首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-resolution record of radiolarian faunal abundances from the eastern equatorial Pacific is compared to records of carbonate and noncarbonate burial to examine the evolution of eastern tropical Pacific climate processes during the Pliocene. These data provide a means to evaluate the sensitivity of the equatorial Pacific to the onset of Northern Hemisphere glaciation around 2.8−2.5 Ma, to the closure of the Isthmus of Panama around 4.4−3.2 Ma, and to orogeny-related weathering changes before 4.0 Ma. Radiolarian faunal assemblages and sea surface temperature (SST) estimates indicate a gradual cooling from early to late Pliocene, but no significant changes occur near the onset of northern hemisphere glaciation. Records of carbonate and noncarbonate mass accumulation show a long term decrease from the Miocene/Pliocene boundary to the upper Pliocene. Greater carbonate burial in the early Pliocene relative to the late Pliocene parallels a gradual cooling from early to late Pliocene, and may reflect changes related to Isthmus closure or widespread orogeny. No significant time domain changes are seen in the eastern equatorial Pacific that could be related to the onset of Northern Hemisphere glaciation.Evolutive spectral analyses of these equatorial Pacific climate parameters indicate that variance in SST and seasonality commonly concentrate at frequencies not linearly related to orbital variations. Furthermore, cross spectral comparisons with a high resolution benthic δ18O record indicate that the surface ocean and carbonate flux share little coherent variance with high latitude climate processes during the Pliocene. Given the high degree of chronostratigraphic control in these records, these results suggest that Milankovitch-band surface ocean processes as well as carbonate burial in the equatorial Pacific are decoupled from high latitude climate processes during the Pliocene.  相似文献   

2.
This study examines the sensitivity of the slab ocean version of the National Center for Atmospheric Research Climate System Model with revised Eocene geography, orography, and vegetation to changing carbon dioxide (CO2) levels. We compare model results with temperature proxies from the geologic record for the Early-Middle Paleogene. We ran three modeling experiments with CO2 levels at 500, 1000, and 2000 ppm, and all with atmospheric methane levels of 3.5 ppm. Surface temperatures in the two higher CO2 scenarios are warmer than those of the 500 ppm scenario. The largest warming with increasing CO2 occurred in the high latitudes, particularly in the Northern Hemisphere, during the wintertime. Compared to the 500 ppm case, Arctic wintertime temperatures increased by ∼10°C for the 1000 ppm scenario, and ∼20°C for the 2000 ppm scenario. The 1000 and 2000 ppm scenarios produced mean annual and cold month mean temperatures in mid- and high latitudes that are much more compatible with the climate interpretations from Eocene flora, especially for data from the Southern Hemisphere. Tropical sea surface temperatures (SSTs) in the 2000 ppm scenario, however, are still ∼4°C higher than the warmest temperatures inferred from proxy data. The better match between temperatures in the high CO2 modeling scenario and high latitude climate interpretations is consistent with the idea that the CO2 levels during the Eocene were high, at least 3-4 times the pre-industrial value of 280 ppm, but the discrepancies in the tropics suggest that SST estimates from proxies are too low or that the models lack some tropical cooling mechanism that was important at this time.  相似文献   

3.
During the early Eocene, Rajasthan was positioned near the equator and had a warm and humid tropical climate dominated by tropical rainforests like the present-day equatorial forests of South India. Many of the plants retrieved as fossils from Rajasthan are growing there as refugee. This study further strengthens this view as it reports a new species of Uvaria L. from the early Eocene sediments of Bikaner (Rajasthan) showing its best resemblance with the extant U. zeylanica Deless. ex DC., which is presently growing in the evergreen forests of South India and Sri Lanka. The genus is thought to have originated in Africa, and the present finding gives an idea about its geologic distribution in Asia and Australasia via India relying on ‘stepping stone’ hypothesis during the Early Eocene Climatic Optimum (EECO) when climatic conditions were favourable for the luxuriant growth of tropical vegetation. A general cooling trend after EECO and change in the configuration of land and sea affected the climate on the regional scale causing total devastation of tropical evergreen forests that existed in western India during the depositional time; this change is ultimately responsible for creating dry and desertic conditions prevailing in the area at present.  相似文献   

4.
Three Tertiary microfossil floras from northern Latin America are considered with reference to paleoenvironments and paleoenvironmental trends, especially paleotemperatures: Gatuncillo (middle (?) to late Eocene, Panama), Uscari (early Miocene, Costa Rica), and Paraje Solo (late Miocene, Veracruz, Mexico). The composition of the floras reflect lower temperatures in the late Miocene for terrestrial environments at ca. 18°N latitude, and temperatures comparable to the present for the middle (?) to late Eocene and early Miocene at ca. 9°N latitude. These values are consistent with Tertiary paleotemperature curves derived from 18O and 13C isotope studies of marine invertebrates, and show that the global drop in temperature at the end of the Miocene affected terrestrial biotas at least as far south as 18°N latitude. Comparison of the paleobotanical data with paleotemperature curves further reveals that the late Miocene was not only a likely time for the introduction of northern temperate elements into the Latin American biota (viz., establishment of the floristic and faunal relationship between eastern United States and eastern Mexico), but that earlier times were progressively less favorable because of generally rising temperatures and more tropical conditions. Information on the Tertiary history of vegetation in the Gulf/Caribbean region is also being monitored with reference to the effect of global sea level changes, although the specific influence of these fluctuations cannot as yet be detected.  相似文献   

5.
Stable isotope results from seven Miocene Deep Sea Drilling Projects in the equatorial and southwest Pacific Ocean, previously correlated using carbon isotope stratigraphy, have been examined, discussed, and interpreted in terms of the development of the Miocene Pacific Ocean. The most obvious features of the benthonic foraminiferal stable isotopic records are a major increase inδ18O(~1.0‰) during the Middle Miocene, a series of long-term oscillations (2–3 My) of amplitude 0.5–0.75‰ and a decrease inδ13C values (0.5–;1.0‰) during the latest Miocene. Planktonic foraminiferalδ18O records show different trends for high and low latitude regions. In the equatorial Pacific, planktonicδ18O values actually decrease during the Miocene whereas in the higher southern latitudes planktonicδ18O values become more positive in response to cooling surface waters.Planktonicδ13C records show opposite trends toδ18O with the high latitude values becoming more negative relative to the tropical regions. The development of the Miocene Pacific Ocean in terms of its vertical and horizontal thermal structure and isotopic composition is well illustrated by examining changes in the isotopic difference between planktonic and benthonic foraminifera.Δδ18OB-P (Benthonic-Planktonic) is a measure of the thermal structure of the water column.Δδ18OPH-PL (high latitude-low latitude) planktonic values is a measure of the latitudinal temperature gradient.Δδ13CB-P is an indirect measure of nutrient concentrations in the water column, andΔδ13CPH-PL measures differences in surface-water nutrient concentrations between high and low latitude.Δδ18OB-P increases during the Miocene with the greatest increase occurring in the Middel Miocene at about 14 Ma. By the latest Miocene the isotopic gradient at Site 289 in the equatorial Pacific approaches the present-day isotopic gradient (about 4–5‰). An increase inΔδ18OPH-PL during the Miocene suggests that the latitudinal temperature gradient increased by about 6°C to a value of 12°C in the latest Miocene between Sites 289 (Equator) and 281 (subantarctic).Δδ13CB-P and Δδ13CPH-PL values are relatively constant through the Early Miocene but begin to increase during the Middle Miocene. Bottom-waterδ13C values respond similarly at all sites, but surface-waterδ13C values exhibit different trends because higher latitude values begin to decrease. This decrease perhaps suggests that phosphate concentrations may have increased due to increased upwelling as the circum-Antarctic circulation system evolved its present day characteristics.The isotopic data compiled in this paper suggest that the southwest Pacific was responding uniformly to some global or at least Pacific-wide control during the Early Miocene. In the Middle Miocene the response became more complex as the low and high latitudes began to show independent trends. The changes in the thermal (vertical and latitudinal) structure probably occurred in respons to the build-up of the East Antarctic ice-sheet, intensification of bottom-water circulation and an increase in zonal circulation in surface waters in the southern hemisphere.The changes inδ13C (vertical and latitudinal) gradients are due to some complex interaction of sea-level, continental hypsometry, climate, and biological processes coupled with oceanic circulation changes. A strong correlation between estimated sea-level changes andδ13C values suggests that transgressions and regressions play a critical role in controlling the flux of oxidized organic carbon enriched in12C, from the continental shelves and epicontinental seas to the open ocean.  相似文献   

6.
A widespread paleosol of Paleocene and Early Eocene age occurs in southwestern California and northwestern Baja California. The dominant quartz-kaolinite mineralogy and cation-depleted chemistry of the buried soil indicate a humid, tropical paleoclimate similar to the modern equatorial belt. Although the Paleocene—Eocene paleomagnetic latitudes are similar to the modern latitudes (36–37°N to 32–33°N, respectively), rainfall was about 125–190 cm per year and average annual temperature was about 20–25°C in marked contrast to the present annual rainfall of 25 cm and average annual temperature of 16°C.A variety of indicators in the Late Eocene sedimentary succession suggests a change to a semi-arid paleoclimate. The nonmarine portions of the Late Eocene sedimentary record are dominated by a cobble conglomerate lithosome deposited in fluvial, alluvial fan and fan delta systems. Intertongued with the conglomerate is a sandstone lithosome deposited in flood-plain and nearshore marine environments. The conglomerate clasts were transported to the depositional site via a long-distance (200–300 km), moderate gradient, braided river system mostly by flash floods. Characteristic post-depositional, in situ fracturing of conglomerate clasts probably occurred due to salt crystallization.Within the flood plain sandstones, and to a lesser degree the conglomerates, are multiple well-developed caliche horizons of probable pedogenic origin. Clay minerals from the Late Eocene rocks are dominantly vermiculite and smectite with lesser chlorite and illite; this is in marked contrast to the kaolinite that comprises the underlying Early Paleogene lateritic paleosol.The character of the Late Eocene sedimentary succession indicates a semi-arid climate. Rainfall probably did not exceed 63 cm per year; it probably was seasonal and by occasional flash floods. This paleoclimate contrasts markedly with the earlier humid tropical paleoclimate and must indicate a widespread climatic change in late Middle Eocene time.  相似文献   

7.
This study examines the efficacy of published δ18O data from the calcite of Late Miocene surface dwelling planktonic foraminifer shells, for sea surface temperature estimates for the pre-Quaternary. The data are from 33 Late Miocene (Messinian) marine sites from a modern latitudinal gradient of 64°N to 48°S. They give estimates of SSTs in the tropics/subtropics (to 30°N and S) that are mostly cooler than present. Possible causes of this temperature discrepancy are ecological factors (e.g. calcification of shells at levels below the ocean mixed layer), taphonomic effects (e.g. diagenesis or dissolution), inaccurate estimation of Late Miocene seawater oxygen isotope composition, or a real Late Miocene cool climate. The scale of apparent cooling in the tropics suggests that the SST signal of the foraminifer calcite has been reset, at least in part, by early diagenetic calcite with higher δ18O, formed in the foraminifer shells in cool sea bottom pore waters, probably coupled with the effects of calcite formed below the mixed layer during the life of the foraminifera. This hypothesis is supported by the markedly cooler SST estimates from low latitudes—in some cases more than 9 °C cooler than present—where the gradients of temperature and the δ18O composition of seawater between sea surface and sea bottom are most marked, and where ocean surface stratification is high. At higher latitudes, particularly N and S of 30°, the temperature signal is still cooler, though maximum temperature estimates overlap with modern SSTs N and S of 40°. Comparison of SST estimates for the Late Miocene from alkenone unsaturation analysis from the eastern tropical Atlantic at Ocean Drilling Program (ODP) Site 958—which suggest a warmer sea surface by 2-4 °C, with estimates from oxygen isotopes at Deep Sea Drilling Project (DSDP) Site 366 and ODP Site 959, indicating cooler than present SSTs, also suggest a significant impact on the δ18O signal. Nevertheless, much of the original SST variation is clearly preserved in the primary calcite formed in the mixed layer, and records secular and temporal oceanographic changes at the sea surface, such as movement of the Antarctic Polar Front in the Southern Ocean. Cooler SSTs in the tropics and sub-tropics are also consistent with the Late Miocene latitude reduction in the coral reef belt and with interrupted reef growth on the Queensland Plateau of eastern Australia, though it is not possible to quantify absolute SSTs with the existing oxygen isotope data. Reconstruction of an accurate global SST dataset for Neogene time-slices from the existing published DSDP/ODP isotope data, for use in general circulation models, may require a detailed re-assessment of taphonomy at many sites.  相似文献   

8.
 A core from a coral colony of Porites lutea was analysed for stable oxygen isotopic composition*. A 200-year proxy record of sea surface temperatures from the Houtman Abrolhos Islands off west Australia was obtained from coral δ18O. At 29′S, the Houtman Abrolhos are the southernmost major reef complex of the Indian Ocean. They are located on the path of the Leeuwin Current, a southward flow of warm, tropical water, which is coupled to Indonesian throughflow. Coral δ18O primarily reflects local oceanographic and climatic variability, which is largely determined by spatial variability of the Leeuwin Current. However, coherence between coral δ18O and the current strength itself is relatively weak. Evolutionary spectral and singular spectrum analyses of coral δ18O demonstrate a high variability in spectral composition through time. Oscillations in the 5–7-y, 14–15-y, and quasi-biennial bands reflect teleconnections of local sea surface temperature (SST) to tropical Pacific climate variability. Deviations between local (coral-based) and regional (instrument) SST contain a cyclic component with a period of 15 y. Coral δ18O suggests a rise in SST by 0.6 ′C since AD 1944, consistent with available instrumental SST records. A long-term warming by 1.4 ′C since AD 1795 is inferred from the coral record. Accepted: 3 July 1998  相似文献   

9.
During the early Eocene (~55–52 Ma), when the Indian subcontinent relished equatorial climatic conditions, lignite was deposited along its north western margin. Lignite mines of northwestern India have proved to be an outstanding resource for palaeoenvironmental information. The Vastan lignite mine of the early Eocene age situated near Surat district (Gujarat) is one of the well-dated and fossiliferous lignite mines in western India. A fossil wood, retrieved from this mine, is systematically described and shows a strong resemblance to the modern genus Chisocheton of the family Meliaceae. Plant fossils are the best source to reconstruct the palaeoenvironment of any region, and here a luxurious, highly diverse tropical evergreen forest is interpreted in and around the fossil locality in contrast to the tropical thorn forest of the present day. This early Eocene highly diverse equatorial forest, once covered a significant portion of the Indian subcontinent, is now restricted in fringes known as Western Ghats in south India attesting to changes in climate.  相似文献   

10.
The oxygen isotope record in Paleogene benthic Foraminifera shows that at the base of the Paleogene the ocean deep waters had a temperature of about 10°C, rising to about 12°C at the base of the Eocene and cooling between 51 Ma and 49 Ma to about 9°C. The most dramatic event occurred just after the Eocene/Oligocene boundary, at about 35.8 Ma, when ocean deep waters cooled by several degrees within 104–105 yr, probably in association with temporary glaciation in the Antarctic region. Another more intense glacial event in Antarctica may have occurred later in the Oligocene, at about 31 Ma and a third near the top of the Oligocene at 24 Ma.In the marine carbon isotope record a very rapid negative excursion occurred precisely at the Cretaceous/Tertiary boundary. A recovery to unusually positive values in the Late Paleocene was followed by a second negative excursion close to the Paleocene/Eocene boundary that was even more extreme in magnitude although it was not as rapid. These major carbon isotope events permit very accurate stratigraphic correlation; there are many other smaller features in the carbon isotope record that will also prove useful for this purpose.  相似文献   

11.
The marine ecosystem has been severely disturbed by several transient paleoenvironmental events (<200 kyr duration) during the early Paleogene, of which the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) was the most prominent. Over the last decade a number of similar events of Paleocene and Eocene age have been discovered. However, relatively little attention has been paid to pre-PETM events, such as the “Latest Danian Event” ("LDE", ~62.18 Ma), specifically from an open ocean perspective. Here we present new foraminiferal isotope (δ13C, δ18O) and faunal data from Ocean Drilling Program (ODP) Site 1210 at Shatsky Rise (Pacific Ocean) in order to reconstruct the prevailing paleoceanographic conditions. The studied five-meter-thick succession covers ~900 kyr and includes the 200-kyr-lasting LDE. All groups surface dwelling, subsurface dwelling and benthic foraminifera show a negative δ13C excursion of >0.6‰, similar in magnitude to the one previously reported from neighboring Site 1209 for benthic foraminifera. δ18O-inferred warming by 1.6 to 2.8°C (0.4–0.7‰ δ18O measured on benthic and planktic foraminiferal tests) of the entire water column accompanies the negative δ13C excursion. A well stratified upper ocean directly before and during the LDE is proposed based on the stable isotope gradients between surface and subsurface dwellers. The gradient is less well developed, but still enhanced after the event. Isotope data are supplemented by comprehensive planktic foraminiferal faunal analyses revealing a dominance of Morozovella species together with Parasubbotina species. Subsurface-dwelling Parasubbotina shows high abundances during the LDE tracing changes in the strength of the isotope gradients and, thus, may indicate optimal living conditions within a well stratified surface ocean for this taxon. In addition, distinct faunal changes are reported like the disappearance of Praemurica species right at the base of the LDE and the continuous replacement of M. praeangulata with M. angulata across the LDE.  相似文献   

12.
Detailed analyses of planktonic foraminifera at Site 17964 from the southern South China Sea (SCS) disclose that warm-water species have a higher percentage during the Holocene, while temperate-water species have a higher content for the last glacial period. Therefore, the sea surface temperature (SST) is a main factor that affects the foraminiferal assemblage at this site. A remarkable faunal variation at Site 17964 is recognized for Pulleniatina obliquiloculata over the last glacial–interglacial periods: higher P. obliquiloculata content during the glacial period and abrupt drop at the beginning of Termination I (16.5–15 kyr B.P.). The characteristic P. obliquiloculata variation can be correlated with other sites in the southern SCS and thus can be adopted as a stratigraphic tool in the region. A detailed analysis of Orbulina universa shell morphometrics at Site 17964 shows the test size from 0.83 to 1.45 mm and the shell porosity up to 36.7%, much larger than those in the Indian and Atlantic Oceans, which indicates a warmer and less saline surface water in the equatorial–tropical western Pacific. The diameter and shell porosity of O. universa increased from the last glacial to the Holocene, corresponding to the increase of SST recorded by the Uk37 alkenone index. A higher correlation coefficient (89%) between the O. universa test size and SST implies that intraspecific O. universa test size be used as an index of the sea surface temperature in the South China Sea.  相似文献   

13.
A preliminary study of the paleobiogeographic patterns of radiolarian facies during the Paleogene and subsequent time shows that:(1) Through time radiolarian assemblages display distinct faunal provincialism reminiscent of modern faunal distributions correlated with planetary temperature gradients and surface oceanic conditions. The equatorial—tropical radiolarian fauna extended apparently unrestricted across the Pacific Ocean, the Caribbean Sea and the Atlantic Ocean through Early Miocene time. In the Caribbean Sea and the Atlantic Ocean, radiolarians reached their maximum abundance in the Eocene and Oligocene. Subsequently, they gradually declined to virtual disappearance in these areas in the early Miocene. Their Pacific counterparts remained practically undisturbed, except that post early Miocene assemblages there showed a marked trend toward decreasing test thickness. This trend has since been a worldwide characteristic of Neogene radiolarian assemblages and their modern equivalents. It is postulated that the disappearance of radiolarians in the Carribean Sea and the Atlantic Ocean at the end of the Paleogene is related to the onset of the emergence of the isthmus of Panama which interrupted the preexisting oceanic circulation between the Pacific and Atlantic Oceans.(2) Throughout the Paleogene there have been marked sequential fluctuations in the radiolarian assemblages of the Caribbean Sea which indicate intermittent incursions of higher-latitude fauna in this area. Associated with the faunal fluctuations are cyclic variations in the total carbonate of the sediment with patterns also comparable in duration to Pleistocene carbonate cycles in the equatorial Pacific known to have been induced by climatic changes. Based on similarities with Pleistocene climatic cycles in the equatorial Pacific and elsewhere, it is surmised that the faunal and lithologic fluctuations observed in Paleogene radiolarian sediments were also induced by the biologic and physico-chemical processes associated with worldwide changes in the climatic conditions of that time.  相似文献   

14.
Menispermaceae are a pantropical and temperate family with an extensive fossil record during the Paleogene period, especially in North America and Europe, but with much less evidence from Asia. The latest fossil evidence indicates a succession of tropical to subtropical flora on the central Tibetan Plateau during the Paleogene. However, the biogeographic histories of these floras are still unresolved. Here, we report on endocarps and leaves of Menispermaceae from the Middle Eocene of Jianglang village, Bangor County, central Tibetan Plateau. The endocarps belong to two genera: Stephania, which is characterized by a horseshoe-shaped endocarp and with one lateral crest ornamented by spiny to rectangular ribs, and a condyle area; and Cissampelos (s.l.), which has two characteristic lateral ridges and a conspicuous external condyle. Associated leaves belong to the genus Menispermites, and are characterized by actinodromous primary venation, brochidodromous secondary veins, entire margins, and the presence of marginal secondary veins. The biogeographic history of Menispermaceae is complex, but evidence from these new fossils indicates an early diversification of the group in Asia, probably in response to the warming climate during the Eocene. The Jianglang flora appears to be part of a boreotropical flora, connecting Asia with North American and European floras during the Middle Eocene. The modern distribution of menispermaceous taxa found in Jianglang, as well as other families represented in the Jianglang flora, show that a tropical to subtropical climate occurred during the Eocene in central Tibet.  相似文献   

15.
《Palaeoworld》2020,29(4):744-751
During the Paleogene, the Earth experienced a global greenhouse climate, which was much warmer and more humid than the present climate. The present global warming is ascribed to increasing levels of atmospheric CO2 caused by human activity since the industrial revolution; therefore, knowledge of the role of atmospheric CO2 in the thermal climate during the Paleogene will be helpful for understanding current and future climate. However, unlike for the late Cenozoic, atmospheric CO2 reconstructions for the Paleogene are still inconsistent and vary between preindustrial-level to values over 4000 ppmv. In this study, we reconstructed the levels of atmospheric CO2 in the early and middle Paleocene and middle Eocene based on the stomatal index of fossil Metasequoia needles collected from four fossil sites in Canada and Japan. We found the atmospheric CO2 levels during the early and middle Paleocene to be similar to that of the present, and up to twice the present atmospheric CO2 level was found during the middle Eocene. Our estimated atmospheric CO2 level supports the hypothesis that the climate changes during the Paleogene cannot be explained merely by atmospheric CO2 variations, which suggests that atmospheric CO2 might not have always played a critical role in climate change during these ancient epochs and therefore cannot be a direct analogy for the current global warming.  相似文献   

16.
Illigera (Hernandiaceae) is a liana genus distributed mainly in the tropical Asia and Africa. Previous fossil records suggested that Illigera was restricted in western North America during the Eocene. Recent paleobotanical investigation has unveiled a Paleogene flora that is totally different from today's vegetation in central Tibet. This provides novel insights into the paleoenvironmental change during the evolution of the Tibetan Plateau (TP). Here, we investigated 10 fruit impressions of Illigera from the early middle Eocene Niubao Formation in the Bangor Basin, central TP. The fossil winged fruits are characterized by their eroded fruit wings, well preserved fusiform locular areas with a median ridge bisecting the fruit, and short veins fanning radially outward. These features allow us to assign these fossils to Illigera eocenica, a species originally discovered in the Eocene of western North America. This is the second fossil occurrence of Illigera worldwide, and the first in Asia. Our finding suggests a warm and humid climate in the central TP during the early middle Eocene, and a close floristic link between Asia and North America during the Paleogene. We also propose a Northern Hemisphere origin and a Paleogene dispersal event from Northern Hemisphere to Africa for Illigera.  相似文献   

17.
“Anilioidea” is a likely paraphyletic assemblage of pipe snakes that includes extant Aniliidae from equatorial South America, Uropeltoidea from South and Southeast Asia, and a fossil record that consists primarily of isolated precloacal vertebrae ranging from the earliest Late Cretaceous and includes geographic distributions in North America, South America, Europe, and Africa. Articulated precloacal vertebrae from the middle Eocene Bridger Formation of Wyoming, attributed to Borealilysia nov. gen., represent an unambiguous North American aniliid record and prompts a reconsideration of described pipe snakes and their resultant biogeographic histories. On the basis of vertebral apomorphies, the vast majority of reported fossils cannot be assigned to “Anilioidea”. Instead, most records represent stem taxa and macrostomatans erroneously assigned to anilioids on the basis of generalized features associated with fossoriality. A revised fossil record demonstrates that the only extralimital distributions of fossil “anilioids” consist of the North American aniliid record, and there is no unambiguous fossil record of Old World taxa. The occurrence of aniliids in the mid-high latitudes of the late early Eocene of North America is consistent with histories of northward shifts in equatorial ecosystems during the early Paleogene Greenhouse.  相似文献   

18.
The Pliocene molluscan assemblage from the Mondego Basin (Portugal, Western Iberia) plays a particularly important role in the understanding of the palaeobiogeography of Neogene–Quaternary molluscs of the Atlantic Frontage of Europe and the western Mediterranean. The importance of these Portuguese molluscan deposits is stressed, as it is the only assemblage representative of the southern portion of the Pliocene French–Iberian biogeographical Province.The Pliocene marine fossiliferous deposits of the Mondego Basin (central-west Portugal) are dated using their nannofossil and molluscan assemblages, as well as Strontium dating. The results suggest a late Zanclean to early Piacenzian age. Chronologically they are equivalent to the Mediterranean Pliocene Molluscan Unit 1 (MPMU1). However, due to the more northern geographical location of the Mondego Basin assemblages, their molluscan content is closer to that of MPMU2 than to that of MPMU1 in the Mediterranean.The presence of a stock of thermophilic taxa in the Mondego assemblage, no longer existent in European waters, enabled us to suggest a palaeoenvironmental reconstruction for mid-Pliocene SSTs in the region. We put forward the hypothesis that the SSTs at the latitude of Mondego, during late Zanclean to early Piacenzian, would be characterized by a yearly SST pattern analogous to that of present-day Cape Blanc (West Africa). Consequently, whilst subtropical conditions existed in the Atlantic Zanclean to mid-Piacenzian at Mondego latitude in the Mediterranean fully tropical conditions prevailed at that time. The Mondego SST estimates correlate with those estimated for MPMU2 in the Mediterranean.The global palaeoenvironmental reconstruction of mid-Pliocene SSTs in the PRISM2 Project suggests, for western Iberia, at Mondego latitude, an August SST of about 23 °C, and a February temperature of about 17 to 18 °C. Our hypothesis suggests similar August SST differing in only half a degree Celsius (23.5 vs. 23 °C) and February SSTs slightly higher (19 vs. 17–18 °C).  相似文献   

19.
A major deterioration in global climate occurred through the Eocene–Oligocene time interval, characterized by long-term cooling in both terrestrial and marine environments. During this long-term cooling trend, however, recent studies have documented several short-lived warming and cooling phases. In order to further investigate high-latitude climate during these events, we developed a high-resolution calcareous nannofossil record from ODP Site 748 Hole B for the interval spanning the late middle Eocene to the late Oligocene (~ 42 to 26 Ma). The primary goals of this study were to construct a detailed biostratigraphic record and to use nannofossil assemblage variations to interpret short-term changes in surface-water temperature and nutrient conditions. The principal nannofossil assemblage variations are identified using a temperate-warm-water taxa index (Twwt), from which three warming and five cooling events are identified within the middle Eocene to the earliest Oligocene interval. Among these climatic trends, the cooling event at ~ 39 Ma (Cooling Event B) is recorded here for the first time. Variations in fine-fraction δ18O values at Site 748 are associated with changes in the Twwt index, supporting the idea that significant short-term variability in surface-water conditions occurred in the Kerguelen Plateau area during the middle and late Eocene. Furthermore, ODP Site 748 calcareous nannofossil paleoecology confirms the utility of these microfossils for biostratigraphic, paleoclimatic, and paleoceanographic reconstructions at Southern Ocean sites during the Paleogene.  相似文献   

20.
The primate family, Amphipithecidae, lived during the early Cenozoic in South Asia. In this study, the diet of late middle Eocene amphipithecids from the Pondaung Formation (Central Myanmar) is characterized using three different approaches: body mass estimation, shearing quotient quantification and dental microwear analysis. Our results are compared with other Paleogene amphipithecids from Thailand and Pakistan, and to the other members of the primate community from the Pondaung Formation. Our results indicate a majority of frugivores within this primate community. Pondaungia and “Amphipithecus” included hard objects, such as seeds and nuts, in their diet. Folivory is secondary for these taxa. Myanmarpithecus probably had a mixed diet based on fruit and leaves. Contrasting results and a unique dental morphology distinguish Ganlea from other amphipithecids. These render interpretation difficult but nevertheless indicate a diet tending towards leaves and fruit. However, the anterior dentition of Ganlea suggests that this taxon engaged in seed predation, using its protruding canine as a tool to husk hard fruits and obtain the soft seeds inside. Bahinia and Paukkaungia, two other Pondaung primates, are small (<500 g) and therefore would have depended on insects as their source of protein. As such, they occupied a very different ecological niche from Pondaung amphipithecids. This primate community is then compared with the Eocene-Oligocene primate communities of the Fayum from North Africa. Similarities between the late middle Eocene Pondaung primate community and extant equatorial and tropical South American primate communities are noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号