首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seeds of many species do not germinate immediately after dispersal, but instead may remain indefinitely in a dormant but viable state. Although it is well established that seeds often exhibit diversified patterns of dormancy and germination, the causes and consequences of this variation remain poorly understood. In this study, we investigate the extent to which seed genotypes of the desert mustard Lesquerella fendleri differentially germinate and establish under experimental conditions in a greenhouse. We used a two-way factorial design to compare genotypes of Lesquerella plants derived from seeds that germinated and established at different times and under different soil water regimes. Overall allozyme allele frequencies of Lesquerella plants varied significantly with both germination time and initial soil water availability. Single-locus heterozygosity analyses revealed that seeds sown into initially low water conditions produced plants that were significantly more heterozygous than plants derived from seeds experiencing constantly high water conditions, but heterozygosity did not differ significantly among plants originating from early- and late-germinating seeds. This is the first study to experimentally demonstrate that germination timing and environment can significantly affect the genetic structure of emerging plant populations. The study suggests that germination and survival behavior may (1) play an important role in generating and maintaining the genetic structure of natural plant populations and (2) set the stage for subsequent evolution.  相似文献   

2.
Abstract. Composition and density of the soil seed banks, together with seedling emergence in the field, were examined on Svalbard. 1213 soil samples were collected from six drymesic habitats in three regions representing various stages of colonization from bare moraines to full vegetation cover and spanning a range of typical nutrient and thermal regimes. Of the 165 vascular plant species native to Svalbard, 72 were present as mature plants at the study sites and of these 70% germinated seed. Proglacial soil had 12 seedlings per m2, disturbed Dryas heath 131, intact Dryas heath 91, polar heath 715, thermophilic heath 3113, and a bird cliff 10437 seedlings. Highest seed bank species richness was at the thermophilic heath (26 species). Seedlings of 27 species emerged in the field, with fewer seedlings in disturbed habitats (60 seedlings per m2) than in intact Dryas heath (142), suggesting that an absence of ‘safe sites’ limited seedling establishment in disturbed habitats. Measurement of seedling emergence in the field increased awareness of which species are able to germinate naturally. This may be underestimated by up to 31% if greenhouse trials alone are used, owing partly to unsuitability of greenhouse conditions for germination of some species and also to practical limitations of amount of soil sampled. Most thermophilic species failed to germinate and some species present at several sites only germinated from the thermophilic heath seed bank, suggesting that climate constrains recruitment from seeds in the High Arctic.  相似文献   

3.
Summary Ambrosia artemisiifolia L., Chenopodium album L., and Amaranthus retroflexus L. are three summer annual weeds that occur in disturbed habitats. In nature, the peak germination season for A. artemisiifolia and C. album is in early to mid-spring, while in A. retroflexus the peak germination season is late spring to early summer. Furthermore, seeds of A. artemisiifolia germinate only in spring, while seeds of C. album and A. retroflexus germinate throughout the summer. In an attempt to explain the differential germination behavior of these three species in nature, changes in their germination responses to temperature during burial in a non-heated greenhouse from October 1974 to October 1975 were monitored. A high percentage of the seeds of all three species after-ripened during winter. Seeds of A. artemisiifolia and C. album germinated at temperatures characteristic of those in the field in early and mid-spring, but seeds of A. retroflexus required the higher temperatures of late spring and early summer for germination. Seeds of all three species germinated to higher percentages in light than in darkness. Non-dormant seeds of A. artemisiifolia that did not germinate in spring entered secondary dormancy. On the other hand, seeds of C. album and A. retroflexus that did not germinate when temperatures first became favorable for germination, did not enter secondary dormancy and, thus, retained the ability to germinate at summer field temperatures during summer. Thus, temporal differences in the germination behavior of these three species are caused by the differential reaction of the seeds to temperature during the annual temperature cycle.  相似文献   

4.
Ribes sardoum, the most threatened endemic plant of Sardinia, is included in the Habitats Directive (92/43/EEC) and it was considered Critically Endangered in the global IUCN Red Lists. This species has been reported to have an extremely low fertility, scarce fruit production, low seed viability and a general inability to reproduce sexually. Fruits were collected for the first time from the remnant population, and the requirements for seed germination were investigated in the laboratory. Seeds were incubated at different temperatures (10, 15, and 20°C) and, in addition, they were exposed to a warm stratification (W) or a move-along treatment characterized by three cold temperature regimes (CCC). Seeds were also sown on the surface of 1% agar water with 250 mg·L?1 of GA3. At maturity, seeds have a linear underdeveloped embryo. Germination percentage between 35% and 65% were detected in the control and W groups. A low germination percentage occurred after CCC and during GA3 treatment. W treatment speeds up seed germination. Our results demonstrate that fruits of R. sardoum produce viable seeds, that are able to germinate under controlled conditions, with the assumption that the seeds have morphophysiological dormancy (MPD), and that propagation from the seeds is possible. Although the ability of seed germination was demonstrated, the lack of seedlings in the natural population seems to be a consequence of unfavourable climatic conditions for recruitment. However, our results indicate that seedlings obtained under controlled conditions could be useful for future translocation reducing and/or mitigating the extinction likelihood of this highly threatened plant.  相似文献   

5.
Germination is a key process in plant recruitment and population dynamics, and seeds are expected to be under strong selection pressure to germinate under conditions that maximize subsequent plant survival. Increased rates of germination (i.e., accelerated germination) may occur in competitive environments. We examined the effects of conspecific density on the timing of germination of seeds of a bird-dispersed plant, Phytolacca americana (Phytolaccaceae, L.), in three different competitive environments. By comparing germination of seeds sown at the same time at different densities, we quantify the benefits of accelerated germination under conditions in which differences in performance among seedlings are attributable to germination timing only, and not to being sown at different times. We find that although the probability of germination is unchanged, the time to initiation of germination is significantly shorter when competition is greater. We also show that plants that germinate earlier are larger and have higher growth rates because they have more time to grow without competitors. Our work demonstrates that shifts in germination timing in response to competition can yield significant dividends for seeds that germinate earliest, but we caution that the magnitude and consequences of accelerated germination will likely depend on the competitive neighborhood.  相似文献   

6.
Haloxylon salicornicum and Salsola vermiculata (Amaranthaceae) are two perennial shrubs producing fruits with differently coloured perianths (yellow vs pink) on separate individuals. To test the impact of different storage periods (four, eight and twelve months) and temperature conditions (freezing, room temperature and natural field temperatures) on the seed germination of the two seed categories, germination tests were carried out on both species. For both species, collected from wild plants in the Arabian desert (Qatar), seed germination was tested under two photoperiods (light 12/12; dark 24 hours) at 20/30°C for winged (intact) and de‐winged seeds. For each species, all the considered factors (perianth colour, wing presence, photoperiod, storage period and storage conditions) had significant effects on seed germination (p < 0.001), while the interactions among factors varied in their level of significance depending on the species. In both species, yellow seeds germinated considerably better than the pink ones, the presence of wings slowed the germination, and both storage period and temperature conditions highly influenced their germination ability. Our results indicate that seeds from different perianth colours have different germination strategies to delay their germination and distribute the species through time by escaping germination time by imposing some kind of after‐ripening or seed dormancy. The variation in storage time and storage conditions might help in extending their germination period, where one set of seeds germinate immediately, and the other set of seeds becomes dormant and thus contributes to the formation of a soil seed bank for the long‐term recruitment of seedlings. This study highlights an ecological advantageous strategy for these two species growing in the unpredictable desert habitat.  相似文献   

7.
8.
Summary Seeds of the Panamanian shrub, Hybanthus prunifolius (Schult.) Schulze (Violaceae) are dispersed at different times in different years ((March to June) and are exposed to the irregular rainfall of the dry season in some years. Fluctuations in soil moisture in the dry season represent suboptimal conditions for germination and seedling survival. There are no mechanisms to prevent germination prior to the arrival of consistent rains in the wet season.Among three natural cohorts of seeds followed in two years, the cohort experiencing the longest time from sowing to consistent rains had the highest germination, but it also had the longest time lag from sowing to, beginning of germination, longest germination period, and lowest survival of seedlings 3 months after sowing.Seeds were also induced experimentally to germinate under 14 different moisture patterns. The patterns encompassed 1) varying lengths of moisture before a dry period, 2) inconsistent moisture, and 3) varying lengths of dryness prior to any moisture.Mortality of seeds by fungal infection occurred if the wet period was delayed. But germination was less affected by fluctuations than was seedling survival. Length of the first wet period and frequency of occurrence of the wet period both affected germination levels. Survival and development of seedlings was influenced by the number of days exposed to dry conditions and by the stage of development at the beginning of the dry period. Young seedlings suffered attrition due to drought stress, and older seedlings died from fungal attack.Results from field and experimental sowing of seeds both indicate that this perennial species has minimal defense against germination when conditions are suboptimal for seedling survival. Undoubtedly there is more recruitment in some years than in others.  相似文献   

9.
Apparently normal pea seeds from pods bearing lesions of Mycosphaerella pinodes were often internally infected with the fungus. When infected seeds were sown in sterile grit almost all the seedlings showed disease lesions, at or below soil level, 4–6 weeks after sowing. Seed infected with Ascochyta pisi gave only 40% infection of seedlings: these showed lesions on the stem and first two leaves within 4 weeks of sowing. Infection of seeds by both pathogens could be eradicated by soaking the seeds for 24 hr. in 0.2% suspensions of thiram or captan at 30d?C. In laboratory or greenhouse tests these treatments did not check germination, but in the field the captan treatment reduced emergence. The treated seeds became fully imbibed but could be dried and stored: the thiram treatment was used for semi-commercial treatment of quantities of seed up to 3 cwt.  相似文献   

10.
Butia odorata (Barb. Rodr.) Noblick is a palm tree that grows in savanna‐like formations in subtropical regions of South America, and whose regeneration is threatened by agricultural management. Its diaspores are dormant after dispersal which takes place during the summer and early autumn. The aim of this study was to investigate seasonal and microhabitat effects on the germination and seedling recruitment of this palm species. Diaspores were sown in the field, in both open lands and forest patches. During 2 years, we measured seed germination, viability and moisture, seedling emergence and germination response to warm stratification of those seeds that failed to germinate in the field. Germination was concentrated during the summer, when soil temperatures were highest, whilst seedling emergence peaked in the autumn and early winter, when temperature and humidity conditions became less extreme. In open lands, there were two pulses of germination (first and second summer), whilst in forest patches, a single pulse (second summer) was detected. Although overall germination did not differ between microhabitats, the percentage of seedling emergence from seeds that remained buried until the end of the experiment was almost twice as large in the forest patches compared with open areas. The viability of seeds declined over time, particularly in open areas. Laboratory‐induced warm stratification was found to act on seed dormancy release in a cyclic way, being far more effective on seeds retrieved from the field in spring–summer months than in those retrieved in the winter. This cyclic pattern of dormancy in B. odorata seeds results in major seedling recruitment after the summer, under wetter and cooler conditions, thus reducing mortality risk. This process can be enhanced by the presence of surrounding vegetation, which both increases seedling emergence and/or prolongs seed viability.  相似文献   

11.
In 1879 Dr. W. J. Beal selected seeds of 23 different species of locally common plants, mixed 50 seeds of each species with moist sand in unstoppered one-pint bottles, and buried the bottles in a sandy knoll to be unearthed and the viability of the seeds tested periodically. The year 1970 marked the ninetieth year the seed had been buried, and the thirteenth bottle was recovered to test for seed viability. Of the three species which had germinated in the 1960 test (curly dock, Rumex crispus; evening primrose, Oenothera biennis; and moth mullein, Verbascum blattaria), only V. blattaria had viable seed with 20% germination. No other species germinated. All ten seedlings of V. blattaria were grown to maturity, and seeds were then harvested to study the possible deviations from normality and the requirements for seed germination. All seedlings emerging from the first progeny seed appeared normal. The most prominent requirement for germination was light, and this is a possible explanation of why the seeds had remained viable but dormant for so long a period. One-third of the freshly harvested seed germinated in darkness and, furthermore, redrying of dark-moistened seed in the absence of light induced additional germination. Germination of dark-moistened seed was not completely restored when the still moist seeds were subsequently exposed to light. However, when dark-moistened seeds were dried and then remoistened in the light, germination was about 95 %. About 5 % of the seed did not germinate under the conditions used. We find that 5 % of the population of V. blattaria seeds are dormant for unknown reasons, that 30 % will germinate if supplied only with moisture, and that 65 % are inhibited and require light and moisture simultaneously for germination. Supplying this 65 % of the population with moisture in darkness results in the development of a second type of inhibition which is no longer light reversible. It appears that the simultaneous requirement for light and moisture is an important factor in permitting V. blattaria seeds to remain dormant during prolonged burial.  相似文献   

12.
Laboratory and field germination experiments inCarex kobomugi seeds were pursued to clarify their germination requirements and availability of the requirements in the field. In the laboratory experiments, more than 50% of the seeds ofC. kobomugi germinated under 35/30C or 25/20C when they were scarified with 98% H2SO4 after removal of their utricles, and chilled in moist condition for 28 to 42 d. Seeds with utricles or those without scarified with H2SO4 did not germinate. Seeds sown at 10-cm depth at the Kado-ori coast on 11 February 1991 after soaked in H2SO4 showed 40% germination by 29 April 1991, whereas those without H2SO4 treatment did not germinate. These results suggest that seed-coat impermeability and embryo immaturity are possible causes of the dormant state in seeds ofC. kobomugi ripen in summer. In the field, the moist-chilling condition is available in winter and the seeds can germinate in the following spring if the seed-coat impermeability is relaxed before winter.  相似文献   

13.
Common ragweed (Ambrosia artemisiifolia L.) was one of 19 herbaceous weedy species used by Beal in his buried viable seed experiment started in 1879. No seeds germinated during the first 35 years of the experiment when germination tests were performed in late spring, summer or early autumn. Germination did occur in seeds buried for 40 years when seeds were exhumed and tested for germination in early spring. Data obtained in more recent research provide the probable explanation for these results. Seeds of common ragweed that do not germinate in spring enter secondary dormancy by mid to late spring and will not germinate until dormancy is broken the following late autumn and winter. Thus, during the first 35 years of the experiment seeds were dormant when tested for germination, whereas seeds buried for 40 years were nondormant. Seeds buried 50 years or longer did not germinate when tested in spring, probably because they had lost viability and/or seeds germinated during burial and seedlings died.  相似文献   

14.
Semi‐arid rangeland degradation is a reoccurring issue throughout the world. In the Great Basin of North America, seeds sown in the fall to restore degraded sagebrush (Artemisia spp.) steppe plant communities may experience high mortality in winter due to exposure of seedlings to freezing temperatures and other stressors. Delaying germination until early spring when conditions are more suitable for growth may increase survival. We evaluated the use of BioNik? (Valent BioSciences LLC) abscisic acid (ABA) to delay germination of bluebunch wheatgrass (Pseudoroegneria spicata). Seed was either left untreated or coated at five separate rates of ABA ranging from 0.25 to 6.0 g 100 g?1 of seed. Seeds were incubated at five separate constant temperatures from 5 to 25°C. From the resultant germination data, we developed quadratic thermal accumulation models for each treatment and applied them to 4 years of historic soil moisture and temperature data across six sagebrush steppe sites to predict germination timing. Total germination percentage remained similar across all temperatures except at 25°C, where high ABA rates had slightly lower values. All ABA doses delayed germination, with the greatest delays at 5–10°C. For example, the time required for 50% of the seeds to germinate at 5°C was increased by 16–46 d, depending on the amount of ABA applied. Seed germination models predicted that the majority of untreated seed would germinate 5–11 weeks after a 15 October simulated planting date. In contrast, seeds treated with ABA were predicted to delay germination to late winter or early spring. These results indicate that ABA coatings may delay germination of fall planted seed until conditions are more suitable for plant survival and growth.  相似文献   

15.
Increasing rates of forest disturbance may provide greater opportunity for invasion of nonnative species, thereby altering the successional trajectory of native plant communities. In the eastern U.S., invasive Ailanthus altissima and native Liriodendron tulipifera have similar life histories and niches and often co-occur. To examine how disturbance affects the establishment of these species, we performed field experiments to evaluate the response of sown seeds and transplanted seedlings to three levels of disturbance on north- and south-facing aspects. L.␣tulipifera germination was severely limited by low seed viability and had significantly lower germination than A. altissima in all sites. The effect of disturbance regime on A. altissima germination depended on aspect in the second growing season. In contrast, mean seedling survival, biomass, leaf area and leaf area ratio were greater for L. tulipifera in all field sites. Overall, the north-facing selective cut forest provided a disproportionately large number of suitable microsites for L. tulipifera establishment. Collectively, this study demonstrated that different timber harvest practices produce heterogeneous mosaics of suitable microsites for germination and establishment. Limited L. tulipifera germination may be a serious constraint to population establishment if seeds are deposited for the first time immediately after a disturbance event. However, if sufficient viable seeds of both species exist, L. tulipifera out-performs the invasive in the first two years following disturbance. This may explain why A. altissima has shown explosive population growth in a limited number of sites in the past century.  相似文献   

16.
Abstract. Thicket-forming ferns are common colonizers of disturbed habitats in the tropics, but little is known about their ecology. The effects of thickets formed by the fern Dicranopteris pectinata on tree seedlings on five landslides in the Luquillo Experimental Forest in northeastern Puerto Rico were both positive and negative. Soil moisture and total soil N were higher under fern thickets than in adjacent open areas and soil bulk density and soil surface temperatures were lower. Germination of seeds of the tree Cecropia schreberiana was higher for seeds sown under fern thickets than for those sown into adjacent open areas. Tree seedlings of Tabebuia hetero-phylla exhibited a threefold reduction in photosynthesis under ferns, probably resulting from a twelvefold reduction of photosynthetic photon flux density. Growth of Tabebuia seedlings was reduced under ferns but the distribution of seedlings of naturally occurring woody plants was not strongly correlated with the presence of fern thickets. Although fern thickets on low-nutrient landslide soils appear to facilitate germination, they inhibit growth of tree seedlings and may, therefore, delay forest development on landslides in Puerto Rico.  相似文献   

17.
Background and Aims Diaspores of heteromorphic species may germinate at different times due to distinct dormancy-breaking and germination requirements, and this difference can influence life history traits. The primary aim of this study was to determine the effect of germination time of the two seed morphs of Suaeda corniculata subsp. mongolica on life history traits of the offspring.Methods Germinated brown and black seeds were sown on the 20th of each month from April to September in a simulated but near-natural habitat of the species. Phenological and vegetative traits of the maternal plants, and number, size and germination percentage of the offspring were determined.Key Results Germinated seeds sown late in the year produced smaller plants that had a higher proportion of non-dormant brown than dormant black seeds, and these brown seeds were larger than those produced by germinated seeds sown early in the year. The length of the seedling stage for brown seeds was shorter than that for black seeds, and the root/shoot ratio and reproductive allocation of plants from brown seeds were more variable than they were for plants from black seeds. Late-germinating brown seeds produced larger plants than late-germinating black seeds.Conclusions Altering the proportion of the two seed types in response to germination timing can help alleviate the adverse effects of delayed germination. The flexible strategy of a species, such as S. corniculata, that produces different proportions of dimorphic seeds in response to variation in germination timing may favour the maintenance and regeneration of the population in its unpredictable environment.  相似文献   

18.
  • Soil seed banks are essential elements of plant population dynamics, enabling species to maintain genetic variability, withstand periods of adversity and persist over time, including for cactus species. However knowledge of the soil seed bank in cacti is scanty. In this study, over a 5‐year period we studied the seed bank dynamics, seedling emergence and nurse plant facilitation of Polaskia chende, an endemic columnar cactus of central Mexico.
  • P. chende seeds were collected for a wild population in Puebla, Mexico. Freshly collected seeds were sown at 25 °C and 12‐h photoperiod under white light, far‐red light and darkness. The collected seeds were divided in two lots, the first was stored in the laboratory and the second was use to bury seeds in open areas and beneath a shrub canopy. Seeds were exhumed periodically over 5 years. At the same time seeds were sown in open areas and beneath shrub canopies; seedling emergence and survival were recorded over different periods of time for 5 years.
  • The species forms long‐term persistent soil seed banks. The timing of seedling emergence via germination in the field was regulated by interaction between light, temperature and soil moisture. Seeds entered secondary dormancy at specific times according to the expression of environmental factors, demonstrating irregular dormancy cycling.
  • Seedling survival of P. chende was improved under Acacia constricta nurse plants. Finally, plant facilitation affected the soil seed bank dynamics as it promoted the formation of a soil seed bank, but not its persistence.
  相似文献   

19.
Amazonian floodplain forests (known as várzea) are classified into high or low várzea depending on the spatial position on the plains. This topographic feature exposes the terrain over different time periods of inundation, causing a major limiting factor for tree seedling establishment. We hypothesize that, strategically, most of the seeds produced by trees in low várzea forests germinate faster and in synchrony (temporally concentrated germination), and that their seedlings tend to have cotyledons without reserve or foliaceous cotyledons (PEF). By contrast, seeds produced by high-várzea specialist trees exhibit slower and temporally scattered germination, and their seedlings tend to have reserve storage cotyledons (CHR). Generalist species may show no clear pattern or may be related to high-várzea species. To test this hypothesis, diaspores of 10 tree species were collected: five of low-várzea specialist trees, three of high-várzea specialist trees and two of generalist species. Seedling emergence and morphology were monitored daily in a nursery for a period of 150 days of being subjected to non-flooded (sown directly in várzea soil) and flooded conditions (15 days in water before sowing in the same soil). The seedling emergence of low-várzea species showed an increase of 37% in germinability whereas high-várzea and generalist species exhibited a decrease of 38% and 35% of germinability, respectively. Foliaceous cotyledons were preferentially found in seedlings of low-várzea species, and storage cotyledons were more common in those of high-várzea species, indicating how cotyledon morphology may determine the amount and use of resources available to a seedling during the first stages of establishment and growth. Conservation plans aiming for the maintenance of ecosystem services must consider these strategies.  相似文献   

20.
The use of aquaculture systems to grow the seagrass Zostera marina (eelgrass) from seeds for restoration projects was evaluated through laboratory and mesocosm studies. Along the mid‐Atlantic coast of North America Z. marina seeds are shed from late spring through early summer, but seeds typically do not begin to germinate until the late fall. Fall is the optimal season to plant both seeds and shoots in this region. We conducted studies to determine if Z. marina seeds can be induced to germinate in the summer and seedlings grown in mesocosms to a size sufficiently large enough for out‐planting in the fall. Seeds in soil‐less culture germinated in the summer when held at 14°C, with percent germination increasing with lower salinities. Cold storage (4°C) of seeds prior to planting in sediments enhanced germination and seedling survival. Growth rates of seedlings were significantly higher in nutrient enriched estuarine sediments. Results from preliminary studies were used in designing a large‐scale culture project in which 15,000 shoots were grown and out‐planted into the Potomac River estuary in the Chesapeake Bay and compared with an equal number of transplanted shoots. These studies demonstrate that growing Z. marina from seeds is an alternative approach to harvesting plants from donor beds when vegetative shoots are required for restoration projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号