首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genomic and genetic variation among six Italian chicken native breeds (Livornese, Mericanel della Brianza, Milanino, Bionda Piemontese, Bianca di Saluzzo and Siciliana) were studied using single nucleotide polymorphism (SNP) and copy number variants (CNV) as markers. A total of 94 DNA samples genotyped with Axiom® Genome-Wide Chicken Genotyping Array (Affymetrix) were used in the analyses. The results showed the genetic and genomic variability occurring among the six Italian chicken breeds. The genetic relationship among animals was established with a principal component analysis. The genetic diversity within breeds was calculated using heterozygosity values (expected and observed) and with Wright’s F-statistics. The individual-based CNV calling, based on log R ratio and B-allele frequency values, was done by the Hidden–Markov Model (HMM) of PennCNV software on autosomes. A hierarchical agglomerative clustering was applied in each population according to the absence or presence of definite CNV regions (CNV were grouped by overlapping of at least 1 bp). The CNV map was built on a total of 1003 CNV found in individual samples, after grouping by overlaps, resulting in 564 unique CNV regions (344 gains, 213 losses and 7 complex), for a total of 9.43 Mb of sequence and 1.03% of the chicken assembly autosome. All the approaches using SNP data showed that the Siciliana breed clearly differentiate from other populations, the Livornese breed separates into two distinct groups according to the feather colour (i.e. white and black) and the Bionda Piemontese and Bianca di Saluzzo breeds are closely related. The genetic variability found using SNP is comparable with that found by other authors in the same breeds using microsatellite markers. The CNV markers analysis clearly confirmed the SNP results.  相似文献   

2.
3.
4.
5.
6.
7.
Neuropathic pain is diagnosed primarily by sensory dysfunction, which includes both spontaneous, and stimulus-evoked pain. Clinical evaluation highlights the disabilities which characterise this condition for most patients. Chronic constriction injury of the sciatic nerve (CCI) evokes sensory dysfunction characteristic of neuropathic pain. Approximately, 30 % of CCI rats show disabilities similar to those identified in clinical evaluation of neuropathic pain patients, these include: altered social behaviours; sleep disturbances; and endocrine dysfunction. The periaqueductal grey (PAG) is a nodal point in the brain circuits which regulate these functions, and undergoes a distinct set of neural and glial adaptations following CCI, in rats with disabilities. CCI increases corticosterone, which through its actions at the glucocorticoid receptor (GR), can trigger cellular adaptation. GR expression in PAG was quantified using qRT-PCR, Western blotting and immunohistochemical analyses and nerve-injured rats, with and without disabilities, were compared. Our data showed that the PAG of disabled rats has significantly increased expression of GR mRNA and protein. Further, this increased protein expression reflects contrasting patterns of change in GR expression in PAG subregions. The dorsolateral PAG had significant increases in the number of GR-immunoreactive (GR-IR) cells and the caudal lateral and ventrolateral PAG each had significant reductions in the number of GR-IR cells. These regional increases and decreases correlated with the degree of disability, as indicated by the degree of change in social behaviours. Our results suggest a role for altered PAG, GR–corticosterone interactions and their resultant cellular consequences in the expression of disabilities in a subpopulation of nerve-injured rats.  相似文献   

8.
9.
Aluminum (Al) has been associated with pro-oxidant effects, as well as with various serious neurodegenerative diseases such as Alzheimer’s disease (AD). On the other hand, melatonin (Mel) is a known antioxidant, which can directly act as free radical scavenger, or indirectly by inducing the expression of some genes linked to the antioxidant defense. In this study, 5-month-old AßPP female transgenic (Tg2576) (Tg) and wild-type mice were fed with Al lactate supplemented in the diet (1 mg Al/g diet). Concurrently, animals received oral Mel (10 mg/kg) until the end of the study at 11 months of age. Four treatment groups were included for both Tg and wild-type mice: control, Al only, Mel only, and Al + Mel. At the end of the treatment period, cortex and cerebellum were removed and processed to examine the following oxidative stress markers: reduced glutathione, oxidized glutathione, cytosolic Cu–Zn superoxide dismutase (SOD1), glutathione reductase (GR), glutathione peroxidase, catalase (CAT), and thiobarbituric acid reactive substances. Moreover, the gene expression of SOD1, GR, and CAT was evaluated by real-time RT-PCR. The biochemical changes observed in cortex and cerebellum suggest that Al acted as a pro-oxidant agent. Melatonin exerted an antioxidant action by increasing the mRNA levels of the enzymes SOD1, CAT, and GR evaluated in presence of Al and Mel, independently on the animal model.  相似文献   

10.
The 2-DE/MS-based proteomics approach was used to investigate the differences of porcine skeletal muscle, and ATP5B was identified as one differential expression protein. In the present study, ATP5B gene was further cloned by RT-PCR, the sequence was analyzed using the bioinformatics method, and the mRNA expression was detected by qRT-PCR. Sequence analysis showed that the porcine ATP5B gene contains an ORF encoding 528-amino-acid residues with 49 and 166 nucleotides in the 5′ and 3′ UTRs, respectively. The mRNA of ATP5B was widely expressed in all 14 tissues tested, but especially highly expressed in parorchis and fat. The expression pattern of ATP5B was similar in Large White and Meishan breeds, showing that the expression was upregulated by 3 days after birth and downregulated during postnatal development of skeletal muscle. Comparing the two breeds, the mRNA abundance of ATP5B in Large White was more highly expressed than in Meishan at all developmental stages (P < 0.05). Moreover, a synonymous mutation, G75A in exon 8, was identified and association analysis with the traits of meat quality showed that it was significantly associated with the RLF, FMP, IFR, IMF, and IMW (P < 0.05). These results suggested that ATP5B probably plays a key role in porcine skeletal muscle development and may provide further insight into the molecular mechanisms responsible for breed-specific differences in meat quality.  相似文献   

11.
Epinephrine, norepinephrine, and corticosterone responses to hypoglycemia are impaired in diabetic rats. Recurrent hypoglycemia further diminishes epinephrine responses. This study examined the sympathoadrenal system and hypothalamo-pituitary-adrenal axis for molecular adaptations underlying these defects. Groups were normal (N) and diabetic (D) rats and diabetic rats exposed to 4 days of 2 episodes/day of hyperinsulinemic hypoglycemia (D-hypo) or hyperinsulinemic hyperglycemia (D-hyper). D-hypo and D-hyper rats differentiated effects of hypoglycemia and hyperinsulinemia. Adrenal tyrosine hydroxylase (TH) mRNA was reduced (P < 0.05 vs. N) 25% in all diabetic groups. Remarkably, mRNA for phenylethanolamine N-methyltransferase (PNMT), which converts norepinephrine to epinephrine, was reduced (P < 0.05 vs. all) 40% only in D-hypo rats. Paradoxically, dopamine beta-hydroxylase mRNA was elevated (P < 0.05 vs. D, D-hyper) in D-hypo rats. Hippocampal mineralocorticoid receptor (MR) mRNA was increased (P < 0.05 vs. N) in all diabetic groups. Hippocampal glucocorticoid receptor (GR), hypothalamic paraventricular nucleus (PVN) GR and corticotropin-releasing hormone (CRH), and pituitary GR and proopiomelanocortin (POMC) mRNA levels did not differ. We conclude that blunted corticosterone responses to hypoglycemia in diabetic rats are not due to altered basal expression of GR, CRH, and POMC in the hippocampus, PVN, and pituitary. The corticosterone defect also does not appear to be due to increased hippocampal MR, since we have reported normalized corticosterone responses in D-hypo and D-hyper rats. Furthermore, impaired epinephrine counterregulation in diabetes is associated with reduced adrenal TH mRNA, whereas the additional epinephrine defect after recurrent hypoglycemia is associated with decreases in both TH and PNMT mRNA.  相似文献   

12.
11 beta-Hydroxysteroid dehydrogenase (11 beta-HSD) dictates specificity for the mineralocorticoid receptor (MR) by converting the active steroid cortisol to cortisone in man (corticosterone to 11-dehydrocorticosterone in rodents), leaving aldosterone to occupy the MR. However cortisol is the principal circulating glucocorticoid in man and 11 beta-HSD, distributed in a tissue specific fashion, may represent a powerful mechanism in regulating exposure of active steroid to the glucocorticoid receptor (GR). A detailed localization study of 11 beta-HSD gene expression and activity in numerous rat tissues has been performed and compared with the presence of GR mRNA. 11 beta-HSD mRNA (1.4 kB) measured by hybridization to a cDNA derived from hepatic 11 beta-HSD, and enzyme activity, measured by percentage conversion of [3H]corticosterone to [3H]11-dehydrocorticosterone by tissue homogenate, was widespread, present in all tissues studied except spleen, brain cortex and heart. There was a close correlation between tissue 11 beta-HSD mRNA levels and activity (r = 0.91, P less than 0.001) suggesting pretranslational regulation of the enzyme at a tissue level. There was also close co-localization of GR mRNA (7 kB), measured by hybridization to a rat GR cRNA probe, and enzyme mRNA/activity in every tissue studied except heart and brain cortex in which GR mRNA was found. In the mineralocorticoid target tissues kidney and colon, additional 11 beta-HSD mRNA bands were seen (kidney 1.8 kB, colon 3.4 kB), suggesting the presence of multiple dehydrogenase species. 11 beta-HSD is widely distributed and suitably placed to modulate ligand occupancy of the GR. The possibility of multiple dehydrogenase species in mineralocorticoid target tissues is consistent with the hypothesis that the ubiquitous 'native' 1.4 kB hepatic enzyme regulates the GR, and these separate dehydrogenases regulate the MR.  相似文献   

13.
14.
Glutathione reductase (GR) is a flavoprotein oxidoreductase and plays an important role in response to oxidative stresses in plants. A cDNA-encoding cytosolic GR [GenBank accession number GACA01029426, designated as Pohlia nutans glutathione reductase gene (PnGR)] was successfully cloned from Antarctic moss P. nutans. The full-length PnGR cDNA has 1,654 bp nucleotides with an open reading frame of 1,494 bp, encoding 497 amino acid residues. The deduced amino acid sequence of PnGR had 87.0 % identity with GR in Physcomitrella patens subsp. patens. The phylogenetic analysis showed that PnGR is clustered together with known cytosolic GR in other plants. In addition, the subcellular localization analysis by observing the transient expression of PnGR–green fluorescent protein fusion protein in Arabidopsis thaliana mesophyll protoplasts also revealed PnGR targeting to cytosol in plant cells. The expression patterns of PnGR under different abiotic stresses were determined by real-time PCR. Compared to the normal condition, the maximal mRNA accumulation of PnGR increased 3.82-fold at 4 °C, 2.92-fold at 10 °C, 4.14-fold with 200 mM NaCl, and 3.17-fold with drought stress, respectively. Together, our results suggested that the inducible PnGR might play an important role in Antarctic moss P. nutans acclimatizing to polar environment.  相似文献   

15.
Antimicrobial peptide Temporin-Ra was isolated from the skin secretions of marsh frog Rana ridibunda. Temporin-Ra was chemically synthesized and purified using RP-HPLC technique. The cytotoxicity of peptide on lung airway epithelial cell line (A549) and peripheral blood mononuclear cells (PBMC) was studied by MTT assay. Furthermore, the effect of Temporin-Ra on the expression of pro-inflammatory factors such as IL-1β and IL-8 in A549 cell line was evaluated at peptide concentrations of 15, 30 and 50 μg/mL for 6, 12 and 24 h using semi-quantitative RT-PCR and real-time PCR methods. The result of our experiments revealed that Temporin-Ra decreased cell viability about 3–13 % in A549 cells and 4–6 % in PBMC cells. Moreover, Temporin-Ra induced the mRNA expression of IL-1β and IL-8 genes in a dose- and time-dependent manner. According to our results, maximum IL-8 mRNA expression was observed after a 24-h treatment of cancer cells with 50 μg/mL peptide with approximately 18-fold increase in expression. The least expression level of IL-1β was observed after 6-h of incubation in the presence of 15 μg/mL peptide with 2.5-fold increase in expression whereas the most expression level was obtained following 24 h-treatment with 50 μg/mL peptide with 26-fold increase in mRNA expression. Eventually, the present study highlights the role of Temporin-Ra as a potent antimicrobial peptide in the activation and maintenance of inflammatory processes.  相似文献   

16.
We studied molecular mechanism of Cistanches Herba aqueous extract (CHAE) in ovariectomized (OVX) rats, as an experimental model of postmenopausal osteoporosis. Female rats were either sham-operated or bilaterally OVX; and at 60 days postoperatively. The OVX group (n = 8) received an ovariectomy and treatment with normal saline for 90 days commencing from 20th post ovariectomy day. The ovariectomized +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy and were treated with Cistanches Herba aqueous extract of 100 mg/kg body weight daily for 90 days commencing from 22nd post ovariectomy day. The ovariectomy +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy, and were treated with the of 200 mg/kg body weight daily for 90 days commencing from 20th post ovariectomy day. Serum BGP and TRAP, E2, FSH and LH level, bone marrow Smad1, Smad5, TGF-β1 and TIEG1 mRNA expression levels were examined. Results showed that serum BGP and TRAP, FSH and LH levels were significantly increased, whereas E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels were significantly decreased in OVX rats compared to sham rats. 90 days of CHAE treatment could significantly decrease serum BGP and TRAP, FSH and LH levels, and increase E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels in OVX rats. It can be concluded that CHAE play its protective effect against OVX-induced bone degeneration partly by regulating some bone metabolism related genes, e.g. Smad1, Smad5, TGF-β1 and TIEG1.  相似文献   

17.
Early-life endocrine intervention may programme hippocampal glucocorticoid receptor (GR) expression and cause psychiatric disorders in later life. Glucagon-like peptide-1 (GLP-1) has been implicated in the regulation of neuroendocrine and behavioural responses, but it is yet to be determined whether and how neonatal GLP-1 overexpression may modify hippocampal GR expression and thus programme adolescent behaviour in rats. Two-dayold pups were injected intramuscularly with vacant plasmid (VP) or plasmid DNA encoding secretory GLP-1 (GP). Anxiety-related behaviour was assessed in the elevated plus maze (EPM) test at 8 weeks of age. Plasma corticosterone levels were measured with enzyme immunoassay (EIA). Protein and mRNA levels were determined by western blot and real-time polymerase chain reaction (PCR), respectively. The DNA methylation status of the GR exon 17 promoter was determined by bisulphate sequencing PCR (BSP). GP rats exhibited anxiolytic behaviour compared with their VP counterparts. Hippocampal GLP-1 receptor (GLP-1R) and GR mRNA expression were significantly elevated in GP rats without a significant difference in plasma corticosterone. Significant reduction in DNA methyltransferase 1 (DNMT1) expression was observed in GP rats disconnected with alterations in DNA methylation of the GR exon 17 promoter. Nevertheless, mRNA expression of nerve growth factor-inducible protein A (NGFI-A) was significantly elevated in GP rats. These results suggest that neonatal intramuscular injection of plasmid DNA encoding GLP-1 affects anxiety behaviour in adolescent rats, probably through NGFI-A-activated upregulation of hippocampal GR expression.  相似文献   

18.
During rodent development there are two surges of circulating corticosterone: one just prior to birth and then one in the third postnatal week. Prior studies have shown that the latter controls the rate of intestinal development in the postnatal period. To date, a role for the earlier surge in the prenatal phase of intestinal development has not been investigated. We hypothesized that the late fetal surge of circulating corticosterone is involved in both morphologic and functional maturation of the intestinal epithelium, and thus that such maturation would be delayed if glucocorticoid action was abrogated. The hypothesis was tested by studying intestinal development in mice lacking a functional glucocorticoid receptor (GR). After GR+/- mice were bred onto a C57Bl/6 background, heterozygote matings yielded the expected ratios of -/-, +/-, and +/+ offspring. Analysis of GR mRNA in intestines of +/+ and -/- fetuses confirmed expression in wild-type mice but not in the GR-null mice. Intestinal histology of GR+/+ and -/- littermates at E13.5, E15.5, and E18.5 showed no effect of GR genotype on morphologic development. Further studies at E18.5 showed that GR-/- mice have normal functional maturation of the intestinal epithelium as assessed by: lactase activity in the enterocyte lineage, normal numbers of goblet and enteroendocrine cells, and normal numbers of proliferating cells in the intestinal crypts. Neither the minerolocorticoid receptor (MR) nor the pregnane X receptor (PXR) showed compensatory up-regulation in GR-/- mice. We conclude that, in contrast to our original hypothesis, the rodent intestine passes through a phase of glucocorticoid independence (late fetal) prior to becoming responsive to glucocorticoids in the postnatal period. These findings have implications for the clinical use of corticosteroids to enhance intestinal maturation in preterm infants.  相似文献   

19.
Although it is known that glucocorticoids induce differentiation of growth hormone (GH)-producing cells in rodents and birds, the effect of mineralocorticoids on GH mRNA expression and the origin of corticosteroids affecting somatotrope differentiation have not been elucidated. In this study, we therefore carried out experiments to determine the effect of mineralocorticoids on GH mRNA expression in the chicken anterior pituitary gland in vitro and to determine whether corticosteroids are synthesized in the chicken embryonic pituitary gland. In a pituitary culture experiment with E11 embryos, both corticosterone and aldosterone stimulated GH mRNA expression and increased the number of GH cells in both lobes of the pituitary gland in a dose-dependent manner. These effects of the corticosteroids were significantly reversed by pretreatment with mifepristone, a glucocorticoid receptor (GR) antagonist, or spironolactone, a mineralocorticoid receptor (MR) antagonist. Interestingly, an in vitro serum-free culture experiment with an E11 pituitary gland showed that the GH mRNA level spontaneously increased during cultivation for 2 days without any extra stimulation, and this increase in GH mRNA level was completely suppressed by metyrapone, a corticosterone-producing enzyme P450C11 inhibitor. Moreover, progesterone, the corticosterone precursor, also stimulated GH mRNA expression in the cultured chicken pituitary gland, and this effect was blocked by pretreatment with metyrapone. We also detected mRNA expression of enzymes of cytochrome P450 cholesterol side chain cleavage (P450scc) and 3β-hydroxysteroid dehydrogenase1 (3β-HSD1) in the developmental chicken pituitary gland from E14 and E18, respectively. These results suggest that mineralocorticoids as well as glucocorticoids can stimulate GH mRNA expression and that corticosteroids generated in the embryonic pituitary gland by intrinsic steroidogenic enzymes stimulate somatotrope differentiation.  相似文献   

20.
Citrinin (CIT) and Ochratoxin A (OTA) are nephrotoxic mycotoxins which can co-occur in food commodities, resulting in internal exposure. Studies in many countries reported on the presence of OTA in human blood; however, such biomonitoring data for CIT is still scarce. This study was conducted to characterize both CIT and OTA biomarker levels in plasma of volunteers since food analysis data are insufficient to assess human exposure in Bangladesh. In total 104 blood samples were collected from university students in 2013 (sampling 1: n?=?64, midsummer) and 2014 (sampling 2: n?=?40, end winter) for analysis of CIT and OTA and their metabolites HO-CIT and OTα by LC-MS/MS and HPLC-FD techniques, respectively. CIT and HO-CIT were detected in 90% (max 2.70 ng/mL) and 85% (max 1.44 ng/mL) of all samples. Mean levels in sampling 2 (CIT 0.47 ng/mL; HO-CIT 0.40 ng/mL) were higher than in sampling 1 (0.25 ng/mL; 0.37 ng/mL) indicative of variable CIT exposure. OTA was present in all (max 6.63 ng/mL) and OTα in 98% (max 0.99 ng/mL) of the samples. In sampling 1, mean OTA (0.85 ng/mL) was higher than in sampling 2 (0.51 ng/mL); the reverse situation was found for OTα mean levels. The calculated dietary OTA intake among the students (mean 9.9; max 91.7 ng/kg bw/week) was lower than the tolerable weekly intake for this mycotoxin (120 ng/kg bw/week) set by EFSA. But frequent co-exposure to CIT should be considered, and the results of this study indicate the necessity to identify major sources of CIT and OTA intake in the Bangladeshi population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号