate improved significantly with increasing food levels compared to solely UV-B irradiation. Photoreactivation had no effect on the reproductive parameters.  相似文献   

20.
Effect of UV-B (1.9 W m-2) alone or in combination with supplemental "white light". WL (20 W m-2) exposure was studied on the energy transfer process of intact phycobilisomes isolated from Spirulina platensis. Exposure of UV-B or supplemental irradiation induced a decrease in room temperature fluorescence intensity and caused a shift towards shorter wavelengths. The low temperature fluorescence measurements showed that UV-B impairs energy transfer from phycocyanin to allophycocyanin B and the extent of damage may be reduced by the exposure to supplemental WL. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号