首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rhizomatous perennial Pityopsis graminifolia was studied in a Florida sandhill community in an annually burned site, a periodically burned site, and a site that has been protected from fire since 1965. These different fire regimes significantly affected the demography and life histories of both plants and plant parts in this clonal species. Fires resulted in reductions in ramet biomass and height, and an increase in the (root + rhizome)/shoot biomass ratio. Burning also decreased the total number of flower heads and new rhizomes produced per ramet. However, the survivorship of initiated rhizomes was greater in burned sites and resulted in a larger number of established daughter ramets per clone. As a result, in burned sites there was a shift in clone structure toward larger numbers of smaller ramets, but there were no significant reductions in seed or rhizome production on a per genet basis. The results showed that the responses to fire in P. graminifolia are different when measured at the genet vs. ramet level and that the effects of fire on clones can be explained by demographic responses of plant parts. Population regeneration in the study sites was dependent on successful clonal ramet production because no seedling recruitment was observed. This suggests that disturbances other than fire are important for new genet recruitment in these clonal populations.  相似文献   

2.
Recruitment, establishment and survivorship of seed- and vegetatively-derived shoots were quantified biweekly in annually burned and infrequently burned tallgrass prairie to investigate the contributions of seed and vegetative reproduction to the maintenance and dynamics of tallgrass prairie plant populations, the demography of seedlings and ramets, and the influence of fire on the demography of grasses and forbs. Clonally produced grass and forb ramets comprised >99%of all established shoots present at the end of the growing season, whereas established seedlings accounted for <1%,emphasizing the rarity of successful seedling establishment and the importance of vegetative reproduction in driving the annual regeneration and dynamics of aboveground plant populations in tallgrass prairie. Most recruitment from vegetative reproduction occurred early in the growing season and was higher in annually burned than infrequently burned sites, although low levels of new stem recruitment occurred continuously throughout the growing season. Peak recruitment on annually burned prairie coincided with peak recruitment of the dominant C4 grasses Andropogon gerardii and Sorghastrum nutans prior to prescribed spring fire, with a second peak in recruitment occurring following fire. On infrequently burned prairie, grass and forb recruitment was highest in early April and declined steadily through May. The naturalized C3 grass, Poa pratensis, was responsible for most of the early recruitment on unburned sites, whereas A. gerardii contributed most to recruitment later in May. Infrequently burned prairie was dominated by these two grasses and contained a larger forb component than annually burned prairie. The principal demographic effect of fire was on ramet natality rather than mortality. Fire regime, plant functional group, or timing of cohort emergence before or after fire did not affect ramet survivorship. C4 grass shoots that emerged early and were damaged by fire showed similar survivorship patterns to tillers that emerged after fire. Differences in species composition between annually burned and infrequently burned prairie are driven by fire effects on vegetative reproduction and appear to be related principally to the effect of fire and detritus accumulation on the development of belowground vegetative meristems of C4 grasses and their emergence dynamics.  相似文献   

3.
Measurements of mid-season live and dead aboveground biomass are reported for a 10-yr period (1975–84) in a northeast Kansas tallgrass prairie. Study sites included shallow, rocky upland and deep, non-rocky lowland soils in annually burned (April) and unburned watersheds. Lowland sites had significantly greater live biomass than upland sites for both burned and unburned prairie for the 10-yr period. Moreover, live biomass was greater on burned than unburned lowland sites, but was not significantly increased by fire on the upland sites. Averaged across upland and lowland sites, mid-season live biomass was 422 g m–2 on annually burned and 364 g m–2 on unburned sites for the 10-yr period. Each site had its lowest live biomass value during the severe drought year of 1980 (range = 185–299 g m–2). During the study period, live biomass was most strongly correlated with seasonal pan water evaporation (r = –0.45 to –0.82), whereas dead biomass was correlated with the previous yr's precipitation (r = 0.61 and 0.90 for upland and lowland sites, respectively). When aboveground biomass was sampled throughout the 1984 season and separated into several components, biomass of the graminoids was 40% lower, whereas that of forbs and woody plants was 200–300% greater in the unburned than in the annually burned site.  相似文献   

4.
Influence of pocket gopher mounds on a Texas coastal prairie   总被引:6,自引:0,他引:6  
Summary Effects of pocket gopher (Geomys attwateri) mound-building activity on plant community composition and soil nutrient concentrations were investigated in south Texas on both burned and unburned coastal prairie sites. Pocket gophers deposited large amounts of soil which were lower in nutrient content than randomly-collected samples. Above-ground plant biomass was greater around mounds than in random samples mainly because of increased dicots around mounds on the burned area when compared with random samples on the same area. Pocket gophers may have concentrated their activities (and therefore, mounds) in areas with higher dicot biomass on the burned area since they prefer perennial dicots as food, or the presence of mounds may have ameliorated the apparent negative effect of fire on dicots.  相似文献   

5.
D. C. Hartnett 《Oecologia》1990,84(2):254-259
Summary Populations of Silphium speciosum, Vernonia baldwinii, Solidago canadensis and Pityopsis graminifolia were studied to determine whether biomass allocation to sexual and vegetative reproduction and the balance between them were size-dependent and whether interpopulation differences in allocation patterns could be predicted from differences in population size distributions. All four species showed strong linear relationships between inflorescence mass and vegetative mass with negative y-intercepts. As a result, sexual reproductive effort (SRE) was a monotonically increasing function of ramet size. Genet size was a poor predictor of SRE. In each species, the regression parameters of these relationships differed significantly between burned and unburned habitats indicating size-independent interpopulation differences in patterns of reproductive effort as well as sizedependent effects. Interpopulation variation in vegetative reproductive effort (VRE) was greater than variation in SRE, but neither VRE nor the pattern of partitioning of VRE among daughter rhizomes showed significant relationships to plant size.  相似文献   

6.
Controls of nitrogen limitation in tallgrass prairie   总被引:5,自引:0,他引:5  
Summary The relationship between fire frequency and N limitation to foliage production in tallgrass prairie was studied with a series of fire and N addition experiments. Results indicated that fire history affected the magnitude of the vegetation response to fire and to N additions. Sites not burned for over 15 years averaged only a 9% increase in foliage biomass in response to N enrichment. In contrast, foliage production increased an average of 68% in response to N additions on annually burned sites, while infrequently burned sites, burned in the year of the study, averaged a 45% increase. These findings are consistent with reports indicating that reduced plant growth on unburned prairie is due to shading and lower soil temperatures, while foliage production on frequently burned areas is constrained by N availability. Infrequent burning of unfertilized prairie therefore results in a maximum production response in the year of burning relative to either annually burned or long-term unburned sites.Foliage biomass of tallgrass prairie is dominated by C4 grasses; however, forb species exhibited stronger production responses to nitrogen additions than did the grasses. After four years of annual N additions, forb biomass exceeded that of grass biomass on unburned plots, and grasses exhibited a negative response to fertilizer, probably due to competition from the forbs. The dominant C4 grasses may out-compete forbs under frequent fire conditions not only because they are better adapted to direct effects of burning, but because they can grow better under low available N regimes created by frequent fire.  相似文献   

7.
Determinants of C3 forb growth and production in a C4 dominated grassland   总被引:2,自引:0,他引:2  
Forbs are the most abundant species within the vascular flora of tallgrass prairie and they make the greatest contribution to biodiversity of all growth forms. However, little is known about the factors that determine their productivity and growth rates. The objective of this study was to assess the controls of forb growth (absolute and relative) and production in tallgrass prairie from a long-term burning experiment at the Konza Prairie in NE Kansas. Over the 14-year study, forbs comprised 9% of the total biomass production on sites with a high fire frequency vs. 29% on the low fire frequency site, with gramminoids accounting for the remainder. Although interannual variations in peak biomass of the grasses was strongly correlated with environmental variables related to water availability, there were no similar relationships for forbs, suggesting that production of forbs and grasses responded to interannual variations in climate in different ways. Multivariate analysis of climatic controls on growth rates of grasses and forbs yielded similar results. Although forbs had low biomass and absolute growth per unit ground area in frequently burned prairie, their relative growth rates were highest in such sites. Thus, it appears that reduced growth rates of individual forbs per se do not limit forb success in annually burned prairie. Instead, direct negative effects of fire on forbs (increased mortality) may be responsible. Determinants of forb growth and productivity in unburned prairie remain unresolved.  相似文献   

8.
The effects of arbuscular mycorrhizal (AM) symbiosis on ramet and genet densities, vegetative growth rates, and flowering of three forb species were studied in native tallgrass prairie in northeastern Kansas. Mycorrhizal activity was experimentally suppressed for six growing seasons on replicate plots in an annually burned and an infrequently burned watershed with the fungicide benomyl. Benomyl reduced mycorrhizal root colonization to an average of 4.2%, approximately a two-thirds reduction relative to controls (13.7% colonization). Mycorrhizae influenced the population structure of these forbs. Although mycorrhizal suppression had no long-term effect on genet densities and no effect on ramet survivorship throughout the growing season, the number of ramets per individual was significantly increased such that ramet densities of all three species were approximately doubled in response to long-term mycorrhizal suppression. Effects of mycorrhizae on ramet growth and reproduction varied among species. Ramet growth rates, biomass, and flowering of Salvia azurea were greater in plots with active mycorrhizal symbiosis, whereas mycorrhizae reduced ramet growth rates and biomass of Artemesia ludoviciana. Aster sericeus ramet growth rates and biomass were unaffected by the fungicide applications, but its flowering was reduced.The pattern of responses of these three species to mycorrhizae differed considerably between the two sites of contrasting fire regime, indicating that the interaction of fire-induced shifts in resource availability and mycorrhizal symbiosis together modulates plant responses and the intensity and patterns of interspecific competition between and among tallgrass prairie grass and forb species. Further, the results indicate that effects of mycorrhizae on community structure are a result of interspecific differences in the balance between direct positive effects of the symbiosis on host plant performance and indirect negative effects mediated through altered competitive interactions.  相似文献   

9.
Two field experiments were designed to evaluate the importance of competition, fire, repeated disturbance, and their interactions on the vegetative and reproductive performance of the Mediterranean shrub Erica multiflora over a 2.5-yr period. In a burn experiment, fire was applied to the ground-level stumps of previously clipped 13-yr-old plants with a propane torch and competition was diminished by removal of neighboring plants. Fire resulted in a reduction of sprout vigor and biomass of flowers; mature neighbors also reduced E. multiflora sprout vigor and flowering. The interaction between fire and competition was nonsignificant. In a stand burned by a wildfire we studied the effects of regenerating neighbors on target plants by removing all neighbors or only Quercus coccifera, the most dominant species in the burned stand. In this stand we also simulated herbivory by repeatedly clipping the sprouts of E. multiflora. Regenerating neighbors did not affect target plant sprout vigor after the wildfire, but did cause a decrease in the biomass of flowers per plant. Survival decreased after repeated clipping but was not affected by neighborhood treatment. The results suggest that the importance of competition on resprouting vigor was temporally variable. Variables related to plant size rather than species determined competitive superiority: resprouting neighbors did not affect resprouting performance of target plants, but mature neighbors did. In nature, fire may directly reduce vegetative and reproductive biomass by the heating effect. But it may have an indirect positive effect on biomass, by reducing competition among plants. Frequent disturbances that removed aboveground biomass of E. multiflora had a detrimental effect on target plant survival independent of neighborhood effect.  相似文献   

10.
The influence of standing dead biomass on available solar radiation, leaf temperature (Tleaf) and leaf water potential (ѱleaf) of Andropogon gerardii in unburned tallgrass prairie was compared to burned prairie in eastern Kansas. The standing dead reduced photosynthetically active radiation incident on emerging shoots by 58.8% in unburned compared to burned prairie during the initial 30 days of the growing season. Aboveground production in unburned prairie was similarly reduced during this period (55.4%) compared to burned prairie. Leaf temperatures in A. gerardii were greater in unburned prairie than in burned early in the season, but were nearly equal by the end of the growing season. The maximum elevation of Tleaf in unburned prairie above burned was 9.5 C. The maximum unburned Tleaf measured was 41.5 C compared to 39.4 C in burned prairie. Lower windspeed adjacent to leaves in unburned prairie resulting in reduced convective cooling may have caused higher Tleaf in unburned prairie. Leaf water potential was significantly lower in unburned prairie than in burned prairie early in the season but was higher in unburned prairie by late season. The seasonal minimum ѱleaf in burned prairie was — 1.60 MPa compared to —1.45 MPa in unburned prairie. The combined effect of these post-burn differences in solar radiation, Tleaf and ѱleaf may be significant in contributing to the lower production in unburned compared to burned tallgrass prairie.  相似文献   

11.
Summary Responses to clipping and bison grazing in different environmental contexts were examined in two perennial grass species, Andropogon gerardii and Panicum virgatum, on the Konza Prairie in northeastern Kansas. Grazed tillers had lower relative growth rates (RGR) than clipped tillers following defoliation but this difference was transient and final biomass was not affected by mode of defoliation. Grazed tillers of both species had higher RGR throughout the season than ungrazed tillers, resulting in exact compensation for tissue lost to defoliation. However, A. gerardii tillers which had been grazed repeatedly the previous year (1988) had reduced relative growth rates, tiller biomass and tiller survival in 1989. This suggests that the short-term increase in aboveground relative growth rates after defoliation had a cost to future plant growth and tiller survival.In general, the two species had similar responses to defoliation but their responses were altered differentially by fire. The increase in RGR following defoliation of A. gerardii was relatively greater on unburned than burned prairie, and was influenced by topographic position. P. virgatum responses to defoliation were similar in burned and unburned prairie. Thus grazing, fire, and topographical position all interact to influence tiller growth dynamics and these two species respond differently to the fire and grazing interaction. In addition, fire may interact with grazing pattern to influence a plants' grazing history and thus its long-term performance.  相似文献   

12.
Annually burned tallgrass prairie is purported to be a nitrogen-limited system, especially when compared to unburned prairie. To test the hypothesis that legumes, potential nitrogen-fixers, would increase in relative abundance in annually burned sites, we assessed their density and biomass for two seasons on upland and lowland soils in annually burned and unburned watersheds. Total legume density was significantly higher in burned (8.0 ± 1.0 [SE] stems/m2) than in unburned watersheds (3.0 ± 0.3 stems/m2). Species with higher (P < 0.05) densities in burned than in unburned prairie included Amorpha canescens, Dalea candida, Dalea purpurea, Lespedeza violacea, Psoralea tenuiflora, and Schrankia nuttallii. Desmodium illinoense was the only legume that responded negatively to annual fire. Total legume biomass did not differ between burned (11.3 ± 1.3 g/m2) and unburned prairie (10.5 ± 0.9 g/m2). Biomass productions of Dalea candida and Psoralea tenuiflora were higher (P < 0.05) in burned than in unburned sites, but biomasses of other legumes were similar between burn treatments. Average individual stem masses of Amorpha canescens and Baptisia bracteata were significantly greater in unburned than in burned prairie. Legumes were affected differentially by topographic location. Total legume density was higher (P < 0.05) on lowland soils (6.6 ± 1.0 stems/m2) than on upland soils (4.3 ± 0.5 stems/m2). However, total legume biomass was not different between lowland soils (12.0 ± 1.2 g/m2) and upland soils (9.9 ± 1.0 g/m2). Densities and biomasses of Amorpha canescens, Desmodium illinoense, and Lespedeza capitata were higher on lowland sites than on upland sites, whereas densities and biomasses of Baptisia bracteata and Dalea purpurea were higher on upland than on lowland soils. Most legume species are either fire tolerant or exhibit a positive response to fire and their persistence in annually burned prairie suggests that they may play an important role in the nitrogen budget of this ecosystem.  相似文献   

13.
Pocket gopher (Geomyidae) disturbances are created in spatiallypredictable patterns. This may influence resource heterogeneity and affectgrassland vegetation in a unique manner. We attempt to determine the extent towhich density and spatial pattern of soil disturbances influence tallgrassprairie plant community structure and determine how these disturbances interactwith fire. To investigate the effects of explicit disturbance patterns we createdsimulated pocket gopher burrows and mounds in various spatial patterns.Simulated burrows were drilled into the soil at different densities inreplicated plots of burned and unburned prairie. Separate plots of simulatedmounds were created in burned and unburned prairie at low, medium, or high mounddensities in clumped, uniform, or random spatial dispersions. In both burned and unburned plots, increased burrow density decreasedgraminoid biomass and increased forb biomass. Total-plant and graminoid biomasswere higher in burned than unburned plots while forb biomass was higher inunburned plots. Total-plant species richness was not significantly affected byburrow density or burning treatments, but graminoid species richness increasedin unburned plots and forb species richness increased in burned plots. Plant species richness was temporarily reduced directly on mounddisturbances compared to undisturbed prairie. Over time and at larger samplingscales, the interaction of fire and mound disturbance patterns significantlyaffected total-plant and graminoid species richness. The principal effect inburned and unburned prairie was decreased total-plant and graminoid speciesrichness with increased mound disturbance intensity. Although species richness at small patch scales was not increased by anyintensity of disturbance and species composition was not altered by theestablishment of a unique guild of disturbance colonizing plants, our studyrevealed that interactions between soil disturbances and fire alter the plantcommunity dominance structure of North American tallgrass prairie primarily viachanges to graminoids. Moreover, these effects become increasingly pronouncedover time and at larger spatial sampling scales.  相似文献   

14.
Little is known about the effects of fire on the structure and species composition of Neotropical savanna seedling communities. Such effects are critical for predicting long‐term changes in plant distribution patterns in these ecosystems. We quantified richness and density of seedlings within 144 plots of 1 m2 located along a topographic gradient in long‐unburned (fire protected since 1983) and recently burned (September 2005) savannas in Brazil. These savannas differ in tree density and canopy cover. Sites along the gradient, however, did not differ in species composition prior to the fire. In recently burned savannas we also evaluated the contribution of vegetative reproduction relative to sexual reproduction by quantifying richness and density of root suckers. Finally, we tested seed tolerance to pulses of high temperatures—similar to those occurring during fires on the soil surface and below—of five dominant savanna tree species. Seedlings were more abundant and diverse in unburned than in burned savannas. Seedling species composition differed among unburned and burned savannas probably reflecting early differences in root: shoot biomass allocation patterns. In recently burned savannas, root suckers were more abundant and diverse than seedlings. Relatively long exposures (>10 min) of temperatures of 90 °C reduced seed germination in all studied species suggesting a negative effect of fire on germination of seeds located at or aboveground level. Because vegetative reproduction contributes more than sexual reproduction in burned environments, frequent fires are likely to cause major shifts in species composition of Neotropical savanna plant communities, favoring clonally produced recruits along tree density/topographic gradients.  相似文献   

15.
Rhizome meristem populations were sampled in tallgrass prairie to quantify the size, grass?:?forb composition, and temporal and spatial variability of the soil bud bank and to compare fire effects on bud bank and seed bank composition. Soil cores (10.5 cm diameter, 15 cm deep) were collected from replicate annually and infrequently burned tallgrass prairie sites, and intact rhizomes and rhizome buds were censused. Bud bank densities ranged from approximately 600 to 1800 meristems/m(2) among sites and had high spatial and seasonal variability. In annually burned prairie, the total bud bank density was two-fold greater and the grass?:?forb meristem ratio was more than 30-fold greater than that of infrequently burned prairie. These patterns are opposite those observed in soil seed banks at this site. The rhizome population in annually burned prairie was 34% larger than the established aboveground tiller population. By contrast, the bud bank density in unburned prairie was significantly lower than aboveground stem densities, indicating possible belowground meristem limitation of stem density and net primary production on infrequently burned prairie. The patterns observed in this study suggest that the densities and dynamics of tallgrass prairie plant populations, as well as their response to disturbance (e.g., fire and grazing) and climatic variability, may be mediated principally through effects on the demography of belowground bud populations. Patterns of seed reproduction and seed bank populations have little influence on short-term aboveground population dynamics of tallgrass prairie perennials.  相似文献   

16.
Fire frequencies are currently increasing in many regions across the world as a result of anthropic activities, affecting ecological processes and plant population dynamics. Fire can generate important changes in soil properties, altering nutrient dynamics and thereby plant growth. Here we analyse fire frequency effects on soil quality and plant traits of three native perennial herbaceous plants (Cologania broussonetii, Desmodium uncinatum and Rhynchosia edulis; Fabaceae) with the capacity for biological N2 fixation that resprouts and are abundant after fire in Chaco Serrano forests. Based on 22‐year fire history, we assessed plant traits in sites with low and high fire frequencies along with unburned scenarios. We found significantly lower water content, nitrates and electrical conductivity in frequently burned soils. As a result, the three species showed consistently lower leaf area and specific leaf area in both fire frequencies, implying lower growth rates in comparison to unburned sites. However, total leaf biomass was not affected by fire, leaf phosphorus concentration was higher in R. edulis in high fire frequency and leaf N concentration was twice as large in plants growing in sites of high fire frequency in C. broussonetii and R. edulis. Such an increase in N and phosphorus concentrations is likely a result of both their conservative use of resources and their biological N2 fixation capacity. To our knowledge, this is the first record of such contrasting fire effects observed consistently in three co‐occurring species: while plant growth decreased with fire frequency, leaf nutritional traits remain unchanged or increased in frequently burned sites. Quality‐depleted and drier soils that result from increased fire frequencies may not only affect trait variation at the intraspecific level but can also drive to a homogenization of the plant community, selecting species with particular combinations of morphological and functional traits.  相似文献   

17.
Wildfires are a typical event in many Australian plant communities. Vesicular-arbuscular mycorrhizal (VAM) fungi are important for plant growth in many communities, especially on infertile soils, yet few studies have examined the impact of wildfire on the infectivity of VAM fungi. This study took the opportunity offered by a wildfire to compare the infectivity and abundance of spores of VAM fungi from: (i) pre-fire and post-fire sites, and (ii) post-fire burned and unburned sites. Pre-fire samples had been taken in May 1990 and mid-December 1990 as part of another study. A wildfire of moderate intensity burned the site in late December 1990. Post-fire samples were taken from burned and unburned areas immediately after the fire and 6 months after the fire. A bioassay was used to examine the infectivity of VAM fungi. The post-fire soil produced significantly less VAM infection than the pre-fire soil. However, no difference was observed between colonization of plant roots by VAM fungi in soil taken from post-fire burned and adjacent unburned plots. Soil samples taken 6 months after the fire produced significantly more VAM than corresponding soil samples taken one year earlier. Spore numbers were quantified be wet-sieving and decanting of 100-g, air-dried soil subsamples and microscopic examination. For the most abundant spore type, spore numbers were significantly lower immediately post-fire. However, no significant difference in spore numbers was observed between post-fire burned and unburned plots. Six months after the fire, spore numbers were the same as the corresponding samples taken 1 year earlier. All plants appearing in the burned site resprouted from underground organs. All post-fire plant species recorded to have mycorrhizal associations before the fire had the same associations after the fire, except for species of Conospermum (Proteaceae), which lacked internal vesicles in cortical cells in the post-fire samples.  相似文献   

18.
The effects of disturbance on reproduction and plant and seed bank dynamics in the perennial herb Bonamia grandiflora were studied by comparing populations in recently burned, mechanically disturbed, and undisturbed habitats in central Florida over a 3-year period. Plant densities, seed production, and the occurrence of herbivory and predispersal seed predation varied considerably between sites and between years, with recently disturbed sites supporting the densest and most dynamic populations. Death of established plants was rare in all sites. In each site, the soil seed bank was several-fold larger than single season seed rains suggesting that B. grandiflora seeds are long-lived and accumulate in the soil. There was no evidence that postdispersal predation or pathogens have any significant influence on the seed bank dynamics. Fire resulted in large increases in stem densities due to both increased clonal stem production and new genet recruitment from seed. Burning also caused significant increases in the percentage of flowers producing seed and the numbers of capsules and seeds per plant. The seed rain was ten to thirty times greater in the burned site relative to adjacent unburned site during the 3 years after burning. However, additions to the seed bank from the postfire seed rain were balanced by equivalent losses due primarily to seed mortality during fire, and to a much lesser extent due to germination and new genet establishment. As a result, the subsequent densities of seeds stored in the soil in these two sites were similar, indicating that fire results in a significant turnover in the seed bank population but no immediate change in its size. These effects on seed bank dynamics, in addition to new genet recruitment, suggest that periodic fires may play an important role in the maintenance of genetic variability as well as the size of these populations.  相似文献   

19.
Photosynthetic pigments and several structural characteristics were measured in leaves of Andropogon gerardii from tallgrass prairie populations in an unburned, low-irradiance site and a burned, high-irradiance site to determine if these species displayed sun/shade differences similar to those documented in forest species. Early in the growing season, leaves of A. gerardii in the low-irradiance, unburned site had significantly lower stomatal density, pore length, and conductance, as well as specific leaf mass and thickness than leaves from the high-irradiance, burned site. Moreover, the chlorophyll a:b ratio, carotenoid content, and bundle sheath-vascular complex area were significantly lower, but chlorophyll content (mass/mass) was greater in leaves in unburned vs. burned sites. These differences are consistent with sun/shade adaptations reported for forest understory plants and may contribute to the low productivity of A. gerardii in unburned tallgrass prairie.  相似文献   

20.
Three tallgrass prairie plant species, two common perennial forbs (Artemisia ludoviciana and Aster ericoides [Asteraceae]) and a dominant C(4) perennial grass (Sorghastrum nutans) were studied under field and greenhouse conditions to evaluate interspecific variation in grazing tolerance (compensatory growth capacity). Adaptation to ungulate grazing was also assessed by comparing defoliation responses of plants from populations with a 25-yr history of no grazing or moderate ungulate grazing. Under field conditions, all three species showed significant reductions in shoot relative growth rates (RGR), biomass, and reproduction with defoliation. In the two forbs, clipping resulted in negative shoot RGR and reductions in both number and length of shoot branches per ramet. Sorghastrum nutans maintained positive RGR under defoliation due to a compensatory increase in leaf production. Defoliation reduced rhizome production in A. ericoides and S. nutans, but not in A. ludoviciana. Clipping significantly reduced sexual reproductive allocation in all three species, although S. nutans showed a smaller reduction than the forbs. All three species showed similar responses to defoliation in burned and unburned sites. Under greenhouse conditions, a similar clipping regimen resulted in smaller reductions in growth and reproduction than those observed in the field. For all three species, the grazing tolerance indices calculated under natural field conditions were significantly lower than those estimated from greenhouse-grown plants, and the interspecific patterns of grazing tolerance were different. Aster ericoides exhibited the highest overall defoliation tolerance under greenhouse conditions, followed by S. nutans. Artemisia ludoviciana, the only study species that is typically not grazed by ungulates in the field, showed the lowest grazing tolerance. In the field experiment S. nutans showed the highest grazing tolerance and the two forbs had similar low tolerance indices. These patterns indicate that, despite high compensatory growth potential, limited resource availability and competition in the field significantly reduce the degree of compensation and alter interspecific differences in grazing tolerance among prairie plants. In all three species, defoliation suppressed sexual reproduction more than growth or vegetative reproduction. Significant interactions between plant responses to defoliation and site of origin (historically grazed or ungrazed sites) for some response variables (root/shoot ratios, rhizome bud initiation, and reproductive allocation) indicated some degree of population differentiation and genetic adaptation in response to a relatively short history of ungulate grazing pressure. The results of this study indicate that patterns of grazing tolerance in tallgrass prairie are both genetically based and also environmentally dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号