首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium avium ssp. paratuberculosis (MAP) infection causes a chronic granulomatous inflammatory condition of the bovine gut that is characterized by diarrhea, progressive weight loss, and emaciation, and ultimately leads to loss in productivity and profitability of dairy operations. The host cytokine machinery is known to play an important role in protecting against MAP infection. Therefore, the goal of the present study was to assess whether polymorphisms in candidate genes encoding important cytokines and cytokine receptors are associated with MAP infection status of dairy cattle. MAP infection status was evaluated based on serum and milk enzyme-linked immunosorbent assays (ELISAs) for MAP-specific antibodies. Twenty previously reported polymorphisms in genes encoding bovine interferon gamma (IFNG), IFNGR1, IFNGR2, IL22, IL22RA1, IL12RB1, IL12RB2, and IL23R were genotyped in a resource population of 446 dairy Holsteins with known MAP infection status, and logistic regression was used to assess the statistical association with a binomial MAP infection status phenotype. Four SNPs in IFNGR2, IL12RB1, IL12RB2, and IL23R were found to be associated with the MAP infection status of the resource population. These results underscore the importance of cytokines and their receptors in conferring protection against MAP infection and warrant further functional characterization of these associations.  相似文献   

2.
During mycobacterial infection, macroautophagy/autophagy, a process modulated by cytokines, is essential for mounting successful host responses. Autophagy collaborates with human immune responses against Mycobacterium tuberculosis (Mt) in association with specific IFNG secreted against the pathogen. However, IFNG alone is not sufficient to the complete bacterial eradication, and other cytokines might be required. Actually, induction of Th1 and Th17 immune responses are required for protection against Mt. Accordingly, we showed that IL17A and IFNG expression in lymphocytes from tuberculosis patients correlates with disease severity. Here we investigate the role of IFNG and IL17A during autophagy in monocytes infected with Mt H37Rv or the mutant MtΔRD1. Patients with active disease were classified as high responder (HR) or low responder (LR) according to their T cell responses against Mt. IL17A augmented autophagy in infected monocytes from HR patients through a mechanism that activated MAPK1/ERK2-MAPK3/ERK1 but, during infection of monocytes from LR patients, IL17A had no effect on the autophagic response. In contrast, addition of IFNG to infected monocytes, increased autophagy by activating MAPK14/p38 α both in HR and LR patients. Interestingly, proteins codified in the RD1 region did not interfere with IFNG and IL17A autophagy induction. Therefore, in severe tuberculosis patients' monocytes, IL17A was unable to augment autophagy because of a defect in the MAPK1/3 signaling pathway. In contrast, both IFNG and IL17A increased autophagy levels in patients with strong immunity to Mt, promoting mycobacterial killing. Our findings might contribute to recognize new targets for the development of novel therapeutic tools to fight the pathogen.  相似文献   

3.
Two Mycobacterium avium subsp. paratuberculosis (MAP) antigens (native—S 5, ‘Bison type’ and commercial antigens ‘Bovine’), were compared for screening of kids against paratuberculosis infection. Using MAP (S 5) antigen (‘Bison type’) in plate ELISA, 47 serum samples driven from farmer's herds of Jakhrana, Sirohi, and Marwari breeds in their home tract in Rajasthan state were screened. Of the 47 kids randomly sampled, 8.5% were found sero-positive by plate ELISA test. Breed-wise sero-prevalence was 10.5%, 7.6%, and nil in the Jakhrana, Sirohi, and Marwari male kids, respectively. Whereas, none of the serum sample was found positive using commercial MAP ‘Bovine’ antigen. Sero-prevalence of paratuberculosis has been found to be low in young kids (2 months old) belonging to the farmer's herds of Jakhrana and Marwari in their home tracts.  相似文献   

4.
Nucleotide‐Binding Oligomerization Domain 2 (NOD2) has been reported to be a candidate gene for Mycobacterium avium subsp. paratuberculosis (MAP) infection in a Bos taurus × Bos indicus mixed breed based on a genetic association with the c.2197T>C single nucleotide polymorphism (SNP). Nevertheless, this SNP has also been reported to be monomorphic in the B. taurus species. In the present work, 18 SNPs spanning the bovine NOD2 gene have been analysed in a genetic association study of two independent populations of Holstein‐Friesian cattle. We found that the C allele of SNP c.*1908C>T, located in the 3′‐UTR region of the gene, is significantly more frequent in infected animals than in healthy ones, which supports the idea that the bovine NOD2 gene plays a role in susceptibility to MAP infection. However, in silico analyses of the NOD2 nucleotide sequence did not yield definitive data about a possible direct effect of SNP c.*1908C>T on susceptibility to infection and led us to consider its linkage disequilibrium with the causative variant. A more exhaustive genetic association study including all putative, functional SNPs from this gene and subsequent functional analyses needs to be conducted to achieve a more complete understanding of how different variants of NOD2 may affect susceptibility to MAP infection in cattle.  相似文献   

5.
Chromosomal locations of 19 horse immunity-related loci (CASP1, CD14, EIF5A, FCER1A, IFNG, IL12A, IL12B, IL12RB2, IL1A, IL23A, IL4, IL6, MMP7, MS4A2, MYD88, NOS2A, PTGS2, TFRC and TLR2) were determined by fluorescence in situ hybridization. For IFNG and PTGS2, this study is a confirmation of their previously reported position. In addition, microsatellite (HMBr1) was localized in the same region as IFNG. All genes were assigned to regions of conserved synteny and the data obtained in this study enhance the comparative human-horse map. Cytogenetic localization of IL6 to ECA4q14-q21.1 suggested a new breakage point that changes the order of loci compared with HSA7. The map assignments of these loci serve as anchors for other loci and will aid in the search for candidate genes associated with traits in the horse.  相似文献   

6.
To better understand the control of T helper (TH) 1-expressed genes, we compared and contrasted acetylation and expression for three key genes, IFNG, TBET, and IL18RAP and found them to be distinctly regulated. The TBET and the IFNG genes, but not the IL18RAP gene, showed preferential acetylation of histones H3 and H4 during TH1 differentiation. Analysis of acetylation of specific histone residues revealed that H3(Lys-9), H4(Lys-8), and H4(Lys-12) were preferentially modified in TH1 cells, suggesting a possible contribution of acetylation of these residues for induction of these genes. On the other hand, the acetylation of IL18RAP gene occurred both in TH1 and TH2 cells the similar kinetics and on the same with residues, demonstrating that selective histone acetylation was not universally the case for all TH1-expressed genes. Histone H3 acetylation of IFNG and TBET genes occurred with different kinetics, however, and was distinctively regulated by cytokines. Interleukin (IL)-12 and IL-18 enhanced the histone acetylation of the IFNG gene. By contrast, histone acetylation of the TBET gene was markedly suppressed by IL-4, whereas IL-12 and IL-18 had only modest effects suggesting that histone acetylation during TH1 differentiation is a process that is regulated by various factors at multiple levels. By treating Th2 cells with a histone deacetylase inhibitor, we restored histone acetylation of the IFNG and TBET genes, but it did not fully restore their expression in TH2 cells, again suggesting that histone acetylation explains one but not all the aspects of TH1-specific gene expression.  相似文献   

7.
《Autophagy》2013,9(12):2109-2121
Protective immunity against Mycobacterium tuberculosis (Mtb) requires IFNG. Besides, IFNG-mediated induction of autophagy suppresses survival of virulent Mtb in macrophage cell lines. We investigated the contribution of autophagy to the defense against Mtb antigen (Mtb-Ag) in cells from tuberculosis patients and healthy donors (HD). Patients were classified as high responders (HR) if their T cells produced significant IFNG against Mtb-Ag; and low responders (LR) when patients showed weak or no T cell responses to Mtb-Ag. The highest autophagy levels were detected in HD cells whereas the lowest quantities were observed in LR patients. Interestingly, upon Mtb-Ag stimulation, we detected a positive correlation between IFNG and MAP1LC3B-II/LC3-II levels. Actually, blockage of Mtb-Ag-induced IFNG markedly reduced autophagy in HR patients whereas addition of limited amounts of IFNG significantly increased autophagy in LR patients. Therefore, autophagy collaborates with human immune responses against Mtb in close association with specific IFNG secreted against the pathogen.  相似文献   

8.
It has long been known that pig conceptuses produce interferon‐γ (IFNG) at the time of implantation, but the role of IFNG and its mechanism of action at the maternal‐conceptus interface are not fully understood. Accordingly, we analyzed the expression and regulation of IFNG receptors IFNGR1 and IFNGR2 in the endometrium during the estrous cycle and pregnancy in pigs. Levels of IFNGR1 and IFNGR2 messenger RNA (mRNA) expression changed in the endometrium, with the highest levels during mid pregnancy for IFNGR1 and on Day 12 of pregnancy for IFNGR2. The expression of IFNGR1 and IFNGR2 mRNAs was also detected in conceptuses during early pregnancy and chorioallantoic tissues during mid to late pregnancy. IFNGR1 and IFNGR2 mRNAs were localized to endometrial epithelial and stromal cells and to the chorionic membrane during pregnancy. IFNGR2 protein was also localized to endometrial epithelial and stromal cells, and increased epithelial expression of IFNGR2 mRNA and protein was detectable during early pregnancy than the estrous cycle. Explant culture studies showed that estrogen increased levels of IFNGR2, but not IFNGR1, mRNAs, while interleukin‐1β did not affect levels of IFNGR1 and IFNGR2 mRNAs. Furthermore, IFNG increased levels of IRF1, IRF2, STAT1, and STAT2 mRNAs in the endometrial explants. These results in pigs indicate that IFNGR1 and IFNGR2 are expressed in a stage of pregnancy‐ and cell‐type specific manner in the endometrium and that sequential cooperative action of conceptus signals estrogen and IFNG may be critical for endometrial responsiveness to IFNs for the establishment of pregnancy in pigs.  相似文献   

9.
Nitric oxide (NO) produced by luteal endothelial cells (LECs) plays important roles in regulating corpus luteum (CL) function, yet the local mechanism regulating NO generation in bovine CL remains unclear. The purpose of the present study was to elucidate if tumor necrosis factor‐α (TNF), interferon γ (IFNG), and/or progesterone (P4) play roles in regulating NO generating system in LECs. Cultured bovine LECs obtained from the CL at the mid‐luteal stage (Days 8–12 of the cycle) were treated for 24 hr with TNF (2.9 nM), IFNG (2.5 nM), or P4 (0.032–32 µM). NO production was increased by TNF and IFNG, but decreased by P4 (P < 0.05). TNF and IFNG stimulated the relative steady‐state amounts of inducible nitric oxide synthase (iNOS) mRNA and iNOS protein expression (P < 0.05), whereas P4 inhibited relative steady‐state amounts of iNOS mRNA and iNOS protein expression (P < 0.05). In contrast, endothelial nitric oxide synthase (eNOS) expression was not affected by any treatment. TNF and IFNG stimulated NOS activity (P < 0.05) and 1400W, a specific inhibitor of iNOS, reduced NO production stimulated by TNF and IFNG in LECs (P < 0.05). Onapristone, a specific P4 receptor antagonist, blocked the inhibitory effect of P4 on NO production in LECs (P < 0.05). The overall findings suggest that TNF and IFNG accelerate luteolysis by increasing NO production via stimulation of iNOS expression and NOS activity in bovine LECs. P4, on the other hand, may act in maintaining CL function by suppressing iNOS expression in bovine LECs. Mol. Reprod. Dev. 79: 689–696, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.

Background

Bovine paratuberculosis (ParaTB) also known as Johne''s disease, is a contagious fatal disease resulting from infection by Mycobacterium avium subspecies paratuberculosis (MAP). Previous studies have identified loci associated with ParaTB using different measurements to define cases and controls. The objective of this study was to combine the data from two recent studies to identify genetic loci associated with MAP tissue infection and humoral immune response, defined by MAP ELISA-positive cattle, by comparing cases and control animals for one or both measures of infection.

Methodology/Principal Findings

The two populations used for the association analyses were a cohort of MAP tissue infected animals and control Holstein cows from the USA and the second cohort composed of ELISA-positive and ELISA-negative Holstein cows from Italy. Altogether 1190 cattle were genotyped with the Illumina BovineSNP50 BeadChip. SNP markers were removed if the minor allele frequency <0.01 or genotyping failure was >5%. Animals were removed with >5% genotyping failure. Whole genome association analyses were conducted with the GRAMMAR-CG method using two different definitions of control populations.

Conclusion/Significance

The analyses identified several loci (P<5 e-05) associated with ParaTB, defined by positive ELISA and presence of bacteria in tissue compared to ELISA and tissue negative animals, on chromosomes 1, 12 and 15 and one unassigned SNP. These results confirmed associations on chromosome 12 and the unassigned SNP with ParaTB which had been found in the Italian population alone. Furthermore, several additional genomic regions were found associated with ParaTB when ELISA and tissue positive animals were compared with tissue negative samples. These loci were on chromosomes 1, 6, 7, 13, 16, 21,23 and 25 (P<5 e-05). The results clearly indicate the importance of the phenotype definition when seeking to identify markers associated with different disease responses.  相似文献   

11.

Aims

To evaluate the survival of Mycobacterium avium subsp. paratuberculosis (MAP) during anaerobic digestion (AD), we studied two different biogas plants loaded with manure and slurry from paratuberculosis‐infected dairy herds.

Methods and Results

Both plants were operating under mesophilic conditions, the first with a single digester and the second with a double digester. Mycobacterium avium subsp. paratuberculosis detection was performed by sampling each stage of the process, specifically the prefermenter, fermenter, liquid digestate and solid digestate stages, for 11 months. In both plants, MAP was isolated from the prefermenter stage. Only the final products, the solid and liquid digestates, of the one‐stage plant showed viable MAP, while no viable MAP was detected in the digestates of the two‐stage plant.

Conclusions

Mycobacterium avium subsp. paratuberculosis showed a significant decrease during subsequent steps of the AD process, particularly in the two‐stage plant. We suggest that the second digester maintained the digestate under anaerobic conditions for a longer period of time, thus reducing MAP survival and MAP load under the culture detection limit.

Significance and Impact of the Study

Our data are unable to exclude the presence of MAP in the final products of the biogas plants, particularly those products from the single digester; therefore, the use of digestates as fertilizers is a real concern related to the possible environmental contamination with MAP.  相似文献   

12.
Intron 1 of the interferon-gamma (IFNG) gene contains two polymorphisms. The 12 CA-repeat allele of the +875 IFNGCA microsatellite and the T allele of the +A874T single nucleotide polymorphism (SNP) have been associated with increased in vitro IFNG production and a variety of clinical phenotypes. The purpose of this study was to determine whether these polymorphisms influence total serum IgE levels [tsIgE] and the outcome of a hepatitis B virus (HBV) infection. IFNGCA and +A874T were typed in 186 asthmatics of Niuean ancestry and in Polynesian women with a chronic HBV infection (n = 60) and with natural immunity to the HBV (n = 66). The IFNGCA genotype was associated with [tsIgE] in asthmatic children (n = 51, p = 0.004) but not adults (n = 135, p = 0.87). The data were consistent with a co-dominant influence of the 12 CA-repeat allele on high [tsIgE]. The IFNGCA genotype was also associated with the risk for chronic HBV infection (χ 2 = 11.6, p = 0.003) because of a dominant effect of the 12 CA-repeat allele on developing natural immunity in homozygotes (OR = 5.8, p = 0.003) and heterozygotes (OR = 2.7, p = 0.01). Similar associations were found for the T allele of the +A874T SNP. The possibility that these associations were due to linked alleles in the adjacent 783 bp of the promoter and 3′-untranslated region of the IFNG gene was excluded by direct sequencing. In summary, high-IFNG-producing alleles in intron 1 of the IFNG locus are associated with high [tsIgE] in asthmatic children from Niue and with natural immunity to the HBV in Polynesian women. These findings are consistent with a previous report of an association between +875 IFNGCA and [tsIgE] and provide preliminary evidence of a new association with the outcome of an HBV infection.  相似文献   

13.
DUSP4, an inducible protein has a substrate specificity toward ERK1/2, a component of MAP kinase which is enhanced during Leishmania infection. The DUSP4?/? mice show increased susceptibility towards the infection caused by Toxoplasma gondii and Leishmania mexicana. These observations emphatically established the fact that unlike DUSP1, DUSP4 has host protective role. In our study, it has been Leishmania donovani, the causative agent of visceral leishmaniasis (VL) significantly reduced the expression of DUSP4 during infection. In order to find out the host protective role of DUSP4 in macrophages during VL, we silenced DUSP4 prior to infection and the parasite number within macrophage was counted. Under DUSP4 knock-down condition, phosphorylation of p38 MAPK and generation of pro-inflammatory response like IL-12, TNF-α, and iNOS was decreased significantly. Silencing DUSP4 promoted the phosphorylation of ERK1/2 and the generation of anti-inflammatory response like- IL-10, TGF-β with increased Arginase-1 and Cox-2 activity. Glycyrrhizic Acid (GA), an immunomodulator, already known to suppress L. donovani infection, found to up-regulate DUSP4 expression during L. donovani infection. On the other hand, GA failed to increase Th1 cytokine production and decrease Th2 response during DUSP4 knock-down condition suggesting the key role of DUSP4 while providing protection during L. donovani infection.  相似文献   

14.
《Autophagy》2013,9(1):50-62
Interferon γ (IFNG) is a key host response regulator of intracellular pathogen replication, including that of Chlamydia spp The antichlamydial functions of IFNG manifest in a strictly host, cell-type and chlamydial strain dependent manner. It has been recently shown that the IFNG-inducible family of immunity-related GTPases (IRG) proteins plays a key role in the defense against nonhost adapted chlamydia strains in murine epithelial cells. In humans, IFN-inducible guanylate binding proteins (hGBPs) have been shown to potentiate the antichlamydial effect of IFNG; however, how hGBPs regulate this property of IFNG is unknown. In this study, we identified hGBP1/2 as important resistance factors against C. trachomatis infection in IFNG-stimulated human macrophages. Exogenous IFNG reduced chlamydial infectivity by 50 percent in wild-type cells, whereas shRNA hGBP1/2 knockdown macrophages fully supported chlamydial growth in the presence of exogenous IFNG. hGBP1/2 were recruited to bacterial inclusions in human macrophages upon stimulation with IFNG, which triggered rerouting of the typically nonfusogenic bacterial inclusions for lysosomal degradation. Inhibition of lysosomal activity and autophagy impaired the IFNG-mediated elimination of inclusions. Thus, hGBP1/2 are critical effectors of antichlamydial IFNG responses in human macrophages. Through their capacity to remodel classically nonfusogenic chlamydial inclusions and stimulate fusion with autophagosomes, hGBP1/2 disable a major chlamydial virulence mechanism and contribute to IFNG-mediated pathogen clearance.  相似文献   

15.
Kim JM  Kim JS  Jung HC  Song IS  Kim CY 《Helicobacter》2002,7(2):116-128
Background. Nitric oxide (NO) generated by nitric oxide synthase (NOS) is known to be an important modulator of the mucosal inflammatory response. In this study, we questioned whether Helicobacter pylori infection could up‐regulate the epithelial cell inducible NOS (iNOS) gene expression and whether NO production could show polarity that can be regulated by immune mediators. Materials and Methods. Human gastric epithelial cell lines were infected with H. pylori, and the iNOS mRNA expression was assessed by quantitative RT‐PCR. NO production was assayed by determining nitrite/nitrate levels in culture supernatants. To determine the polarity of NO secretion by the H. pylori‐infected epithelial cells, Caco‐2 cells were cultured as polarized monolayers in transwell chambers, and NO production was measured. Results. iNOS mRNA levels were significantly up‐regulated in the cells infected with H. pylori, and expression of iNOS protein was confirmed by Western blot analysis. Increased NO production in the gastric epithelial cells was seen as early as 18 hours postinfection, and reached maximal levels by 24 hours postinfection. The specific MAP kinase inhibitors decreased H. pylori‐induced iNOS and NO up‐regulation. After H. pylori infection of polarized epithelial cells, NO was released predominantly into the apical compartment, and IL‐8 was released predominantly into basolateral compartment. The addition of IFN‐γ to H. pylori‐infected polarized epithelial cells showed a synergistically higher apical and basolateral NO release. Conclusion. These results suggest that apical NO production mediated by MAP kinase in H. pylori‐infected gastric epithelial cells may influence the bacteria and basolateral production of NO and IL‐8 may play a role in the tissue inflammation.  相似文献   

16.
The present study was performed to investigate the anti-inflammatory potential of 115 kDa glycoprotein isolated from Zanthoxylum piperitum DC leaves (ZPDC glycoprotein) in primary cultured mouse thymocytes. To determine whether the ZPDC glycoprotein has inhibitory capacity against inflammation in vitro, we evaluated the activities of inflammation-related factors such as phosphorylations of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) 1/2, and the activities of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in 12-O-tetradecanoylphorbol 13-acetata (PMA, 50 nM)-treated mouse thymocytes. Our results showed that the ZPDC glycoprotein (200 μg/ml) has a suppressive effect on the expression of MAPK (ERK1/2 and p38 MAPK), on mRNA expression of pro-inflammatory cytokines (TNF-α and IL-1β), and on protein expression of pro-inflammatory proteins (iNOS and COX-2). We speculate that the ZPDC glycoprotein is an example of a natural compound that blocks pro-inflammatory signal transduction pathways.  相似文献   

17.
Hydatidosis is a disease caused by the larval stage of Echinococcus granulosus, which involves several organs of intermediate hosts. Evidence suggests a communication between hydatid cyst (HC) and hosts via extracellular vesicles. However, a little is known about the communication between EVs derived from HC fluid (HCF) and host cells. In the current study, EVs were isolated using differential centrifugation from sheep HCF and characterized by western blot, electron microscope and size distribution analysis. The uptake of EVs by human monocyte cell line (THP-1) was evaluated. The effects of EVs on the expression levels of pro- and anti-inflammatory cytokines were investigated using quantitative real-time PCR (RT-PCR), 3 and 24 h after incubation. Moreover, the cytokine level of IL-10 was evaluated in supernatant of THP-1 cell line at 3 and 24 h. EVs were successfully isolated and showed spherical shape with size distribution at 130.6 nm. After 3 h, the expression levels of pro-inflammatory cytokine genes (IL1Β, IL15 and IL8) were upregulated, while after 24 h, the expression levels of pro-inflammatory cytokines were decreased and IL13 gene expression showed upregulation. A statistically significant increase was seen in the levels of IL-10 after 24 h. The main mechanism of the communication between EVs derived from HCF and their host remains unclear; however, time-dependent anti-inflammatory effects in our study suggest that HC may modulate the immune responses via EVs.  相似文献   

18.
张振  常维山  丁家波 《微生物学报》2016,56(10):1530-1536
副结核分枝杆菌常引起感染牛的产奶量下降、持续性消瘦、顽固性下痢甚至死亡,给畜牧业带来了巨大的经济损失。牛通常在幼年期经口感染该菌并具有一个较长的亚临床期,后期才表现出临床症状,感染前期以细胞免疫为主并伴随着间歇排菌,经过一个2到5年的亚临床期后体液免疫应答增强,同时排菌量明显增加。目前对牛副结核病常用的检测方法有病原学检测方法,基于细胞免疫反应和基于体液免疫反应的检测方法。由于不同方法的反应原理不同,加之副结核分枝杆菌感染动物的特定免疫应答规律,在某一时间内各方法之间敏感性差异较大。本文简要阐述了牛副结核分枝杆菌的传播途径以及牛感染后的免疫应答特点,对牛副结核病的常见诊断方法进行了综述。  相似文献   

19.
20.
The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号