首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The differentiation of the axons in the cat myenteric ganglia of the gastro-intestinal sphincters has been examined during pre- and postnatal development. The quantitative analysis has been also used. The differentiation of the axons was a prolonged process that advanced parallel to the maturation of the myenteric nerve perikarya and dendrites. The early fetal period was marked by axonal growth cones. Regardless of the fact that during the development their frequency decreased at the expense of axon varicosities, growth cones were also observed in the first postnatal month. The formation of the axon varicosities was intensive in the late fetal period and in the first weeks after birth. This was judged from the changes in the volume fraction of the varicosities to total neuropil and the number of the varicosities per 100 sp x micrometer of neuropil. The maturation of the varicosities exhibited a longer course which was evident from the changes in the number of the vesicles and in the varicosity area. The cholinergic varicosities differentiated first and most quickly. The so-called p-type varicosities appeared as early as the fetal period, but their number continued to increase after birth. The adrenergic varicosities developed most slowly, which was confirmed by the experiments with 6-OHDA. The axons differentiated with a different speed in the three sphincters examined.  相似文献   

2.
The ultrastructure and acetylcholinesterase activity of the intrinsic innervation of the sphincter of Oddi of eight adult dogs was studied by electron microscopy. A rich distribution of unmyelinated axons embedded individually or as groups within Schwann cell cytoplasm ("innervation fasciculee"), is to be observed. A few myelinated fibres were also observed. Many of the axons are acetylcholinesterase-positive. Three main types of nerve terminals are distinguished according to their vesicle populations. Individual nerve cells or small groups of nerve cells were scattered between the smooth muscle bundles and in the lamina glandularis mucosae. The cytoplasm of some neurons contains many electron dense spherical bodies resembling "myeloid bodies", and many lysosomes. Nerve terminals synapse onto both neuronal perikarya and their dendrites. Within the nerve fascicles, close appositions between the terminals occur frequently probably representing the most peripheral inter-neuronal integrative link in the neural regulation of the function of the sphincter of Oddi. -- The gap between nerve terminals and smooth muscle cells usually measures several thousands of A. Closer appositions are seldom seen, and no synaptic complexes can be observed.  相似文献   

3.
The neuron morphology and distribution of four putative transmitters were investigated in the myenteric plexus of frog (Rana esculenta) midgut. The gross morphology was revealed by NADH-diaphorase histochemistry, and the shape of the neurons by silver impregnation. Nerve cells had heterogeneous distribution: they either formed ganglia or placed as solitary neurons in the duodenum, while in the rest of the midgut only solitary neurons were observed. Three morphologically distinct cell types were revealed by silver impregnation: mainly type I and type II neurons cells were seen in the duodenum, while the rest of the intestine contained type II and III cells. Catecholamine fluorescence was revealed in nerve fibres in the duodenum, while few small nerve cells were observed in the small intestinal region. Acetylcholinesterase histochemistry showed strongly reactive nerve cells that were associated with the main fibre bundles in the duodenum. Only longitudinally oriented fibres and occasionally stained neurons were seen in the small intestine. Substance P immunocytochemistry revealed an extensive plexus, which contained a moderate number of stained perikarya in the full length of the midgut. Gamma-aminobutyric acid showed non-uniform distribution in the two parts of the midgut: a stronger and more regular fibre staining was found in the duodenum then in the rest of the intestine. Ultrastructural observations demonstrated that intrinsic neurons received synaptic inputs from the profiles contained agranular vesicles, while "P"-type profiles established close contacts with neurons. Both profile types formed close contacts with the smooth muscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Summary The shapes of myenteric neurons in the guineapig small intestine were determined after injecting living neurons with the dye Lucifer yellow via a microelectrode. The cells were fixed and the distribution of Lucifer yellow rendered permanent by an immunohistochemical method. Each of 204 nerve cells was examined in whole-mount preparations of the myenteric plexus and drawn using a camera lucida at 1250 x magnification. Four cell shapes were distinguished: (1) neurons with several long processes corresponding to type II of Dogiel; (2) neurons with a single long process and lamellar dendrites corresponding to type I of Dogiel; (3) neurons with numerous filamentous dendrites; and (4) small neurons with few processes. About 15% of the neurons could not be placed into these classes or into any single class. The type II neurons (39% of the sample) had generally smooth somata and up to 7 (average 3.3) long processes, most of which ran circumferentially. Dogiel type I neurons (34% of sampled neurons) had characteristic lamellar dendrites, i.e., broad dendrites that were flattened in the plane of the plexus. The filamentous neurons (7% of the sample), had, on average, 14 fine processes up to about 50 m in length. Small neurons with smooth outlines and a few fine processes made up 5% of the neurons encountered. We conclude that myenteric neurons that have been injected with dye can be separated into morphologically distinct classes and that the different morphological classes probably correspond to different functional groupings of neurons.  相似文献   

5.
The intramural projections of nerve cells containing serotonin (5-HT), calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and nitric oxide synthase or reduced nicotinamide adenine dinucleotide phosphate diaphorase (NOS/NADPHd) were studied in the ascending colon of 5- to 6-week-old pigs by means of immunocytochemistry and histochemistry in combination with myectomy experiments. In control tissue of untreated animals, positive nerve cells and fibres were common in the myenteric and outer submucous plexus and, except for 5-HT-positive perikarya, immunoreactive cell bodies and fibres were also observed in the inner submucous plexus. VIP- and NOS/NADPHd-positive nerve fibres occurred in the ciruclar muscle layer while VIP was also abundant in nerve fibres of the mucosal layer. 5-HT- and CGRP-positive nerve fibres were virtually absent from the aganglionic nerve networks. In the submucosal layer, numerous paravascular CGRP-immunoreactive (IR) nerve fibres were encountered. Myectomy studies revealed that 5-HT-, CGRP-, VIP- and NOS/NADPHd-positive myenteric neurons all displayed anal projections within the myenteric plexus. In addition, some of the serotonergic myenteric neurons projected anally to the outer submucous plexus, whereas a great number of the VIP-ergic and nitrergic myenteric neurons send their axons towards the circular muscle layer. The possible function of these nerve cells in descending nerve pathways in the porcine colon is discussed in relation to the distribution pattern of their perikarya and processes and some of their morphological characteristics.  相似文献   

6.
The localization of alpha-D-mannosidase in the rat cerebellum was studied by using indirect immunohistochemistry at both optical and electron microscopic levels. In the adult the enzyme is particularly concentrated in the dendrites and cell bodies of Purkinje cells, basket cells, and Golgi neurons in the cerebellar cortex and in the cytoplasm and dendrites of deep nuclei neurons. The cytoplasm of granule cells is poorly stained, whereas parallel fibers, white matter, Bergman fibers, and Golgi epitheloid cell perikarya show virtually no staining. Electron microscopy suggests that most of the staining is found in the cytosol, although some staining is found in the postsynaptic densities of the synapses between parallel fibers and Purkinje dendrites. The pattern of staining was followed throughout the postnatal development of the rat cerebellum. At bith an intense and diffuse staining is found in all cells except those of the external germinative layer. At the 6th postnatal day, Purkinje cell bodies and apical cones are strongly labeled. From the 13th day on the pattern is very similar to that found in the adult. However, at the 18th postnatal day (when compared with the other structures), the staining of Purkinje cell dendrites seems to be higher than at all other ages. These data are correlated with biochemical studies and discussed in relation to the possible role of this enzyme during the postnatal development of the rat cerebellum.  相似文献   

7.
Summary The ultrastructural localization and relations of substance P- and met-enkephalin-labeled neuronal structures were examined in the wall of the human gastric antrum during early fetal life. By 14–16 weeks of gestation, clearly discernable neural plexuses and a well developed external muscle coat were present. In the submucous coat, neural plexuses varied from immature forms consisting of 1–4 neurites partially enveloped by Schwann cell processes to more mature plexuses where neurons were completely enclosed by Schwann cell processes. Neuronal profiles with substance P- and met-enkephalin-like immunoreactivities were observed in the submucous plexus. In the myenteric plexus met-enkephalin-like immunoreactivity was seen within cell bodies and neurites. By contrast, although substance P-like immunoreactivity was observed in neurites in the myenteric plexus, no substance P-labeled somata could be identified. Unlabeled terminals were seen in contact with both unlabeled dendrites and met-enkephalinergic neurons. An increase in electron density was observed at the sites of contact. These structures probably represent early stages in the development of synaptic specializations. In addition, met-enkephalin-labeled varicosities were seen in apposition to smooth muscle cells of the circular muscle coat. This suggests that antral smooth muscle cells are directly innervated by met-enkephalin neurons.  相似文献   

8.
Cytodifferentiation of the paraventricular nucleus in the chick embryo   总被引:1,自引:0,他引:1  
The developmental changes in the cytoarchitecture of the hypothalamic paraventricular nucleus of the chick embryo were studied with particular emphasis on the differentiation of the magnocellular neurons. These cells can be distinguished from the parvocellular elements starting from stages 34--35 (Hamburger and Hamilton 1951) in Golgi-impregnated specimens. At the same stages, electron microscopy reveals dense-core granules, resembling the characteristic elementary granules of the neurosecretory material in the cytoplasm of the larger neurons. In addition, a few immature synapses were observed on these magnocellular perikarya. The present observations suggest that the early onset of neurosecretion in this area may be neurally regulated during early phases of development.  相似文献   

9.
Summary The development and maturation of Langerhans cells during the differentiation of skin was studied in mice from fetal day 13 to adult using 3 indices: (1) ATPase activity; (2) ultrastructure; and (3) quantitative evaluation of the cell population.ATPase-positive Langerhans cells appeared in the epidermis at first at fetal day 16, and they increased in number in the differentiating epidermis during the late fetal period. The earliest appearance of Birbeck granules was at postnatal day 4. Cored tubules were also formed in the Langerhans cells in the dermis at around the same age. The cells containing Birbeck granules or cored tubules are considered to be mature Langerhans cells. In the Langerhans-cell lineage, those cells in the epidermis at stages earlier than postnatal day 4 and not yet containing specific organelles are considered to be immature Langerhans cells. These immature Langerhans cells can be identified ultrastructurally in the epidermis at fetal day 16, coinciding with the appearance of ATPase-positive cells. The increase in the number of immature Langerhans cells during the perinatal period was shown by quantitative analysis of nuclear density and relative Langerhans-cell area on the electron micrographs.It is concluded that ATPase is a marker of the Langerhans-cell lineage from the early development stages, while Birbeck granules and cored tubules are markers that identify mature Langerhans cells in electron micrographs.  相似文献   

10.
Synopsis Sympathetic ganglia of 13 to 19-week-old human foetuses were cultured in small pieces with and without nerve growth factor for up to 5 weeksin vitro. The cultures were studied using phase-contrast, fluorescence and electron microscopy. Monoamines were demonstrated with the formaldehyde-induced fluorescence method, with and without pretreatment of the cultures with catecholamines or monoamine oxidase inhibitor.In the long-term cultures, primitive sympathetic cells, sympathicoblasts of types I and II, and young sympathetic neurons showed a fine structure identical to that described earlierin vivo. There were virtually no satellite or Schwann cells in the cultures. The neurons showed a considerable capacity to grow new nerve fibres in culture, even without nerve growth factor. Nerve terminals with accumulations of other nervous structures. Large granular vesicles were regularly found in the sympathicoblasts after glutaraldehyde-osmium tetroxide fixation. After permanganate fixation, dense-cored vesicles typical of adrenergic neurons were not seen, either in the perikarya, or in the processes, although it was possible to demonstrate specific fluorescence. No small intensely fluorescent (SIF) cells were observed.Variable formaldehyde-induced fluorescence was observed in the nerve cell perikarya and nerve fibres. The intensity of the fluorescence increased after treatment of the cultures with monoamine oxidase inhibitor and after incubation with catecholamines.  相似文献   

11.
Spinal ganglial of human embryos and fetuses ranging in C.-R. length from 15 to 74 mm and in age from 6 1/2 to 11 postovulatory weeks were studied by light and electron microscopy. A sequence of events in differentiation and maturation enabled five types of cells to be distinguished: 1. apolar, undifferentiated neuroblasts are the main cells at 6 1/2 to 7 1/2 weeks; 2. early bipolar neuroblasts (strictly speaking, types 2 to 5 are immature neurons) predominate at the end of the embryonic period proper (8 postovulatory weeks); 3. intermediate bipolar neuroblasts are characteristic of the early fetal period; 4. late bipolar neuroblasts, in which two proceses arise separately from one pole of the cell, appear at about 10 postovulatory weeks; 5. unipolar neuroblasts are found within another week and, by that time, cells of types 1 and 2 are no longer present.  相似文献   

12.
Guan JL  Wang QP  Hori T  Takenoya F  Kageyama H  Shioda S 《Peptides》2004,25(8):1307-1311
The ultrastructural properties of orexin 1-receptor-like immunoreactive (OX1R-LI) neurons in the dorsal horn of the rat spinal cord were examined using light and electron microscopy techniques. At the light microscopy level, the most heavily immunostained OX1R-LI neurons were found in the ventral horn of the spinal cord, while some immunostained profiles, including nerve fibers and small neurons, were also found in the dorsal horn. At the electron microscopy level, OX1R-LI perikarya were identified containing numerous dense-cored vesicles which were more heavily immunostained than any other organelles. Similar vesicles were also found within the axon terminals of the OX1R-LI neurons. The perikarya and dendrites of some of the OX1R-LI neurons could be seen receiving synapses from immunonegative axon terminals. These synapses were found mostly asymmetric in shape. Occasionally, some OX1R-LI axon terminals were found making synapses on dendrites that were OX1R-LI in some cases and immunonegative in others. The synapses made by OX1R-LI axon terminals were found both asymmetric and symmetric in appearance. The results provide solid morphological evidence that OX1R is transported in the dense-cored vesicles from the perikarya to axon terminals and that OX1R-LI neurons in the dorsal horn of the spinal cord have complex synaptic relationships both with other OX1R-LI neurons as well as other neuron types.  相似文献   

13.
Summary The development of neurons and their synapses of the mouse motor cortex has been studied from the first postnatal day up to an age of three weeks both electronmicroscopically and with the Golgi method. Special attention has been paid to the maturation of the different cell types in the sixth cortical layer and their dendritic organization within this layer.The polymorph layer is subdivided into two zones: an internal (VIb) and an external one (VIa). In these zones six different cell types can be identified both electronmicroscopically and with the Golgi method: large, small and inverted pyramidal cells in VIa; horizontal cells, star cells and small pyramidal cells in VIb.Spines of apical dendrites of large pyramidal cells in sublayer VIa can be detected as early as the 6th postnatal day. About the ninth day the basal dendrites as well show emerging spines. Somatic spines are found only on the large pyramidal cells and disappear slowly towards the end of the 3rd postnatal week.The small pyramidal cells show developing spines on their apical dendrite in the first half of the second postnatal week. The final density and distribution of spines is reached by the stem dendrites towards the end of the second week, by the basal dendrites during the third week. The maturation process of the improperly orientated neurons occurs in time in between the large and the small pyramidal cells.The axo-somatic synapses appear in general at a later date than the axo-dendritic ones. In the horizontal cells axo-somatic synapses are visible already at the seventh postnatal day.At the end of the first week especially in layer VIb many immature neurons with an ovoid or round nucleus are present having little if any endoplasmic reticulum organised as ergastoplasm.Towards the end of the second week however most neurons in the polymorph layer have a well developed endoplasmic reticulum.Electronmicroscopical pictures reveal in outgrowing dendrites many enlargements filled with vesicles, these correspond to the varicosities seen in Golgi pictures. At nine days postnatally the first myelinated fibres appear.Aided by grant (R-209-67) from the United Cerebral Palsy Research and Educational Foundation, New York.  相似文献   

14.
Alpha-fetoprotein (AFP) and some other serum proteins have been studied in the developing brain of rats and pigs using the indirect immunofluorescence technique. AFP is shown to be present in the ventricular ependyma, meningeal envelopes, the choroid plexus, blood vessel walls and in a wide scale of differentiating parenchymal cells ever since early embryonic ages of both species. In brain parenchyma the content of AFP is low in immature germinative cells; in both species it starts increasing in postmigratory neuroblasts and reaches a peak at the time of accelerated nerve cell differentiation. In rats, the amount of AFP is highest towards the end of the first postnatal week; then it starts decreasing and disappears towards the end of the 3rd week. In both species AFP is localized in the cytoplasm of nerve cell perikarya and their differentiating processes. Higher concentration of this protein has often been observed at the axonal pole of the cytoplasm of differentiating pyramidal neurons. Immunoglobulin G has been found in non-parenchymal structures, and small amounts also in parenchymal cells of embryonic and early postnatal rats following a pattern of cell-and-tissue distribution similar to that of AFP. In pigs, a low amount of albumin has been shown in differentiating leptomeninges. These data suggest uptake of AFP, and some other serum proteins, from the cerebrospinal fluid into cells of the immature rat and pig brain and its increase (or higher binding) in differentiating neurons.  相似文献   

15.
Tu YL  Liu YB  Zhang L  Zhao YJ  Wang L  Hu ZA 《生理学报》2003,55(2):206-212
为研究大鼠不同发育阶段视皮层神经元电的生理学与形态学特性,实验观察了神经元电生理和形态学特性的变化与年龄的同步化程度,探讨视皮层视觉依赖性突触的形成和重新分布的细胞内机制。应用脑片膜片钳全细胞记录技术和细胞内生物家标记相结合的方法,记录4—28d SD大鼠视皮层神经元的突触后电流(postsynaptic currents,PSCs)。共记录156个大鼠视皮层神经元,睁眼前与睁眼后组中无反应型细胞数量,多突触反应型细胞数量、细胞的输入阻抗有显著性差异。成功标记23例神经元,不同年龄的神经元的形态学成熟度不同。低输入阻抗神经元在形态学上属成熟型,高输入阻抗神经元属幼稚型。该结果表明,大鼠在发育过程中,视皮层神经元功能的成熟表现为在形觉刺激以及局部神经元网络的整合作用下的视觉依赖性突触的形成和重新分布。在视觉发育可塑性关键期内,视皮层神经元形态和电生理特性的变化与年龄的同步化程度大于皮层下结构。  相似文献   

16.
We have investigated indirectly the presence of nitric oxide in the enteric nervous system of the digestive tract of human fetuses and newborns by nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry. In the stomach, NOS immunoactivity was confined to the myenteric plexus and nerve fibres in the outer smooth musculature; few immunoreactive nerve cell bodies were found in ganglia of the outer submucous plexus. In the pyloric region, a few nitrergic perikarya were seen in the inner submucous plexus and some immunoreactive fibres were found in the muscularis mucosae. In the small intestine, nitrergic neurons clustered just underneath or above the topographical plane formed by the primary nerve strands of the myenteric plexus up to the 26th week of gestation, after which stage, they occurred throughout the ganglia. Many of their processes contributed to the dense fine-meshed tertiary nerve network of the myenteric plexus and the circular smooth muscle layer. NOS-immunoreactive fibres directed to the circular smooth muscle layer originated from a few NOS-containing perikarya located in the outer submucous plexus. In the colon, caecum and rectum, labelled nerve cells and fibres were numerous in the myenteric plexus; they were also found in the outer submucous plexus. The circular muscle layer had a much denser NOS-immunoreactive innervation than the longitudinally oriented taenia. The marked morphological differences observed between nitrergic neurons within the developing human gastrointestinal tract, together with the typical innervation pattern in the ganglionic and aganglionic nerve networks, support the existenc of distinct subpopulations of NOS-containing enterice neurons acting as interneurons or (inhibitory) motor neurons.  相似文献   

17.
Five types of neurons were distinguished in the sensory nuclei of the trigeminal nerve, stained by Golgi's method, in kittens aged 1–5 days and 30 days: reticular and short-dendritic cells (with few branches), and multipolar giant cells, arborescent, and bushy neurons (densely branching). Yet another special type of cell, with a few short dendrites and one long dendrite, was distinguished in preparations from the brain of newborn kittens. Analysis of the dimensions of the bodies, the number, length, and ramification of the dendrites, and the total ramification of the cell yielded quantitative morphological characteristics of these neurons at different times of development. These types of neurons differed in their qualitative and quantitative parameters and in the features of their maturation.Bushy neurons underwent regressive changes during development. Foci of maximal ramification of dendrites of densely branched neurons changed their location during the first months of life relative to the cell body, moving into the more distal regions of the dendrites. Differences in orientation of dendrites with foci of maximal ramification were found relative to neighboring brain formations, which depended on the types of cells and the animal's age. The high level of maturity of trigeminal neurons at birth was demonstrated.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 592–600, November–December, 1982.  相似文献   

18.
19.
The enteric nervous system appears to play a pivotal role in the functional recovery of the gastrointestinal tract after partial resection and reanastomosis, but the structural changes following surgery are not fully understood. The present study was designed to clarify the processes of myenteric plexus regeneration up to one year after transection and reanastomosis of the ileum of the guinea pig. The following techniques were used: nicotinamide adenine dinucleotide (NADH) diaphorase histochemistry, immunostaining of neuron-specific enolase (NSE) in whole-mount preparations, and transmission electron microscopy. Two months after transection and reanastomosis, myenteric ganglion cells with NADH diaphorase reactions were scarce in the center of the lesion, and were less numerous in adjacent areas (3 mm in width) than in the control ileum. In the areas adjacent to the lesion, a few large extraganglionic neurons that did not completely compensate for the loss of ganglion neurons were observed. The remaining ileum showed no changes in NADH diaphorase staining pattern at this stage. Two to 12 months after transection and reanastomosis, ectopic large neurons gradually increased in number not only in the areas adjacent to the lesion but also in part of the remaining ileum, up to 10 cm from the lesion. Concomitantly, large ganglion neurons decreased in number in these areas. In other ileal regions (more than 10 cm distant from the site of transection), no obvious changes in NADH diaphorase staining were noted throughout the observation period. The outgrowth of NSE-containing nerve fibers from the severed stumps was seen two weeks after transection. Six weeks later, numerous bundles of fine nerve fibers with NSE were shown to interconnect the oral and anal cut ends of the myenteric plexus, but they exhibited no subsequent alterations. Transmission electron microscopy revealed that regenerating nerve fiber bundles appeared initially among irregularly arranged smooth muscle cells eight weeks after the operation, as expected from light-microscopic observations. These findings suggest that myenteric ganglion cell bodies, unlike myenteric nerve fibers, require a longer term of reconstruction than previously believed after transection and reanastomosis of the ileum of the guinea pig.  相似文献   

20.
Summary In early postnatal rats, immunoreactive LHRH perikarya in the preoptic area were studied by light and electron microscopy. Synaptic junctions were found between the immunoreactive perikaryon or its process, and the immunonegative nerve fibers. The significance of these synapses is discussed in relation to possible mechanisms by which the activities of LHRH neurons are regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号