首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equine osteochondrosis is a developmental joint disease that is a significant source of morbidity affecting multiple breeds of horse. The genetic variants underlying osteochondrosis susceptibility have not been established. Here, we describe the results of a genome‐wide association study of osteochondrosis using 90 cases and 111 controls from a population of Dutch Warmblood horses. We report putative associations between osteochondrosis and loci on chromosome 3 (BIEC2‐808543; = 5.03 × 10?7) and chromosome 10 (BIEC2‐121323; = 2.62 × 10?7).  相似文献   

2.
Recurrent airway obstruction (RAO), or ‘heaves’, is a common performance‐limiting allergic respiratory disease of mature horses. It is related to sensitization and exposure to mouldy hay and has a familial basis with a complex mode of inheritance. In a previous study, we detected a QTL for RAO on ECA 13 in a half‐sib family of European Warmblood horses. In this study, we genotyped additional markers in the family and narrowed the QTL down to about 1.5 Mb (23.7–25.2 Mb). We detected the strongest association with SNP BIEC2‐224511 (24 309 405 bp). We also obtained SNP genotypes in an independent cohort of 646 unrelated Warmblood horses. There was no genome‐wide significant association with RAO in these unrelated horses. However, we performed a genotypic association study of the SNPs on ECA 13 in these unrelated horses, and the SNP BIEC2‐224511 also showed the strongest association with RAO in the unrelated horses (praw = 0.00037). The T allele at this SNP was associated with RAO both in the family and the unrelated horses. Thus, the association study in the unrelated animals provides independent support for the previously detected QTL. The association study allows further narrowing of the QTL interval to about 0.5 Mb (24.0–24.5 Mb). We sequenced the coding regions of the genes in the critical region but did not find any associated coding variants. Therefore, the causative variant underlying this QTL is likely to be a regulatory mutation.  相似文献   

3.
The recent completion of the horse genome and commercial availability of an equine SNP genotyping array has facilitated the mapping of disease genes. We report putative localization of the gene responsible for dwarfism, a trait in Friesian horses that is thought to have a recessive mode of inheritance, to a 2-MB region of chromosome 14 using just 10 affected animals and 10 controls. We successfully genotyped 34,429 SNPs that were tested for association with dwarfism using chi-square tests. The most significant SNP in our study, BIEC2-239376 (P(2df)=4.54 × 10(-5), P(rec)=7.74 × 10(-6)), is located close to a gene implicated in human dwarfism. Fine-mapping and resequencing analyses did not aid in further localization of the causative variant, and replication of our findings in independent sample sets will be necessary to confirm these results.  相似文献   

4.
Extreme lordosis, also called swayback, lowback or softback, can occur as a congenital trait or as a degenerative trait associated with ageing. In this study, the hereditary aspect of congenital swayback was investigated using whole genome association studies of 20 affected and 20 unaffected American Saddlebred (ASB) Horses for 48,165 single-nucleotide polymorphisms (SNPs). A statistically significant association was identified on ECA20 (corrected P=0.017) for SNP BIEC2-532523. Of the 20 affected horses, 17 were homozygous for this SNP when compared to seven homozygotes among the unaffected horses, suggesting a major gene with a recessive mode of inheritance. The result was confirmed by testing an additional 13 affected horses and 166 unaffected horses using 35 SNPs in this region of ECA20 (corrected P=0.036). Combined results for 33 affected horses and 287 non-affected horses allowed identification of a region of homozygosity defined by four SNPs in the region. Based on the haplotype defined by these SNPs, 80% of the 33 affected horses were homozygous, 21% heterozygous and 9% did not possess the haplotype. Among the non-affected horses, 15% were homozygous, 47% heterozygous and 38% did not possess the haplotype. The differences between the two groups were highly significant (P<0.00001). The region defined by this haplotype includes 53 known and predicted genes. Exons from three candidate genes, TRERF1, RUNX2 and CNPY3 were sequenced without finding distinguishing SNPs. The mutation responsible for swayback may lie in other genes or in regulatory regions outside exons. This information can be used by breeders to reduce the occurrence of swayback among their livestock. This condition may serve as a model for investigation of congenital skeletal deformities in other species.  相似文献   

5.
Stallion fertility is an economically important trait because the use of artificial insemination is increasing in the horse industry and superior sires are used more intensely. Molecular genetic markers may be useful as early indicators for a stallion's fertility and genetic improvement programmes. The testis-specific SPATA1 protein is involved in shaping the sperm head during spermatogenesis. Thus, the spermatogenesis associated 1 ( SPATA1 ) gene was chosen as candidate for stallion fertility, and we analysed intragenic single nucleotide polymorphisms (SNPs) as genetic markers for the least square means (LSM) of the pregnancy rate per oestrus of stallions and breeding values (BV) for the paternal and embryonic component of the pregnancy rate per oestrus. We sequenced the cDNA of SPATA1 to verify the annotated mRNA sequence. One SPATA1 -associated intronic SNP ( BIEC2-968854 ) showed a significant association with the embryonic component of BVs of stallions for the pregnancy rate per oestrus. The embryonic component of BVs was positively associated with homozygous C/C stallions. Both the additive and dominance effects were significant with values of −5.8% ( P  = 0.01) and −6.4% ( P  = 0.02) for the embryonic component of BVs. For the same SNP, a suggestive association was found for the LSM of the pregnancy rate per oestrus of stallions. Heterozygous stallions had higher pregnancy rates per oestrus than homozygous stallions. The dominance effect was 4.1% with a nominal P -value of 0.02. The SNP BIEC2-968854 can change an SP1 binding site and thus we assume that gene regulation may be influenced through this intronic mutation. This is the first report on SPATA1 being associated with the pregnancy rate per oestrus for stallions.  相似文献   

6.
To identify novel quantitative trait loci (QTL) within horses, we performed genome‐wide association studies (GWAS) based on sequence‐level genotypes for conformation and performance traits in the Franches–Montagnes (FM) horse breed. Sequence‐level genotypes of FM horses were derived by re‐sequencing 30 key founders and imputing 50K data of genotyped horses. In total, we included 1077 FM horses genotyped for ~4 million SNPs and their respective de‐regressed breeding values of the traits in the analysis. Based on this dataset, we identified a total of 14 QTL associated with 18 conformation traits and one performance trait. Therefore, our results suggest that the application of sequence‐derived genotypes increases the power to identify novel QTL which were not identified previously based on 50K SNP chip data.  相似文献   

7.
L. Zhou  W. Zhao  Y. Fu  X. Fang  S. Ren  J. Ren 《Animal genetics》2019,50(6):753-756
Body conformation at birth and teat number are economically important traits in the pig industry, as these traits are usually explored to evaluate the growth and reproductive potential of piglets. To detect genetic loci and candidate genes for these traits, we performed a GWAS on 269 pigs from a recently developed Chinese breed (Sushan) using 38  128 informative SNPs on the Affymetrix Porcine SNP 55K Array. In total, we detected one genome‐wide significant (P = 1.31e‐6) SNP for teat number on chromosome X and 15 chromosome‐wide significant SNPs for teat number, body weight, body length, chest circumference and cannon circumference at birth on chromosomes 1, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17 and 18. The most significant SNP had an additive effect of 0.74 × total teat number, explaining 20% of phenotypic variance. Five significant SNPs resided in the previously reported quantitative trait loci for these traits and seven significant SNPs had a pleiotropic effect on multiple traits. Intriguingly, 12 of the genes nearest to the significant SNPs are functionally related to body conformation and teat number traits, including SPRED2, MKX, TMSB4X and ESR1. GO analysis revealed that candidate genes proximal to the significant SNPs were enriched in the G‐protein coupled receptor and steroid hormone‐mediated signaling pathway. Our findings shed light on the genetic basis of the measured traits and provide molecular markers especially for the genetic improvement of teat number in Sushan and related pigs.  相似文献   

8.
9.

Background

Recently, a mutation was discovered in the DMRT3 gene that controls pacing in horses. The mutant allele A is fixed in the American Standardbred trotter breed, while in the French trotter breed, the frequency of the wild-type allele C is still 24%. This study aimed at measuring the effect of DMRT3 genotypes on the performance of French trotters and explaining why the polymorphism still occurs in this breed. Using a mixed animal model, genetic parameters and environmental effects on performance traits were estimated from data on 173 176 French trotter races. The effect of the DMRT3 gene was then estimated by the effect of genotype at the highly linked SNP BIEC2-620109 (C-C, A-T) for 630 horses. A selection scheme that included qualification and racing performances was modeled to (1) verify if the observed superiority of heterozygous CT horses at this SNP could be explained only by selection and (2) understand why allele C has not disappeared in French trotters.

Results

Heritability of racing performance traits was high for qualification test (0.56), moderate for annual earnings per finished race (0.26 to 0.31) and low for proportion of disqualified races (0.06 to 0.09). Genotype CC was always unfavorable compared to genotype TT for qualification: the probability to be qualified was 20% for CC vs. 48% for TT and earnings were -0.96 σy lower for CC than for TT. Genotype CT was also unfavorable for qualification (40%) and earnings at 3 years (-0.21 σy), but favorable for earnings at ages greater than 5 years: +0.41 σy (P = 7.10−4). Selection on qualification could not explain more than 19% of the difference between genotypes CC and CT in earnings at ages greater than 5 years. Only a scenario for which genotype CT has a favorable effect on the performance of horses older than 5 years could explain that the polymorphism at the DMRT3 gene still exists in the French trotter breed.

Conclusions

The use of mature horses in the French racing circuit can explain that the CA genotype is still present in the French trotter horses.  相似文献   

10.
A genome‐wide association study was performed to identify single nucleotide polymorphisms (SNPs) associated with jumping performances of warmbloods in France. The 999 horses included in the study for jumping performances were sport horses [mostly Selle Français (68%), Anglo‐Arabians (13%) and horses from the other European studbooks]. Horses were genotyped using the Illumina EquineSNP50 BeadChip. Of the 54 602 SNPs available on this chip, 44 424 were retained after quality testing. Phenotypes were obtained by deregressing official breeding values for jumping competitions to use all available information, that is, the performances of each horse as well as those of its relatives. Two models were used to test the effects of the genotypes on deregressed phenotypes: a single‐marker mixed model and a haplotype‐based mixed model (significant: < 1E‐05; suggestive: < 1E‐04). Both models included a polygenic effect to take into account familial structures. For jumping performances, one suggestive quantitative trait locus (QTL) located on chromosome 1 (BIEC2_31196 and BIEC2_31198) was detected with both models. This QTL explains 0.7% of the phenotypic variance. RYR2, a gene encoding a major calcium channel in cardiac muscle in humans and mice, is located 0.55 Mb from this potential QTL.  相似文献   

11.
12.
Gu X  Feng C  Ma L  Song C  Wang Y  Da Y  Li H  Chen K  Ye S  Ge C  Hu X  Li N 《PloS one》2011,6(7):e21872
Chicken body weight is an economically important trait and great genetic progress has been accomplished in genetic selective for body weight. To identify genes and chromosome regions associated with body weight, we performed a genome-wide association study using the chicken 60 k SNP panel in a chicken F2 resource population derived from the cross between Silky Fowl and White Plymouth Rock. A total of 26 SNP effects involving 9 different SNP markers reached 5% Bonferroni genome-wide significance. A chicken chromosome 4 (GGA4) region approximately 8.6 Mb in length (71.6-80.2 Mb) had a large number of significant SNP effects for late growth during weeks 7-12. The LIM domain-binding factor 2 (LDB2) gene in this region had the strongest association with body weight for weeks 7-12 and with average daily gain for weeks 6-12. This GGA4 region was previously reported to contain body weight QTL. GGA1 and GGA18 had three SNP effects on body weight with genome-wide significance. Some of the SNP effects with the significance of "suggestive linkage" overlapped with previously reported results.  相似文献   

13.
The effects of exercise on adiponectin levels have been reported to be variable and may be attributable to an interaction between environmental and genetic factors. The single nucleotide polymorphisms (SNP) 45 (T > G) and SNP276 (G > T) of the adiponectin gene are associated with metabolic risk factors including adiponectin levels. We examined whether SNP45 and SNP276 would differentially influence the effect of exercise training in middle-aged women with uncomplicated obesity. We conducted a prospective study in the general community that included 90 Korean women (age 47.0 ± 5.1 years) with uncomplicated obesity. The intervention was aerobic exercise training for 3 months. Body composition, adiponectin levels, and other metabolic risk factors were measured. Prior to exercise training, only body weight differed among the SNP276 genotypes. Exercise training improved body composition, systolic blood pressure, maximal oxygen consumption, high-density lipoprotein cholesterol, and leptin levels. In addition, exercise improved adiponectin levels irrespective of weight gain or loss. However, after adjustments for age, BMI, body fat (%), and waist circumference, no differences were found in obesity-related characteristics (e.g., adiponectin) following exercise training among the SNP45 and the 276 genotypes. Our findings suggest that aerobic exercise affects adiponectin levels regardless of weight loss and this effect would not be influenced by SNP45 and SNP276 in the adiponectin gene.  相似文献   

14.
The Asian corn borer, Ostrinia furnacalis, and European corn borer, O. nubilalis (Lepidoptera: Crambidae), cause damage to cultivated maize in spatially distinct geographies and have evolved divergent hydrocarbons as the basis of sexual communication. The Yili area of Xinjiang Uyghur Autonomous Region in China represents the only known region where O. furnacalis has invaded a native O. nubilalis range, and these two corn borer species have made secondary contact. Genetic differentiation was estimated between Ostrinia larvae collected from maize plants at 11 locations in Xinjiang and genotyped using high‐throughput SNP and microsatellite markers. Maternal lineages were assessed by direct sequencing of mitochondrial cytochrome c oxidase subunit I and II haplotypes, and a high degree of genotypic diversity was demonstrated between lineages based on SNP genotypes. Furthermore, historical introgression was predicted among SNP genotypes only at sympatric locations in the Yili area, whereas in Xinjiang populations only O. furnacalis haplotypes were detected and no analogous introgressed genotypes were predicted. Our detection of putative hybrids and historical evidence of introgression defines Yili area as a hybrid zone between the species in normal ecological interactions and furthermore, might indicate that adaptive traits could spread even between seemingly divergent species through horizontal transmission. Results of this study indicate there may be a continuum in the degree of reproductive isolation between Ostrinia species and that the elegance of distinct and complete speciation based on modifications to the pheromone communication might need to be reconsidered.  相似文献   

15.

Background

A cost-effective strategy to increase the density of available markers within a population is to sequence a small proportion of the population and impute whole-genome sequence data for the remaining population. Increased densities of typed markers are advantageous for genome-wide association studies (GWAS) and genomic predictions.

Methods

We obtained genotypes for 54 602 SNPs (single nucleotide polymorphisms) in 1077 Franches-Montagnes (FM) horses and Illumina paired-end whole-genome sequencing data for 30 FM horses and 14 Warmblood horses. After variant calling, the sequence-derived SNP genotypes (~13 million SNPs) were used for genotype imputation with the software programs Beagle, Impute2 and FImpute.

Results

The mean imputation accuracy of FM horses using Impute2 was 92.0%. Imputation accuracy using Beagle and FImpute was 74.3% and 77.2%, respectively. In addition, for Impute2 we determined the imputation accuracy of all individual horses in the validation population, which ranged from 85.7% to 99.8%. The subsequent inclusion of Warmblood sequence data further increased the correlation between true and imputed genotypes for most horses, especially for horses with a high level of admixture. The final imputation accuracy of the horses ranged from 91.2% to 99.5%.

Conclusions

Using Impute2, the imputation accuracy was higher than 91% for all horses in the validation population, which indicates that direct imputation of 50k SNP-chip data to sequence level genotypes is feasible in the FM population. The individual imputation accuracy depended mainly on the applied software and the level of admixture.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0063-7) contains supplementary material, which is available to authorized users.  相似文献   

16.
Plasma levels of adiponectin are decreased in type 2 diabetes, obesity and hypertension. Our aim was to use a family-based analysis to identify the genetic variants of the adiponectin (ADIPOQ) gene that are associated with obesity, insulin resistance, dyslipidemia and hypertension, among Arabs. We screened 328 Arabs in one large extended family for single nucleotide polymorphisms (SNPs) in the promoter region of the ADIPOQ gene. Two common SNPs were detected: rs17300539 and rs266729. Evidences of association between traits related to the metabolic syndrome and the SNPs were studied by implementing quantitative genetic association analysis. Results showed that SNP rs266729 was significantly associated with body weight (p-value = 0.001), waist circumference (p-value = 0.037), BMI (p-value = 0.015) and percentage of total body fat (p-value = 0.003). Up to 4.1% of heritability of obesity traits was explained by the rs266729 locus. Further cross-sectional analysis showed that carriers of the G allele had significantly higher values of waist circumference, BMI and percentage of total body fat (p-values 0.014, 0.004 and 0.032, respectively). No association was detected between SNP rs266729 and other clusters of metabolic syndrome or their traits except for HOMA-IR and fasting plasma insulin levels, p-values 0.035 and 0.004, respectively. In contrast, both measured genotype and cross-sectional analysis failed to detect an association between the SNP rs17300539 with traits and clusters of metabolic syndrome. In conclusion, we showed family-based evidence of association of SNP rs266729 at ADIPOQ gene with traits defining obesity in Arab population. This is important for future prediction and prevention of obesity in population where obesity is in an increasing trend.  相似文献   

17.
In this study, we refine a quantitative trait locus for equine osteochondrosis (OC) on horse chromosome (ECA) 2 to a genome-wide significant interval at 20.08-30.94 Mb. The marker set contained 27 newly developed microsatellites equidistantly distributed over ECA2 and 44 nucleotide polymorphisms, located in 16 positional candidate genes for OC. Genotyping was performed in 211 Hanoverian horses from 14 paternal half-sib groups. A NCDN-associated SNP and haplotype were significantly associated with OC in fetlock and/or hock joints. This study is a further step towards the identification of genes responsible for OC in horses.  相似文献   

18.
Studbook inspection (SBI) data of 20 768 German Warmblood mares and radiography results (RR) data of 5102 Hanoverian Warmblood horses were used for genetic correlation analyses. The scores on a scale from 0 to 10 were given for conformation and basic quality of gaits, resulting in 14 SBI traits which were used for the correlation analyses. The radiographic findings considered included osseous fragments in fetlock (OFF) and hock joints (OFH), deforming arthropathy in hock joints (DAH) and distinct radiographic findings in the navicular bones (DNB) which were analyzed as binary traits, and radiographic appearance of the navicular bones (RNB) which was analyzed as a quasi-linear trait. Genetic parameters were estimated multivariately in linear animal models with REML using information on 24 448 horses with SBI and/or RR records. The ranges of heritability estimates were h2 = 0.14–0.34 for the RR traits and h2 = 0.09–0.50 for the SBI traits. Negative additive genetic correlations of rg = -0.19 to -0.56 were estimated between OFF and conformation of front and hind limbs and walk at hand, and between DNB and hind limb conformation. There were indications of negative additive genetic correlations between DAH and all SBI traits, but because of low prevalence and low heritability of DAH, these results require further scrutiny. Positive additive genetic correlations of rg = 0.37–0.52 were estimated between OFF and withers height and between OFH and withers height, indicating that selection for taller horses will increase disposition to develop OFF and OFH. Selection of broodmares with regards to functional conformation will assist, but cannot replace possible selection against radiographic findings in the limbs of young Warmblood riding horses, particularly with regards to OFF.  相似文献   

19.
Horses, like many domesticated species, have been selected for broad variation in skeletal size. This variation is not only an interesting model of rapid evolutionary change during domestication, but is also directly applicable to the horse industry. Breeders select for complex traits like body size and skeletal conformation to improve marketability, function, soundness and performance in the show ring. Using a well-defined set of 35 measurements, we have identified and quantified skeletal variation in the horse species. We collected measurements from 1215 horses representing 65 breeds of diverse conformation such as the American Miniature, Shetland Pony, Arabian Horse, Thoroughbred, Shire and Clydesdale. Principal components analysis has identified two key dimensions of skeletal variation in the horse. Principal component 1 is positively correlated with every measurement and quantifies overall body size. Principal component 2 captures a pattern of bone widths vs. lengths and thus quantifies variation in overall bone thickness. By defining these complex skeletal traits, we have created a framework for whole genome association studies to identify quantitative trait loci that contribute to this variation.  相似文献   

20.
Navicular disease is characterized by a progressive degenerative alteration of the equine podotrochlea. In this study, we refined a previously identified quantitative trait locus (QTL) on horse chromosome 10 for the abnormal development of canales sesamoidales (DCS) of the navicular bone in Hanoverian warmblood horses. Genotyping was done in 192 Hanoverian warmblood horses from 17 paternal half-sib groups. The whole marker set comprised 45 markers including seven newly developed microsatellites and 13 single nucleotide polymorphisms (SNPs) within positional candidate genes. Chromosome-wide significant QTL were confirmed and refined for DCS on horse chromosome (ECA) 10 at 0.16-2.70 Mb and at 14.45-36.37 Mb. Nine microsatellites and three SNP markers reached the highest multipoint Zmeans and LOD scores at 19.34-20.38 Mb and at 23.17-30.73 Mb with genome-wide error probabilities of P<0.05. In addition, a significant association of a SNP within VSTM1 and a significant haplotype-trait association within IRF3 could be shown. These results support a possible role of the candidate genes VSTM1 and IRF3 within the QTL on ECA10 for DCS. This study is a further step towards the identification of the genes responsible for navicular disease in Hanoverian warmblood horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号