首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A developmental study of the inflorescence of Liquidambar styraciflua L. was conducted to clarify morphological discrepancies reported in the literature. Salient features of development are: 1) the inflorescence apex results from the conversion of a terminal, vegetative apex; 2) partial inflorescence apices arise as ellipsoid structures in axils of leaves, bracts, or transitional phyllomes; 3) development of male heads is acropetal whereas female heads differentiate basipetally; 4) the partial inflorescence apex becomes segmented into several distinct subunits indicating an axillary branch system of the third order; 5) distinct individual floral primordia are initiated on the subunits; 6) a complete absence of perianth development; 7) inception of carpel primordia in flowers of lower male heads as well as female heads, but a failure of the gynoecium to develop beyond an incipient stage in male heads; and 8) development of sterile structures around the base of the styles of only female flowers near the time of anthesis. Carpellary characteristics of the sterile structures are described, their morphological nature is discussed, and the phylogenetic position of Liquidambar is evaluated.  相似文献   

2.
Floral development in Piper was compared between four-staminate species (P. aduncum and P. marginatum) and six-staminate species (P. amalago). All Piper species have a syncarpous gynoecium composed of three or four carpels. The floral apex is initiated by a periclinal division in the subsurface layer in the axil of a bract 40-55 μm high; initiation of the bracts occurs separately and considerably earlier. The floral primordium widens and the first pair of stamens are initiated at either side. The median anterior stamen forms next, and the median posterior later. This sequence is common to all species studied. In the six-staminate P. amalago, the last two stamens form simultaneously in lateral-anterior positions. The stamens hence arise as pairs, and symmetry is bilateral or dorsiventral. The three or four carpels arise simultaneously; they are soon elevated on a gynoecial ring by growth of the receptacle below the level of attachment of the carpels to produce a syncarpous gynoecium. The floral apex lastly produces the solitary basal ovule and is used up in its formation.  相似文献   

3.
4.
The spicate inflorescence of Saururus cernuus L. (Saururaceae) results from the activity of an inflorescence apical meristem which produces 200–300 primordia in acropetal succession. The inflorescence apex arises by conversion of the terminal vegetative apex. During transition the apical meristem increases greatly in height and width and changes its cellular configuration from one of tunica-corpus to one of mantle (with two tunica layers) and core. Primordia are initiated by periclinal divisions in the subsurface layer. These are “common” primordia, each of which subsequently divides to produce a floral apex above and a bract primordium below. The bract later elongates so that the flower appears borne on the bract. All common primordia are formed by the time the inflorescence is about 4.4 mm long; the apical meristem ceases activity at this stage. As cessation approaches, cell divisions become rare in the apical meristem, and height and width of the meristem above the primordia diminish, as primordia continue to be initiated on the flanks. Cell differentiation proceeds acropetally into the apical meristem and reaches the summital tunica layers last of all. Solitary bracts are initiated just before apical cessation, but no imperfect or ebracteate flowers are produced in Saururus. The final event of meristem activity is hair formation by individual cells of the tunica at the summit, a feature not previously reported for apical meristems.  相似文献   

5.
The flowers of Limnocharis flava (L.) Buch. are borne in an indeterminate umbel and each consists of three sepals, three yellow petals, and about 18 carpels surrounded by numerous stamens and staminodia. The androecium is centrifugally developed, and the last-formed members are staminodial; it is supplied by branching vascular systems. Carpels arise almost simultaneously, and a prominent residual floral apex remains. The carpels are partially conduplicately closed and are also primitive in possessing laminar placentation and in lacking differentiation of a style. The gynoecium is essentially apocarpous, but there are slight fusions of adjacent carpels near their ventral margins where they are attached to the receptacle. It is suggested that the Limnocharis flower is the most primitive in the family.  相似文献   

6.
7.
8.
The pistillate inflorescence of Casuarina verticillata is described as consisting of a primary axis bearing whorls of bracts with a cymule in the axil of each bract of the more central whorls. Each cymule consists of an atepallate, two-carpellate, syncarpous floret and two, lateral, once-lobed bracteoles. A “peripheral intercalary” meristem, in which divisions are primarily periclinal, forms a meshwork beneath the bracts from early development and moves the connate bracts centrifugally around the cymules and extends and binds the bracts, and to some extent the bracteoles, of the fertile part of the inflorescence together. Each bract receives a single trace; each cymule receives two traces. Each bundle extension of a cymule trace supplies: 1) a branch which joins its counterpart to become the anterior common carpellary bundle; 2) a second branch which joins its counterpart to become the posterior common carpellary bundle; and 3) a central branch which supplies a lateral bracteole. Within each floret, each common carpellary bundle provides a dorsal carpellary bundle, two ventral carpellary bundles (fertile anterior carpel) or one common ventral bundle (sterile posterior carpel). The ventral bundle-supplies join and form a single placental bundle which lies in the gynoecial septum, and which, in turn, supplies the two ovules in the anterior carpel. Whether the inflorescence is a simple racemose or a condensed cymose type cannot be determined from this species alone. The function of the sclerenchymatous, enclosing bracteoles and connate bracts is discussed.  相似文献   

9.
Gifford , Ernest M., Jr ., and Herbert B. Tepper . (U. California, Davis.) Ontogeny of the inflorescence in Chenopodium album. Amer. Jour. Bot. 48(8): 657–667. Illus. 1961.—Chenopodium album, a short-day plant, was induced to flower by subjecting it to successive cycles of 7 hr light and 17 hr darkness. After 4 inductive days, the first macroscopic change is evident in the appearance of precocious axillary bud primordia. After 5–6 days, a primordial inflorescence is visible, and after 7–8 days a terminal flower appears on the main inflorescence axis. The vegetative apex has a biseriate tunica, the cells of which are larger than those of the corpus. The cells of the tunica stain lighter, possess larger nucleoli, and are more vacuolate than cells of the subjacent corpus. After photoinduction, the tunica-corpus organization is maintained, and after 4 short-days, the shoot apex possesses a mantle of 3–4 layers of cells because there are few periclinal divisions in the cells of the outer corpus. The cells of the mantle stain uniformly and are more chromatic than those of the underlying tissue. Mitotic activity was recorded in the upper 40-μ segment of the apex. In the vegetative apex, mitotic activity is greater in the lower portion of the segment. Following photoinduction, mitoses increase throughout the apex until a maximum is reached on the 4th day. Also, the plastochronic interval decreases after photoinduction. Nucleoli of cells of the corpus enlarge following induction until all nucleoli of the apex are nearly equal. Included in the paper are discussions of the general morphological differences between vegetative and flowering shoots.  相似文献   

10.
The inflorescence development of three species of Piper (P. aduncum, P. amalago, and P. marginatum), representing Sections Artanthe and Ottonia, was studied. The spicate inflorescences contain hundreds or even thousands of flowers, depending on the species. Each flower has a tricarpellate syncarpous gynoecium and 4 to 6 free stamens, in the species studied. No sepals or petals are present. In P. marginatum the apical meristem of the inflorescence is zonate in configuration and is unusually elongate: up to 1,170 μm high and up to 480 μm wide during the most active period of organogenesis. Toward the time of apical cessation both height and diameter gradually diminish, leaving an apical residuum which may become an attenuate spine or may be cut off by an abscission zone just below the meristem. The active apex produces bract primordia; when each is 40–55 μm high, a floral apex is initiated in its axil. Both bract and floral apex are initiated by periclinal divisions in cells of the subsurface layer. The bracts undergo differentiation rather early, while the floral apices are still developing. The last-produced bracts near the tip of the inflorescence tend to be sterile.  相似文献   

11.
All flowers of Anemopsis californica, the most specialized taxon of the family Saururaceae, are initiated as individual primordia subtended by previously initiated bracts, in contrast to the common-primordium initiation of all flowers of Saururus cernuus and of most flowers of Houttuynia cordata. Floral symmetry is bilateral and zygomorphic, and the sequence of initiation among floral parts is paired or whorled. In A. californica, the six stamens arise as three common primordia, each of which later bifurcates to form a pair. The three common primordia occupy sites corresponding to the positions of the three stamens in H. cordata flowers. In Anemopsis, the filaments of each pair are connate. Each stamen pair is vascularized by a single bifurcating vascular bundle. The three carpels per flower are usually initiated simultaneously although there may be some variation. Adnation between stamens and carpels results from zonal growth. Downward extension of the locule, and proliferation and expansion of receptacular tissue and inflorescence cortical tissue around the locule below the bases of the carpels produce the inferior ovary. The inflorescence terminates its activity as a flattened apical residuum, surrounded by bracts subtending reduced flowers most of which have stamens only.  相似文献   

12.
从花叶(Loropetalum chinense Oliv.)的70%Me_2CO提取物中经Toyopearl HW-40凝胶反复柱层析,得到3种没食子酰黄酮甙(LC-3,LC-13和LC-16),3种没食子丹宁(LC-20,LC-21和LC-22)和一种黄酮甙元(LC-14)。经化学和波谱分析,确定它们分别为黄芪甙-2’’-0-没食子酸酯(astragalin-2’’-0-gallate,LC-3,1)、黄芪甙-6’’-0-没食子酸酯(astragalin-6’’-0-gallate,LC-13,2)、黄芪甙-2’’,6’’-二-0-没食子酸酯(astragalin-2’’,6’’-di-0-gallate,LC-16,3)、八没食子酰葡萄糖(octagalloyl-glucose,8GG,LC-20)、六没食子酰葡萄糖(hexagalloyl-glucose,6GG,LC-21)、七没食子酰葡萄糖(heptagalloyl-glucose,7GG,LC-22)和木犀草素(luteolin,LC-14)。其中LC-16为一同时具有可水解丹宁和黄酮甙双重性质的新化合物,命名为花丁素(Loropetalin D,3)。上述成分均为首次从该植物中得到。  相似文献   

13.
14.
Details of organogenesis, anatomy, and some aspects of histogenesis are described for the inflorescence units and flowers of the mangrove palm, Nypa fruticans. The genus is of special interest in evolutionary studies because of its disjunct morphology and substantial fossil record. The inflorescence is an erect monopodial axis bearing 7–9 lateral branches and ending in a pistillate head. The lowest of the lateral branches bears up to six orders of branches, the next ones progressively fewer, and the uppermost is usually unbranched. Lateral branches of all orders end in thick spicate, staminate rachillae. The rachillae and the pistillate head consist of spirally inserted sessile flowers, each borne in the axil of a bract. Staminate and pistillate flowers are similar in structure. Both have three separate sepals and three separate petals, which are loosely closed in bud. Staminate flowers have no pistillodes; nor are there any staminodes in the pistillate flower. The androecium consists of a stalk bearing three anthers distally and is shown to represent three stamens with filaments congenitally fused and anthers connate by the ventral faces of the connectives. The pistillate flower has three separate carpels, which expand rapidly so that by anthesis they much exceed the perianth. Each carpel is cupulate in shape, with a two-crested distal opening, and receives ca. 150 vascular bundles, many of which may branch dichotomously. No dorsal or ventral bundles can be definitely distinguished, but a ventrally open ring of 10–12 bundles surrounding the locule matures first. Allometric growth clearly accounts for much of the morphological disjunction in the reproductive organs of Nypa contrasted with those of other palms. Resemblances to coryphoid, ceroxyloid, arecoid, and cocosoid palms are indicated by these studies. Different combinations of characters and several distinctive features justify a separate major taxonomic category for this genus within the Palmae.  相似文献   

15.
Ontogeny of the inflorescence and flower of Mimosa strigillosa has been studied in order to explore the developmental basis for variation in number of parts, patterns of organ arrangement, and inflorescence architecture. Each racemose inflorescence of M. strigillosa has an acropetal order of initiation of bracts and flowers. Although flowers are initiated in acropetal order, they develop synchronously except for the basal flowers, which are retarded. The ring meristem in the calyx may be considered an expression of precocious fusion, a specialized condition within the genus. Two patterns of organ arrangement (nonsagittal and median sagittal) are distributed among 4- and 5-merous flowers along the inflorescences. Variability in number of parts probably has evolved through reduction of a basic, pentamerous structure, through fusion or suppression. It is proposed that the number of parts and pattern of organ arrangement are correlated features.  相似文献   

16.
Pigs are proposed as a useful laboratory model for the investigationof taste preferences and other controls of ingestive behaviorin the newborn. Suckling pigs can be easily trained to feedthemselves from an artificial feeding apparatus so that intakecan be measured directly. In this manner preferences for glucose,sucrose, fructose and lactose were found in pigs 3 wk of age.The preference threshold for glucose is considerably higherthan that reported for more mature pigs. Taste aversion wasdemonstrated in suckling pigs 2 wk of age. After the taste ofglucose had been paired with LiCl injection, poisoned pigs didnot show the strong glucose preference shown by control pigs.In addition to oropharyngeal controls of intake, gastrointestinalcontrols of intake in the newborn pig were investigated.Loadsof milk or 5% glucose, but not 0.9% NaCl, given by gavage depressedsubsequent intake in piglets 1 wk of age. Caloric or glucostaticmechanisms, but not volume alone, appear to be involved in satietyin the newborn pig. *Supported by USPHS Special Fellowship 5F03 AM55321-02 to K.A.H.Request for reprints should be sent to Dr. K. A. Houpt, Dept.of Physiology, N.Y.S. College of Veterinary Medicine, Ithaca,New York 14853, U.S.A.  相似文献   

17.
18.
Two populations of Sagittaria brevirostra from the same lake were sampled 10 years apart and yielded similar data on inflorescence structure and on numbers and ratios of male and female flowers. Larger inflorescences have relatively more male than female flowers than do smaller inflorescences. Pollination success is unrelated to inflorescence size or sex ratio within an inflorescence.  相似文献   

19.
羊草和大针茅群落光合速率的比较研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本研究用同化箱法,在野外条件下测定了羊草群落和大针茅群落的光合速率日进程和季节变化。得到如下结果:1;在整个生长期中,测得羊草和大针茅两群落光合速率的日进程都属双峰型,上、下午,各有一个高峰,但一般以上午峰值较高。2.羊草和大针茅两群落日净光合量的季节变化趋势是相似的。自返青后迅速的提高,到7月上旬达最大值,羊草和大针茅两群落的日净光合量分别为31.68和11.5 gCO2/m2d,随后逐渐降低。3.两群落光合能力的大小,峰值的高低和出现的早晚、中午光合降低的幅度以及季节变化的特点等都与植物生长发育阶段和环境条件有密切的关系。 4.羊草群落各阶段的瞬时光合、日净光合,LAI和生物量等都高于相近时期的大针茅群落。但在环境条件较差(干旱)时,羊草群落光合增加的幅度要比环境条件好时小。5.大针茅群落要比羊草群落耐旱,对不良环境的适应能力强,但在条件较好时增产幅度小。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号