首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Peroxiredoxin 5 (PRDX5) is a thioredoxin peroxidase able to reduce hydrogen peroxide, alkyl hydroperoxides and peroxynitrite. In human, PRDX5 was reported to be localized in the cytosol, the mitochondria, the peroxisomes and the nucleus. Mitochondrial localization results from the presence of an N-terminal mitochondrial targeting sequence (MTS). Here, we examined the conservation of mitochondrial localization of PRDX5 in animal species. We found that PRDX5 MTS is present and functional in the annelid lugworm Arenicola marina. Surprisingly, although mitochondrial targeting is well conserved among animals, PRDX5 is missing in mitochondria of domestic pig. Thus, it appears that mitochondrial targeting of PRDX5 may have been lost throughout evolution in animal species, including pig, with unknown functional consequences.  相似文献   

2.
Two burgeoning research trends are helping to reconstruct the evolution of the Hox cluster with greater detail and clarity. First, Hox genes are being studied in a broader phylogenetic sampling of taxa: the past year has witnessed important new data from teleost fishes, onychophorans, myriapods, polychaetes, glossiphoniid leeches, ribbon worms, and sea anemones. Second, commonly accepted notions of animal relationships are being challenged by alternative phylogenetic hypotheses that are causing us to rethink the evolutionary relationships of important metazoan lineages, especially arthropods, annelids, nematodes, and platyhelminthes.  相似文献   

3.
Release of reactive oxygen species (ROS), measured as the sum of hydrogen peroxide (H2O2) and superoxide anion radical (), from respiring rat heart and skeletal muscle mitochondria was significantly decreased by millimolar concentrations of GTP or GDP. Attempts to differentiate between the two forms of ROS showed that the release of rather than that of H2O2 was affected. Meanwhile, intramitochondrial ROS accumulation, measured by inactivation of aconitase, increased. These results suggest that guanine nucleotides inhibit the release of from mitochondria. As these nucleotides are known inhibitors of uncoupling proteins (UCPs), it is proposed that UCPs may function as carriers of , thus enabling its removal from the matrix compartment.  相似文献   

4.
Analysis of sequence information from RNA-based replication systems continues to challenge the computational molecular biology community. Recent sequence data from the study of primate lentiviruses indicate that extreme sequence heterogeneity, recombination, and cross-species transmissions are all observed in HIV evolution. These types of events will continue to make the development of effective anti-retroviral therapies difficult.  相似文献   

5.
Sun M  Shen X  Liu H  Liu X  Wu Z  Liu B 《Marine Genomics》2011,4(3):159-165
Mitochondrial genomes play a significant role in the reconstruction of phylogenetic relationships within metazoans. There are still many controversies concerning the phylogenetic position of the phylum Bryozoa. In this research, we have finished the complete mitochondrial genome of one bryozoan (Tubulipora flabellaris), which is the first representative from the class Stenolaemata. The complete mitochondrial genome of T. flabellaris is 13,763 bp in length and contains 36 genes, which lacks the atp8 gene in contrast to the typical metazoan mitochondrial genomes. Gene arrangement comparisons indicate that the mitochondrial genome of T. flabellaris has unique gene order when compared with other metazoans. The four known bryozoans complete mitochondrial genomes also have very different gene arrangements, indicates that bryozoan mitochondrial genomes have experienced drastic rearrangements. To investigate the phylogenetic relationship of Bryozoa, phylogenetic analyses based on amino acid sequences of 11 protein coding genes (excluding atp6 and atp8) from 26 metazoan complete mitochondrial genomes were made utilizing Maximum Likelihood (ML) and Bayesian methods, respectively. The results indicate the monopoly of Lophotrochozoa and a close relationship between Chaetognatha and Bryozoa. However, more evidences are needed to clarify the relationship between two groups. Lophophorate appeared to be polyphyletic according to our analyses. Meanwhile, neither analysis supports close relationship between Branchiopod and Phoronida. Four bryozoans form a clade and the relationship among them is T. flabellaris + (F. hispida + (B. neritina + W. subtorquata)), which is in coincidence with traditional classification system.  相似文献   

6.
A new hadrosaurid dinosaur, Arenysaurus ardevoli gen. et sp. nov., from the Late Maastrichtian of Aren (Huesca, South-central Pyrenees) is described on the basis of a partial, articulated skull, mandibular remains and postcranial elements, including vertebrae, girdle and limb bones. Arenysaurus is characterized by having a very prominent frontal dome; nearly vertical prequadratic (squamosal) and jugal (postorbital) processes, and deltopectoral crest of the humerus oriented anteriorly. Moreover, it possesses a unique combination of characters: short frontal (length/width approximately 0.5); midline ridge of parietal at level of the postorbital-squamosal bar; parietal excluded from the occiput; squamosal low above the cotyloid cavity. A phylogenetical analysis indicates that Arenysaurus is a rather basal member of Lambeosaurinae and the sister-taxon to Amurosaurus and the Corythosaurini-Parasaurolophini clade. The phylogenetic and biogeographical relationships of Arenysaurus and other lambeosaurines suggest a palaeogeographical connection between Asia and Europe during the Late Cretaceous.  相似文献   

7.
6-Phosphofructo-1-kinase (PFK-1), a major regulatory enzyme in the glycolysis pathway, is a cytoplasmic enzyme with complicated allosteric kinetics. Here we investigate the effects of lipids on the activity of PFK from Bacillus stearothermophilus (BsPFK), to determine whether BsPFK shares any of the membrane binding or lipid binding properties reported for some mammalian PFKs. Our results show that large unilamellar vesicles (LUVs) composed of either the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or of 1:1 (mole ratio) DOPC and the fatty acid, oleic acid (OA), cause a three-fold increase in Vmax, depending on the lipid concentration and vesicle composition, but no change in Km. Further studies show lipids do not reverse the allosteric inhibitory effects of phosphoenolpyruvate (PEP) on BsPFK. SDS/PAGE studies do not show significant binding of the BsPFK tetramer to the surface of the phospholipid vesicles, suggesting that modulation of catalytic activity is due to binding of lipid monomers. By simulating the kinetics of BsPFK interaction with vesicles and lipid monomers we conclude that the change in BsPFK catalytic activity with respect to lipid concentration is consistent with monomer abstraction from vesicles rather than direct uptake of lipid monomers from solution.  相似文献   

8.
Glucose infusion into rats causes skeletal muscle insulin resistance that initially occurs without changes in insulin signaling. The aim of the current study was to prolong glucose infusion and evaluate other events associated with the transition to muscle insulin resistance. Hyperglycemia was produced in rats by glucose infusion for 3, 5 and 8 h. The rate of infusion required to maintain hyperglycemia was reduced at 5 and 8 h. Glucose uptake into red quadriceps (RQ) and its incorporation into glycogen decreased between 3 and 5 h, further decreasing at 8 h. The earliest observed change in RQ was decreased AMPKα2 activity associated with large increases in muscle glycogen content at 3 h. Activation of the mTOR pathway occurred at 5 h. Akt phosphorylation (Ser473) was decreased at 8 h compared to 3 and 5, although no decrease in phosphorylation of downstream GSK-3β (Ser9) and AS160 (Thr642) was observed. White quadriceps showed a similar but delayed pattern, with insulin resistance developing by 8 h and decreased AMPKα2 activity at 5 h. These results indicate that, in the presence of a nutrient overload, alterations in muscle insulin signaling occur, but after insulin resistance develops and appropriate changes in energy/nutrient sensing pathways occur.  相似文献   

9.
10.
Staurosporine (Stp) is an inhibitor of protein kinase C (PKC) that has been used to address the role of this enzyme in a variety of cells. However, Stp can also inhibit protein tyrosine kinases (PTK). We have investigated the effects of Stp on the InsP3- (using mAb C305 directed against the β chain of the T cell receptor (TcR)/CD3 complex) and the thapsigargin (Tg)-dependent release and influx of Ca2+ in human (Jurkat) T cells. The addition of Stp (200 nM) during the sustained phase of the TcR-dependent Ca2+ response resulted in a rapid inhibition of the influx of Ca2+ that was not seen when Ca2+ mobilization was triggered by Tg (1 μM). When the cells were preincubated with Stp (200 nM), there was an inhibition of the mAb C305- but not the Tg-dependent Ca2+ response. The effect of Stp was not the result of the inhibition of PKC as shown by down-regulation of PKC and with the use of the specific PKC inhibitor bis-indolyl maleimide GF 109203X. The effect of Stp on the entry of Ca2+ in activated (mAb C305) Jurkat lymphocytes was dose-related and was not the result of a direct inhibition of plasma membrane Ca2+ channels based on an absence of effect on the Tg-dependent entry of Ca2+ and the use of Ca2+ channel blockers (econazole and Ni2+). These blockers terminated the influx of Ca2+ but the Tg-sensitive Ca2+ reserves were not refilled in marked contrast to the effect of Stp. Quantification of InsP3 revealed that the addition of Stp resulted in an approximate 40% reduction in mAb C305-activated Jurkat cells. The effects of Stp can be explained as follows. Stp decreases the mAb C305-induced production of InsP3 by inhibiting the TcR/CD3-dependent activation of PTK associated with the stimulation of phospholipase C-γ1. A decrease in [InsP3] without a return to baseline is sufficient to close the InsP3 Ca2+ channel, endoplasmic Ca2+ ATPases use the incoming Ca2+ to refill the Ca2+ pools and that terminates the capacitative entry of Ca2+. A simple kinetic model reproduced the experimental data.  相似文献   

11.
Gooding, R. H., and McIntyre, G. S. 1998.Glossina morsitans morsitansandGlossina palpalis palpalis: Dosage compensation raises questions about the Milligan model for control of trypanosome development.Experimental Parasitology90, 244–249. Evidence that dosage compensation occurs in tsetse flies was obtained by comparing the activities of X chromosome-linked enzymes, arginine phosphokinase and glucose-6-phosphate dehydrogenase inGlossina m. morsitansand hexokinase and phosphoglucomutase inGlossina p. palpalis, with the activity of an autosome-linked enzyme, malate dehydrogenase, in each species. The shortcomings of the X chromosome model for the control ofTrypanozoonmaturation in tsetse are discussed in light of these findings and previously published reports on the lack of fitness effects of matureTrypanozooninfections in tsetse and on published results on antitrypanosomal factors in male and female tsetse flies.  相似文献   

12.
The polymers chondroitin sulphate and dermatan sulphate have been fragmented by an anhydrous hydrazine/nitrous acid procedure. The resulting disaccharides from the polymer repeat sequences were reduced with NaBH4 and purified by ion exchange chromatography. Whereas enzymatic depolymerisation leads to the loss of the distinction between glucuronic and iduronic acids of CS and DS in the resultant disaccharides, nitrous acid depolymerisation retains these structures. Complete 1H and 13C NMR data have been derived for the major components which were shown to have the structures: GlcA-(β1→3)-anTal6S-ol (I) and l-IdoA-(α1→3)-anTal4S-ol (II), where anTal-ol represents (2,5)anhydro-d-talitol and 6S/4S represent O-ester sulphate groups at C-6/C-4 sites.  相似文献   

13.
Wang Y  Guo R  Li H  Zhang X  Du J  Song Z 《Marine Genomics》2011,4(3):221-228
The complete mitochondrial DNA genome of the Sichuan taimen (Hucho bleekeri) was determined by the long and accurate polymerase chain reaction (LA-PCR) and primer walking sequence method. The entire mitochondrial genome of this species is 16,997 bp in length, making it the longest among the completely sequenced Salmonidae mitochondrial genomes. It consists of two ribosomal RNA (rRNA) genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes, and one control region (CR). The gene arrangement, nucleotide composition, and codon usage pattern of the mitochondrial genome are similar to those of other teleosts. A T-type mononucleotide microsatellite and an 82 bp tandem repeat were identified in the control region, which were almost identical among the three H. bleekeri individuals examined. Both phylogenetic analyses based on 12 concatenated protein-coding genes of the heavy strand and on just the control region show that H. bleekeri is a basal species in Salmoninae. In addition, Salmo, Salvelinus and Oncorhynchus all represent monophyletic groups, respectively. All freshwater species occupied basal phylogenetic positions, and also possessed various tandem repeats in their mitochondrial control regions. These results support established phylogenetic relationships among genera in Salmonidae based on morphological and molecular analyses, and are consistent with the hypothesis that Salmonidae evolved from freshwater species.  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号