首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the effect of lung inflation and left atrial pressure on the hydrostatic pressure gradient for fluid flux across 20- to 60-microns-diam venules, we isolated and perfused the lungs from newborn rabbits, 7-14 days old. We used the micropuncture technique to measure venular pressures in some lungs and perivenular interstitial pressures in other lungs. For all lungs, we first measured venular or interstitial pressures at a constant airway pressure of 5 or 15 cmH2O with left atrial pressure greater than airway pressure (zone 3). For most lungs, we continued to measure venular or interstitial pressures as we lowered left atrial pressure below airway pressure (zone 2). Next, we inflated some lungs to whichever airway pressure had not been previously used, either 5 or 15 cmH2O, and repeated venular or interstitial pressures under one or both zonal conditions. We found that at constant blood flow a reduction of left atrial pressure below airway pressure always resulted in a reduction in venular pressure at both 5 and 15 cmH2O airway pressures. This suggests that the site of flow limitation in zone 2 was located upstream of venules. When left atrial pressure was constant relative to airway pressure, the transvascular gradient (venular-interstitial pressures) was greater at 15 cmH2O airway pressure than at 5 cmH2O airway pressure. These findings suggest that in newborn lungs edema formation would increase at high airway pressures only if left atrial pressure is elevated above airway pressure to maintain zone 3 conditions.  相似文献   

2.
Because pulmonary edema has been associated clinically with airway obstruction, we sought to determine whether decreased intrathoracic pressure, created by selective inspiratory obstruction, would affect lung fluid balance. We reasoned that if decreased intrathoracic pressure caused an increase in the transvascular hydrostatic pressure gradient, then lung lymph flow would increase and the lymph-to-plasma protein concentration ratio (L/P) would decrease. We performed experiments in six awake sheep with chronic lung lymph cannulas. After a base-line period, we added an inspiratory load (20 cmH2O) and allowed normal expiration at atmospheric pressure. Inspiratory loading was associated with a 12-cmH2O decrease in mean central airway pressure. Mean left atrial pressure fell 11 cmH2O, and mean pulmonary arterial pressure was unchanged; calculated microvascular pressure decreased 8 cmH2O. The changes that occurred in lung lymph were characteristic of those seen after other causes of increased transvascular hydrostatic gradient, such as increased intravascular pressure. Lung lymph flow increased twice base line, and L/P decreased. We conclude that inspiratory loading is associated with an increase in the pulmonary transvascular hydrostatic gradient, possibly by causing a greater fall in interstitial perimicrovascular pressure than in microvascular pressure.  相似文献   

3.
We compared areas and diameters of small airways and arteries in three groups of anesthetized dogs: 1) control (n = 5), 2) hydrostatic edema induced by fluid overload (n = 13), and 3) increased permeability edema induced with alpha-naphthylthiourea (n = 5). We measured pulmonary arterial and wedge pressures in all groups and cardiac output in the hydrostatic edema group. Postmortem, lobes were frozen at functional residual capacity and samples taken for measurements of extravascular lung water (Qwl/dQl) and for light microscopy. We also examined lobes from hydrostatic edema experiments fixed at transpulmonary pressures of 5 and 27 cmH2O. From the histology slides, bronchovascular bundles with respiratory bronchioles (n = 706) and bronchioles (n = 467) were photographed and airway and vessel areas and diameters measured. Alveolar and airway luminal edema were graded. We found that only in hydrostatic edema, pulmonary arterial and wedge pressures increased and vascular resistance fell with fluid infusion. Mean Qwl/dQl values were 3.80 +/- 0.17, 6.81 +/- 0.96, and 9.34 +/- 0.62 (SE) in control, hydrostatic, and increased permeability edema groups, respectively. By quantitative histology, airway and arterial areas and diameters did not decrease in edema and rose with increasing transpulmonary pressure. Variable quantities of air-space edema were seen. We conclude that interstitial edema does not compress small airways or arteries and that other mechanisms, including alveolar and airway luminal edema, may explain reported increases in airway resistance.  相似文献   

4.
The bronchial mucosa contributes to elastic properties of the airway wall and may influence the degree of airway expansion during lung inflation. In the deflated lung, folds in the epithelium and associated basement membrane progressively unfold on inflation. Whether the epithelium and basement membrane also distend on lung inflation at physiological pressures is uncertain. We assessed mucosal distensibility from strain-stress curves in mucosal strips and related this to epithelial length and folding. Mucosal strips were prepared from pig bronchi and cycled stepwise from a strain of 0 (their in situ length at 0 transmural pressure) to a strain of 0.5 (50% increase in length). Mucosal stress and epithelial length in situ were calculated from morphometric data in bronchial segments fixed at 5 and 25 cmH(2)O luminal pressure. Mucosal strips showed nonlinear strain-stress properties, but regions at high and low stress were close to linear. Stresses calculated in bronchial segments at 5 and 25 cmH(2)O fell in the low-stress region of the strain-stress curve. The epithelium of mucosal strips was deeply folded at low strains (0-0.15), which in bronchial segments equated to < or =10 cmH(2)O transmural pressure. Morphometric measurements in mucosal strips at greater strains (0.3-0.4) indicated that epithelial length increased by approximately 10%. Measurements in bronchial segments indicated that epithelial length increased approximately 25% between 5 and 25 cmH(2)O. Our findings suggest that, at airway pressures <10 cmH(2)O, airway expansion is due primarily to epithelial unfolding but at higher pressures the epithelium also distends.  相似文献   

5.
The exact site of airway narrowing in asthma and chronic obstructive pulmonary disease is unknown. High-resolution computed tomography (HRCT) is a sensitive noninvasive imaging technique that can be used to measure airway dimensions. After determining the optimal computed tomographic parameters using a phantom, we measured lobe volume and airway dimensions of isolated canine lung lobes at a transpulmonary pressure of 25 cmH2O. These measurements were repeated after deflation and administration of aerosolized saline and carbachol (256 mg/ml). Lobe volume decreased with all treatments. The maximal lobar volume change was 26% at 6 cmH2O after carbachol. Average airway lumen area decreased with all treatments. After carbachol, at transpulmonary pressures of 25, 15, 10, 8, and 6 cmH2O, lumen area decreased by 7.3 +/- 4.1, 62.0 +/- 4.9, 77.5 +/- 3.0, 31.9 +/- 9.0, and 95.2 +/- 1.0% (SE), respectively. When the airways were divided into four categories on the basis of initial lumen diameter (less than 2, 2-4, 4-6, and greater than 6 mm), the greatest decreases in luminal area after carbachol were seen in intermediate-sized airways (2-4 mm, 56 +/- 4%; 4-6 mm, 59 +/- 3%). HRCT can be used to make accurate measurements of airway dimensions and airway narrowing in excised lungs. HRCT may allow measurement of airway wall thickness and determination of the site of airway narrowing in asthma.  相似文献   

6.
In vivo, breathing movements, including tidal and deep inspirations (DIs), exert a number of beneficial effects on respiratory system responsiveness in healthy humans that are diminished or lost in asthma, possibly as a result of reduced distension (strain) of airway smooth muscle (ASM). We used bronchial segments from pigs to assess airway responsiveness under static conditions and during simulated tidal volume oscillations with and without DI and to determine the roles of airway stiffness and ASM strain on responsiveness. To simulate airway dilations during breathing, we cycled the luminal volume of liquid-filled segments. Volume oscillations (15 cycles/min) were set so that, in relaxed airways, they produced a transmural pressure increase of approximately 5-10 cmH(2)O for tidal maneuvers and approximately 5-30 cmH(2)O for DIs. ACh dose-response curves (10(-7)-3 x 10(-3) M) were constructed under static and dynamic conditions, and maximal response and sensitivity were determined. Airway stiffness was measured from tidal trough-to-peak pressure and volume cycles. ASM strain produced by DI was estimated from luminal volume, airway length, and inner wall area. DIs produced substantial ( approximately 40-50%) dilation, reflected by a decrease in maximal response (P < 0.001) and sensitivity (P < 0.05). However, the magnitude of bronchodilation decreased significantly in proportion to airway stiffening caused by contractile activation and an associated reduction in ASM strain. Tidal oscillations, in comparison, had little effect on responsiveness. We conclude that DI regulates airway responsiveness at the airway level, but this is limited by airway stiffness due to reduced ASM strain.  相似文献   

7.
To assess the determinants of bronchopleural fistula (BPF) flow, we used a surgically created BPF to study 15 anesthetized intubated mechanically ventilated New Zealand White rabbits. Mean airway pressure and intrathoracic pressure were evaluated independently. Mean airway pressure was varied (8, 10, or 12 cmH2O) by independent manipulations of either peak inspiratory pressure, positive end-expiratory pressure, or inspiratory time. Intrathoracic pressure was varied from 0 to -40 cmH2O. BPF flow varied directly with mean airway pressure (P less than 0.001). However, at constant mean airway pressure, BPF flow was not influenced independently by changes in peak inspiratory pressure, positive end-expiratory pressure, or inspiratory time. Resistance of the BPF increased as intrathoracic pressure became more negative. Despite increased resistance, BPF flow also increased. BPF resistance was constant over the range of mean airway (P less than 0.01) pressures investigated. Our data document the influence of mean airway pressure and intrathoracic pressure on BPF flow and suggest that manipulations which reduce transpulmonary pressure will decrease BPF flow.  相似文献   

8.
Insights into airway mechanics were sought by applying morphometric techniques to rabbit lungs fixed at several lung recoil pressures. Rabbits were treated with either nebulized carbachol followed by iv administration of carbachol or with saline solution (sham). The lungs were held at one of six values of positive end-expiratory pressure (PEEP; 10, 7, 4, 2, 0, and -4 cmH(2)O) while the animal was killed and formalin was circulated through the lungs. The lungs were removed and left in a bath of formalin for 24 h. Standard airway morphometric measurements were made on membranous bronchiole slices taken from representative blocks of tissue. Reductions in PEEP produced the expected reductions in lumen area in the carbachol-treated airways but not in the sham-treated airways for PEEP > 2 cmH(2)O. Sham-treated airways remained more open than expected until they collapsed into an oval shape at PEEPs between 4 and 2 cmH(2)O. The carbachol-treated airways exhibited this behavior at PEEP = -4 cmH(2)O. The smallest airways, which had relatively thicker walls, collapsed less than larger airways. We postulate that this behavior implies that peribronchial stress is greater than lumen pressure on collapse into the oval shape. Resistance to buckling increases with the thickness-to-radius ratio of the airway wall, which explains why the smallest airways are the most open. The development of epithelial folds appeared to follow the theoretical prediction of a previous study (Lambert RK, Codd SL, Alley MR, and Pack RJ. J Appl Physiol 77: 1206-1216, 1994).  相似文献   

9.
Mean airway pressure underestimates mean alveolar pressure during high-frequency oscillatory ventilation. We hypothesized that high inspiratory flows characteristic of high-frequency jet ventilation may generate greater inspiratory than expiratory pressure losses in the airways, thereby causing mean airway pressure to overestimate, rather than underestimate, mean alveolar pressure. To test this hypothesis, we ventilated anesthetized paralyzed rabbits with a jet ventilator at frequencies of 5, 10, and 15 Hz, constant inspiratory-to-expiratory time ratio of 0.5 and mean airway pressures of 5 and 10 cmH2O. We measured mean total airway pressure in the trachea with a modified Pitot probe, and we estimated mean alveolar pressure as the mean pressure corresponding in the static pressure-volume relationship to the mean volume of the respiratory system measured with a jacket plethysmograph. We found that mean airway pressure was similar to mean alveolar pressure at frequencies of 5 and 10 Hz but overestimated it by 1.1 and 1.4 cmH2O at mean airway pressures of 5 and 10 cmH2O, respectively, when frequency was increased to 15 Hz. We attribute this finding primarily to the combined effect of nonlinear pressure frictional losses in the airways and higher inspiratory than expiratory flows. Despite the nonlinearity of the pressure-flow relationship, inspiratory and expiratory net pressure losses decreased with respect to mean inspiratory and expiratory flows at the higher rates, suggesting rate dependence of flow distribution. Redistribution of tidal volume to a shunt airway compliance is thought to occur at high frequencies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Effect of dehydration on interstitial pressures in the isolated dog lung   总被引:1,自引:0,他引:1  
We have determined the effect of dehydration on regional lung interstitial pressures. We stopped blood flow in the isolated blood-perfused lobe of dog lung at vascular pressure of approximately 4 cmH2O. Then we recorded interstitial pressures by micropuncture at alveolar junctions (Pjct), in perimicrovascular adventitia (Padv), and at the hilum (Phil). After base-line measurements, we ventilated the lobes with dry gas to decrease extravascular lung water content by 14 +/- 5%. In one group (n = 10), at constant inflation pressure of 7 cmH2O, Pjct was 0.2 +/- 0.8 and Padv was -1.5 +/- 0.6 cmH2O. After dehydration the pressures fell to -5.0 +/- 1.0 and -5.3 +/- 1.3 cmH2O, respectively (P less than 0.01), and the junction-to-advential gradient (Pjct-Padv) was abolished. In a second group (n = 6) a combination of dehydration and lung expansion with inflation pressure of 15 cmH2O further decreased Pjct and Padv to -7.3 +/- 0.7 and -7.1 +/- 0.7 cmH2O, respectively. Phil followed changes in Padv. Interstitial compliance was 0.6 at the junctions, 0.8 in adventitia, and 0.9 ml.cmH2O-1.100 g-1 wet lung at the hilum. We conclude, that perialveolar interstitial pressures may provide an important mechanism for prevention of lung dehydration.  相似文献   

11.
In a previous study, direct measurements of pulmonary capillary transit time by fluorescence video microscopy in anesthetized rabbits showed that chest inflation increased capillary transit time and decreased cardiac output. In isolated perfused rabbit lungs we measured the effect of lung volume, left atrial pressure (Pla), and blood flow on capillary transit time. At constant blood flow and constant transpulmonary pressure, a bolus of fluorescent dye was injected into the pulmonary artery and the passage of the dye through the subpleural microcirculation was recorded via the video microscope on videotape. During playback of the video signals, the light emitted from an arteriole and adjacent venule was measured using a video photoanalyzer. Capillary transit time was the difference between the mean time values of the arteriolar and venular dye dilution curves. We measured capillary transit time in three groups of lungs. In group 1, with airway pressure (Paw) at 5 cmH2O, transit time was measured at blood flow of approximately 80, approximately 40, and approximately 20 ml.min-1.kg-1. At each blood flow level, Pla was varied from 0 (Pla less than Paw, zone 2) to 11 cmH2O (Pla greater than Paw, zone 3). In group 2, at constant Paw of 15 cmH2O, Pla was varied from 0 (zone 2) to 22 cmH2O (zone 3) at the same three blood flow levels. In group 3, at each of the three blood flow levels, Paw was varied from 5 to 15 cmH2O while Pla was maintained at 0 cmH2O (zone 2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We have determined the sites of hypoxic vasoconstriction in ferret lungs. Lungs of five 3- to 5-wk-old and five adult ferrets were isolated and perfused with blood. Blood flow was adjusted initially to keep pulmonary arterial pressure at 20 cmH2O and left atrial and airway pressures at 6 and 8 cmH2O, respectively (zone 3). Once adjusted, flow was kept constant throughout the experiment. In each lung, pressures were measured in subpleural 20- to 50-microns-diam arterioles and venules with the micropipette servo-nulling method during normoxia (PO2 approximately 100 Torr) and hypoxia (PO2 less than 50 Torr). In normoxic adult ferret lungs, approximately 40% of total vascular resistance was in arteries, approximately 40% was in microvessels, and approximately 20% was in veins. With hypoxia, the total arteriovenous pressure drop increased by 68%. Arterial and venous pressure drops increased by 92 and 132%, respectively, with no change in microvascular pressure drop. In 3- to 5-wk-old ferret lungs, the vascular pressure profile during normoxia and the response to hypoxia were similar to those in adult lungs. We conclude that, in ferret lungs, arterial and venous resistances increase equally during hypoxia, resulting in increased microvascular pressures for fluid filtration.  相似文献   

13.
Nasal airway resistance was assessed in halothane-anesthetized rats by measuring the transnasal pressure at constant airflow through both nasal cavities. Low inflation pressures (2.5-5 cmH2O) decreased nasal airway resistance, whereas higher inflation pressures (10-20 cmH2O) caused a biphasic response: an initial increase in resistance followed by a decrease in resistance. The nasal responses to all levels of inflation were completely abolished by hexamethonium, guanethidine, or bretylium pretreatment or cervical sympathectomy and greatly lessened by cervical vagotomy or phenoxybenzamine pretreatment. Atropine and propranolol pretreatments had no effect on the responses. These findings indicate that the nasal airway resistance is related to the level of inflation through pulmonary reflexes with afferents along the vagi and efferents via the alpha-adrenergic nervous system.  相似文献   

14.
We determined the effect of flow direction on the relationship between driving pressure and gas flow through a collaterally ventilating lung segment in excised cranial and caudal dog lung lobes. He, N2, and SF6 were passed through the lung segment distal to a catheter wedged in a peripheral airway. Gases were pushed through the segment by raising segment pressure (Ps) relative to airway opening pressure (Pao) and pulled from the segment by ventilating the lobe with the test gas, then lowering Ps relative to Pao. Driving pressures (Ps - Pao) between 0.25 and 2 cmH2O were evaluated at Pao values of 5, 10, and 15 cmH2O. Results were similar in cranial and caudal lobes. Flow increased as Ps - Pao increased and was greatest at Pao = 15 cmH2O for the least-dense gas (He). Although flow direction was not a significant first-order effect, there was significant interaction between volume, driving pressure, and flow direction. Dimensional analysis suggested that, although flow direction had no effect at Pao = 10 and 15 cmH2O, at Pao = 5 cmH2O, raising Ps relative to Pao increased the characteristic dimension of the flow pathways, and reducing Ps relative to Pao reduced the dimension. These data suggest that at large lobe volumes, airways (including collateral pathways) within the segment are maximally dilated and the stiffness of the parenchyma prevents any significant distortion when Ps is altered. At low lobe volumes, these pathways are affected by changes in transmural pressure due to the increased airway and parenchymal compliance.  相似文献   

15.
We investigated the effects of lung inflation during continuous positive airway pressure breathing (CPAP) on airway defensive reflexes in 10 enflurane-anesthetized spontaneously breathing humans. The airway defensive reflexes were induced by instillation into the trachea of 0.5 ml of distilled water at two different levels of end-expiratory pressure (0 and 10 cmH2O CPAP). The tracheal irritation at an end-expiratory pressure of 0 cmH2O caused a variety of reflex responses including apnea, spasmodic panting, expiration reflex, cough reflex, an increase in heart rate, and an increase in blood pressure. Lung inflation during CPAP of 10 cmH2O did not exert any influence on these reflex responses in terms of the types, latencies, and durations of reflex responses although the intensity of the expiration reflex and cough reflex was augmented by lung inflation. Our results suggest that the pulmonary stretch receptors do not play an important role in the mechanisms of airway defensive reflexes in humans.  相似文献   

16.
To determine whether the pharyngeal airway is abnormal in awake patients with obstructive sleep apnea (OSA), we measured the ability of the pharyngeal airway to resist collapse from subatmospheric pressure applied to the nose in awake subjects, 12 with OSA and 12 controls. Subatmospheric pressure was applied to subjects placed in the supine position through a tightly fitting face mask. We measured airflow at the mask as well as mask, pharyngeal, and esophageal pressures. Ten patients developed airway obstruction when subatmospheric pressures between 17 and 40 cmH2O were applied. Obstruction did not occur in two patients with the least OSA. Obstruction did not occur in 10 controls; one obese control subject developed partial airway obstruction when -52 cmH2O was applied as did another with -41 cmH2O. We conclude that patients with significant OSA have an abnormal airway while they are awake and that application of subatmospheric pressure may be a useful screening test to detect OSA.  相似文献   

17.
The purpose of this study was to examine the effects of inspiratory airway obstruction on lung fluid balance in newborn lambs. We studied seven 2- to 4-wk-old lambs that were sedated with chloral hydrate and allowed to breathe 30-40% O2 spontaneously through an endotracheal tube. We measured lung lymph flow, lymph and plasma protein concentrations, pulmonary arterial and left atrial pressures, mean and phasic pleural pressures and airway pressures, and cardiac output during a 2-h base-line period and then during a 2- to 3-h period of inspiratory airway obstruction produced by partially occluding the inspiratory limb of a nonrebreathing valve attached to the endotracheal tube. During inspiratory airway obstruction, both pleural and airway pressures decreased 5 Torr, whereas pulmonary arterial and left atrial pressures each decreased 4 Torr. As a result, calculated filtration pressure remained unchanged. Inspiratory airway obstruction had no effect on steady-state lung lymph flow or the lymph protein concentration relative to that of plasma. We conclude that in the spontaneously breathing lamb, any decrease in interstitial pressure resulting from inspiratory airway obstruction is offset by a decrease in microvascular hydrostatic pressure so that net fluid filtration remains unchanged.  相似文献   

18.
Partial expiratory flow-volume (PEFV) curves in infants are generated by applying a compressive pressure over the chest wall with an inflatable jacket. This study addresses two issues: pressure transmission to and across the chest wall and whether flow limitation can be identified. Eleven infants sedated with chloral hydrate were studied. Pressure transmission to the chest wall, measured with neonatal blood pressure cuffs placed on the infant's body surface, was 72 +/- 4% of jacket pressure during compression maneuvers. The pressure transmission to the air spaces, determined by measuring airway pressure during a compression maneuver against an occluded airway, was 56 +/- 6% of jacket pressure. A significant amount of the applied pressure is therefore lost across both the jacket and chest wall. Rapid pressure oscillations (RPO) were superimposed on static jacket pressures while expiratory flow was measured. Absence of associated oscillations of flow measured at the mouth was taken to indicate that flow was independent of driving pressure and therefore limited. Flow limitation was demonstrable with the RPO technique in all infants for jacket pressures greater than 50 cmH2O; however, it was evident at jacket pressures less than 30 cmH2O jacket pressure in four infants with obstructive airway disease. The RPO technique is a useful adjunct to the compression maneuver utilized to generate PEFV curves in infants because it facilitates the recognition of expiratory flow limitation.  相似文献   

19.
Repeated aerosol antigen challenge of previously sensitized guinea pigs induces airway hyperresponsiveness to inhaled acetylcholine. To determine the mechanism producing these airway changes and assuming that changes in the trachealis muscle reflect changes in muscle of the entire tracheobronchial tree, we examined the in vitro smooth muscle mechanics and morphometric parameters of tracheae from guinea pigs demonstrating hyperresponsiveness in vivo vs. tracheae from control guinea pigs. No differences between these groups were found in luminal volume at zero transmural pressure, passive pressure-volume characteristics, or area of airway wall. Smooth muscle areas were slightly less in tracheae from hyperresponsive guinea pigs. Tracheae from hyperresponsive guinea pigs had both significantly increased isovolumetric force generation and isobaric shortening compared with tracheae from controls when evaluated over the range of transmural pressures from -40 to 40 cmH2O. We conclude that the in vivo airway hyperresponsiveness induced with repeated antigen challenge is associated with both increased force generation and shortening of tracheal smooth muscle without increased muscle mass, suggesting enhanced contractile activity.  相似文献   

20.
A method to measure the pressure-flow behavior of the interstitium around large pulmonary vessels is presented. Isolated rabbit lungs were degassed, and the air spaces and vasculature were inflated with a silicon rubber compound. After the rubber had hardened the caudal lobes were sliced into 1-cm-thick slabs. Two chambers were bonded to opposite sides of a slab enclosing a large blood vessel and were filled with saline containing 3 g/dl albumin. The flow through the interstitium surrounding the vessel was measured at a constant driving pressure of 5 cmH2O and at various mean interstitial pressures. Flow decreased with a reduction of mean interstitial pressure and reached a limiting minimum value at approximately -9 cmH2O. The pressure-flow behavior was analyzed under the assumptions that the interstitium is a porous material described by a single permeability constant that increases with hydration and that the expansion of the interstitium with interstitial pressure was due to the elastic response of the surrounding rubber compound. This resulted in an interstitial resistance (reciprocal of permeability constant) of 1.31 +/- 1.03 (SD) cmH2O.h.cm-2 and a ratio of interstitial cuff thickness to vessel radius of 0.022 +/- 0.007 (SD), n = 11. The phenomenon of flow limitation was demonstrated by holding the upstream pressure constant at 15 cmH2O and measuring the flow while the downstream pressure was reduced. The flow was limited at downstream pressures below -10 cmH2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号