首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We succeeded in inducing conjugation of Spirogyra castanacea by incubating algal filaments on agar plate. Conjugation could be induced using clone culture. The scalariform conjugation was generally observed, while lateral conjugation was rarely. When two filaments formed scalariform conjugation, all cells of one filament behaved as male and those of other filament did as female. Very rarely, however, zygospores were formed in both of pair filaments. The surface of conjugation tube was stained with fluorescently labeled-lectins, such as Bandeiraea (Griffonia) simplicifolia lectin (BSL-I) and jacalin. BSL-I strongly stained the conjugation tubes, while weakly did the cell surface of female gamete first and then that of male gamete. Jacalin stained mainly the conjugation tubes. Addition of jacalin inhibited the formation of papilla, suggesting some important role of jacalin-binding material at the initial step of formation of the conjugation tubes.  相似文献   

2.
Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) ovules were used to study male gamete formation, insemination of the egg, and free nuclear and cellular proembryo development. Two male nuclei form as the pollen tube either reaches the megaspore wall or as it enters the archegonial chamber. No cell wall separates them. They are contained within the body-cell cytoplasm. A narrow extension of the pollen tube separates the neck cells and penetrates the ventral canal cell. The pollen tube then releases its contents into the egg cytoplasm. The two male gametes and a cluster of paternal organelles (plastids and mitochondria) migrate within the remains of the body-cell cytoplasm toward the egg nucleus. Microtubules are associated with this complex. The leading male gamete fuses with the egg nucleus. The zygote nucleus undergoes free nuclear division, but the cluster of paternal organelles remains discrete. Free nuclei, paternal and maternal nucleoplasm, maternal perinuclear cytoplasm, and the cluster of paternal organelles migrate en masse to the chalazal end of the archegonium. There, paternal and maternal organelles intermingle to form the neocytoplasm, the nuclei divide, and a 12-cell proembryo is formed. The importance of male nuclei or cells, the perinuclear zone, and large inclusions in cytoplasmic inheritance are discussed in the Pinaceae and in other conifer families. This completes a two-part study to determine the fate of paternal and maternal plastids and mitochondria during gamete formation, fertilization, and proembryo development in Douglas fir.  相似文献   

3.
Papenfussiella callitricha (Rosenv.) Kylin from eastern Canada was studied in culture. Zoids from unilocular sporangia develop into microscopic, filamentous, dioecious gametophytes which produce isogametes in filament cells and few-chambered plurilocular gametangia. Unfused gametes germinate to reproduce the gametophytes. Fusion takes place between a settled (“female”) and a motile (“male”) gamete. The zygote gives rise to a filamentous plethysmothallus that reproduces asexually by zoids formed in thallus cells and in few-chambered plurilocular zoidangia. Erect macrothalli are produced on the plethysmothallus, beginning with the formation of upright filaments. Later on, these filaments become the terminal assimilators of the macrothalli. Further assimilatory filaments, rhizoids, and unilocular sporangia are produced in a branching region at the base of the terminal assimilator. Zoids from unilocular sporangia formed in culture germinate to reestablish the gametophyte phase. Chromosome counts yielded n = 19 ± 3 for the gametophytes, and 32 ± 6 for the sporophyte, both plethysmothallus and macrothallus.  相似文献   

4.
The electron microscopy of zygote formation and the early stages of zygote germination in Nephroselmis olivacea Stein are presented. Although the gametes differ behaviorally during the early stages of gamete fusion, the alga is isogamous. The minus gamete settled on the substrate, and attached with its left side. The plus gamete swam to the minus gamete, attached ventral to the right side of the minus gamete, while slightly on its left side, and plasmogamy started. No specialized organelle for gamete fusion was seen using either scanning or transmission electron microscopy. Gametic fusion was uniform; the right side of the minus gamete always fused with the ventral, slightly left side of the plus gamete, which suggests the participation of the d‐rootlets of the flagellar apparatus of the two gametes. Body scales were retained throughout the entire sexual process. Before karyogamy, a network of endoplasmic reticulum developed between the nuclei. This position corresponded to the contractile vacuole of the plus gamete. Fusion proceeded as the minus gamete was drawn to the plus gamete and resulted in a hemispherical zygote. Fibrous material appeared on the cell surface, embedding the body scales to form a layer that thickened and contributed to the strong adhesion of the zygote to the substrate. During this stage, karyogamy was completed. A thick zygotic wall composed of two layers, an electron‐dense outer layer and a straticulate electron‐lucent inner layer developed beneath the layer of fibrous material and scales. Zygote germination was induced. After the first meiotic division, the layer of fibrous material and scales ruptured and the inner layer of the zygotic wall thinned, allowing the emergence of two germ cells. They had newly formed scales and two starch grains, but no typical pyrenoid.  相似文献   

5.
Sexual reproduction inEudorina elegans Ehr. was studied in detail in laboratory cultures, with particular regard to conjugation between gametes and gone colony formation. Male and female gametes fused after being induced by changing the medium. The anterior end, including the flagellar base, of the male gamete entered the anterior region of the female gamete. Fusion of the two protoplasts proceeded laterally and posteriorly. The male gamete bore a slender cytoplasmic protrusion at the base of the flagella. This structure has not been previously described in the male gamete ofEudorina, and may participate in plasmogamy. A biflagellate gone cell swam from the germinating zygote and secreted a gelatinous envelope. It then divided to form a gone colony within the gelatious envelope, which moved during colony formation by means of the two flagella which were retained intact from the original gone cell.  相似文献   

6.
K. Ueda  Y. Suzuki 《Protoplasma》1985,125(3):205-213
Summary The behavior of gamete cells ofClosterium ehrenbergii in hypertonic solutions was observed and the significance of changes in osmotic pressure of the protoplasts is discussed in relation to zygote formation. The osmotic pressure of fusing gamete protoplasts was calculated to be 0.063 Osm at the original cell volume. The osmotic pressure of immature gamete protoplasts was 0.24 Osm at incipient plasmolysis. This lowering of cell osmotic pressure may serve to protect the rupture of the plasma membrane during migration of protoplasts in the conjugation tube after dissolution of cell walls. During maturation of gamete cells, chloroplasts and dictyosomes differed greatly in their ultrastructure from those of vegetative cells. These structural changes may be induced by changes of the physiological condition including osmotic pressure in the cells.  相似文献   

7.
Summary Rapid zygote formation byCosmarium botrytis was induced in a liquid medium by incubation in 5% CO2. Conjugation and zygote formation were studied by SEM, TEM, phase-contrast, and Calcofluor fluorescence microscopy. It was observed that the cells divided immediately prior to conjugation and formed Calcofluor fluorescent conjugation papillae as soon as the primary wall was shed. The conjugating cells and the resultant zygote were envelopped by a non-fluorescent mucilagenous envelope which was eventually pierced by the zygote spines, but never shed. The very young smooth-walled zygote had a thick Calcofluor fluorescent wall. At that stage the zygote could be plasmolysed in 0.4 M mannitol, but no protoplast could be induced to emerge even with the addition of up to 5% Cellulysin; probably indicating that the zygote wall composition and structure is different from that of the secondary wall of the vegetative cells, particularly in the absence of mucilage pores.  相似文献   

8.
A blue light– (peak at 470 nm) induced photomovement was observed in the filamentous eukaryotic algae, Spirogyra spp. When Spirogyra filaments were scattered in a water chamber under a unilateral light source, they rapidly aligned toward the light source in 1 h and bound with neighboring filaments to form thicker parallel bundles of filaments. The filaments in the anterior of the bundles curved toward the light first and then those in the posterior began to roll up toward the light, forming an open‐hoop shape. The bundle of filaments then moved toward the light source by repeated rolling and stretching of filaments. When the moving bundle met other filaments, they joined and formed a bigger mat. The coordination of filaments was essential for the photomovement. The average speed of movement ranged between 7.8 and 13.2 μm·s?1. The movement was induced in irradiance level from 1 to 50 μmol photons·m?2·s?1. The filaments of Spirogyra showed random bending and stretching movement under red or far‐red light, but the bundles did not move toward the light source. There was no distinct diurnal rhythm in the photomovement of Spirogyra spp.  相似文献   

9.
Chlamydomonas reinhardi, a haploid isogamous green alga, presents a classic case of uniparental inheritance of chloroplast genes. Since the molecular basis of this phenomenon is poorly understood, an examination of the cytology of the C. reinhardi plastid DNA was made in gametes, newly formed zygotes, maturing zygotes, and at zygote germination.The single plastid per cell of Chlamydomonas contains a small number of DNA aggregates (‘nucleoids’) which can be seen after staining with DNA-binding fluorochromes. In zygotes formed by pre-stained gametes, the fluorescing nucleoids disappear from the plastid of mating type minus (male) gamete plastids but not from the plastid of mating type plus (female) gamete plastids about 1 h after zygote formation. Subsequently, nucleoids aggregate slowly to a final average of two or three in the single plastid of the mature zygote.Quantitative microspectrofluorimetry indicates that gametes of both mating types have equal amounts of plastid DNA, and that zoospores arising from zygotes have 3.5 × as much as gametes. Assuming degradation of male plastid DNA, there must be a very major synthesis of plastid DNA between zygote formation and zoospore release when zygotes produce the typical 8–16 zoospores. That synthesis appears to occur at germination, where there is a massive increase in plastid DNA and nucleoid number beginning just prior to meiosis. The results support the theory that uniparental inheritance results from degradation of plastid DNA entering the zygote via the male gamete and suggest further studies, using mutants and altered conditions, which might explain how male plastid DNA sometimes survives.  相似文献   

10.
An in vitro liquid culture oospore production method yielding 5 × 103 oospores/ml was used to follow the sequential events of gametangial copulation and oospore formation in Lagenidium giganteum. Observations were made with Nomarski differential interference microscopy and scanning electron microscopy. After septation and division of fungal thalli into a chain-like series of links, certain individual subthalli differentiated into gametaniga, oogonia, and antheridia. Antheridia issued a fertilization tube which made contact with, and fused to a single oogonium. Copulative behavior was relatively synchronous and necessitated physical contact between thalli. Sexual reproduction was manifested by the migration and condensation of gametes. Plasmogamy was achieved following the introduction of the male gamete into the oogonium. The fused gametes gave rise to a zygote. Small amounts of periplasm remained in the oogonium. Zygote maturation into a fully developed oospore was characterized by the deposition of a multilaminated oospore wall, the coalescence of lipids into a highly refractive central reserve globule surrounded by a layer of fine-grained cytoplasm.  相似文献   

11.
Large-scale collections of Zygnemataceae in the continental United States of America were made between March and August in 1982, 1983, and 1984. Collections were made on a 31000-km transect through 35 states. Zygnemataceae were found at 318 sites was inspected. Temperature average 19°C and pH averaged 6.1 over all sites. Algal strains in collections were identified to genus, characterized for filament width, chloroplast number, and end wall type, then photographed and isolated into unialgal culture. Spirogyra was the most common genus collected(632 strains), followed in abundance by Zygnema (174 Strains) and Mougeotia (135 strains). These three genera contained 95% of the strains collected and were equally widely distributed. Strains of the three genera frequently occurred together; no genus displayed evidence of habitat specialization among the three habitat types: flowing water, permanent ponds or lakes, and temporary pools. In Spirogyra, strains with plane (flat) end walls were four times more abundant than those with replicate (interlocking) end walls. Spirogyra with plane end walls showed more variation in filament width than Zygnema, Mougeotia, or Spirogyra with replicate end walls. In Spirogyra with plane end walls, filament width was correlted with nuclear DNA content and number of strains found per collection site was twice that of other genera or Spirogyra, with replicate end walls. Spirogyra strains wider than 70 μm were more frequent on the northern part of the transect. It is proposed that polyploidy may be of widespread occurrence in Spirogyra with plane end walls and that associated morphological plasticity may account for the high apparent specied diversity and survival of the genus in a wider variety of microhabitats than occupied by other Zygnemataceae.  相似文献   

12.
Detailed conjugation processes in Penium, a unicellular conjugating green alga, are described for the first time. A homothallic strain of Penium margaritaceum (Ehrenb.) Bréb. (Designation, izu84‐10) was isolated from a rice paddy field in Japan. The species was identified based on its morphology, and a molecular phylogeny confirmed that izu84‐10 was closely related to another identified strain of this species. Using time‐lapse photography, the conjugation processes in P. margaritaceum were observed and then categorized into the following six stages: (1) cell division, resulting in the formation of two sister gametangial cells from one vegetative cell; (2) formation of a sexual pair between the two sister gametangial cells (or between gametangial cells of another nearby individual); (3) formation of conjugation papillae by elongation of the cell wall; (4) release of a gamete from one of the pair members; (5) release of a gamete from the other pair member; and (6) formation of the zygospore by gamete fusion. By alcian blue staining, possible involvement of mucilage to facilitate this cell adhesion and cell–cell communication was suggested.  相似文献   

13.
Koop  H. -U. 《Protoplasma》1975,86(4):351-362
Summary The reproductive stages of the life cycle ofAcetabularia mediterranea have been studied in Feulgen-stained material. Light-microscopical photographs of secondary nuclei, cyst formation, gamete formation, gamete release, zygote formation and early development of the germlings are presented. The time course of cytological events during gamete formation is described. Mitoses are found between 16 and 24 hours after the induction of cyst germination.The author is indebted to Mrs. S.Artelt who helped with the prepration of the specimens and the photographs.  相似文献   

14.
Root hairs develop from bulges on root epidermal cells and elongate by tip growth, in which Golgi vesicles are targeted, released and inserted into the plasma membrane on one side of the cell. We studied the role of actin in vesicle delivery and retention by comparing the actin filament configuration during bulge formation, root hair initiation, sustained tip growth, growth termination, and in full-grown hairs. Lipochito-oligosaccharides (LCOs) were used to interfere with growth ( De Ruijter et al . 1998 , Plant J. 13, 341–350), and cytochalasin D (CD) was used to interfere with actin function. Actin filament bundles lie net-axially in cytoplasmic strands in the root hair tube. In the subapex of growing hairs, these bundles flare out into fine bundles. The apex is devoid of actin filament bundles. This subapical actin filament configuration is not present in full-grown hairs; instead, actin filament bundles loop through the tip. After LCO application, the tips of hairs that are terminating growth swell, and a new outgrowth appears from a site in the swelling. At the start of this outgrowth, net-axial fine bundles of actin filaments reappear, and the tip region of the outgrowth is devoid of actin filament bundles. CD at 1.0 μ m , which does not affect cytoplasmic streaming, does not inhibit bulge formation and LCO-induced swelling, but inhibits initiation of polar growth from bulges, elongation of root hairs and LCO-induced outgrowth from swellings. We conclude that elongating net-axial fine bundles of actin filaments, which we call FB-actin, function in polar growth by targeting and releasing Golgi vesicles to the vesicle-rich region, while actin filament bundles looping through the tip impede vesicle retention.  相似文献   

15.
The Closterium peracerosum–strigosum–littorale complex is a best characterized zygnematophycean green alga with respect to the process of sexual reproduction. Intercellular communication mediated by two sex pheromones has been well documented in this organism, but information concerning direct cell–cell recognition and fusion of cells involved in conjugation processes has not yet been clarified. In this study, we examined the properties of cell surface carbohydrates in vegetative and reproductive cells using a variety of fluorescein isothiocyanate labeled lectins as probes. Among 20 lectins tested, 10 bound to the Closterium cell surface, and eight of these were specific for the cells involved in sexual reproduction. In addition, some of the lectins inhibited the progress of zygote formation. In particular, Lycopersicon esculentum lectin (LEL) and ConcanavalinA (ConA) considerably inhibited zygote formation (23.6% and 0% of zygotes formed, respectively, compared with the control). LEL mainly accumulated on conjugation papillae and on the surface and lumens of empty cell walls remaining after zygote formation. ConA bound to both vegetative and sexually reproductive cells and strongly accumulated on the conjugation papillae of the latter, indicating ConA binding material(s) are non‐specifically present in Closterium cells but some of the material(s) would be essential for zygote formation. These results suggest that different carbohydrates specifically recognized by these lectins are involved in cell recognition and/or fusion during conjugation processes in the C. psl. complex.  相似文献   

16.
The changes of cell surface carbohydrates were examined with FITC (fluorescein isothiocyanate)‐labeled lectins during the conjugation process of the green alga Zygnema cruciatum. The Ulex europaeus agglutinin (UEA)‐specific materials were detected consistently on the surface of vegetative cells, but were absent on the surface of protruding papillae or conjugation tube. The tips of male and female papillae were labeled with soybean agglutinin (SBA) and peanut agglutinin (PNA) during conjugation. The SBA‐ and PNA‐specific materials appeared first at the tip of male papillae and began to accumulate on the surface of female papillae. No labeling of these lectins was detected on the surface of vegetative filaments throughout the conjugation process. FITC‐ConA (Concanavalin A) and FITC‐RCA (Ricinus communis agglutinin) did not label the vegetative filaments of Z. cruciatum, but a trace labeling of these lectins was observed on the surface of some swollen papillae occasionally. Blocking experiments with various lectins showed that these SBA‐ and PNA‐specific glycoconjugates might be involved in the signaling between male and female papillae.  相似文献   

17.
A new species in the Liagoraceae (Nemaliales) having vegetative and male reproductive characteristics usually associated with the genus Helminthora is assigned to Helminthocladia (as Helminthocladia andersonii Searles & Lewis) on the basis of the shape of the conical carpogonial protoplast, three-celled carpogonial filament, development of the carposporophyte from both cells formed by division of the zygote and development of the involucre without the formation of a bridge around the zygote or formation of rhizoids from the involucre. All of these are consistent characteristics of Helminthocladia and distinguish its species from those of Helminthora.  相似文献   

18.
Using two species ofSpirogyra and one species ofZygnema, it was demonstrated on a quantitative basis that these algal filaments grow while twisting around their own axis. The sense of spiral growth of the cell wall inSpirogyra-1 was always left-handed being coincident with the sense of chloroplast helix. InSpirogyra-2, the growth vector of the cell wall was likewise left-handed in most cases, but there occurred right-handed growth also. InZygnema both left-handed and right-handed senses of spiral growth were found in nearly equal frequencies. Besides the natural cell wall growth, the effects of longitudinal tension and turgor pressure on elongation and twisting of the filaments were briefly studied. It was shown that the cell wall of Zygnemataceae exhibited mechanical anisotropy in helical direction.  相似文献   

19.
Spirogyra sp. Link was found to be parasitized by filamentous fungi tentatively identified as Saprolegnia asterophora de Bary and Pythium gracile Schenk, in field samples and when maintained in unaltered pond water in an 18 h fluorescent light–6 h dark regime at 18 ± 2°C. Collections were made periodically between March 1978, and November 1979, from a pond in Mill Seek Sanctuary near Oyster Bay, Nassau Co., Long Island, New York. Initially, less than 1% of the total field population of Spirogyra sp. was infected by either fungal parasite with Saprolegnia asterophora being the dominant parasite present generally alone in most samples or present in 80–95% of the total number of infected algal filaments when occurring concurrently with P. gracile. However, in the laboratory, approximately 100% of the Spirogyra sp. filaments in any given sample became infected by Saprolegnia asterophora and/or P. gracile within a 1—2 wk and 3–4 wk period, respectively, with vegetative hyphae involved in the spread of infection to neighboring algal filaments. Infection of algal filaments occurred at random points with cell to cell hyphal extension within the filament causing disruption of host cells. Development of S. asterophora, and possibly P. gracile, sexual reproductive structures was common in relation with the host with asexual sporangial production not observed. Saprolegnia asterophora and P. gracile were cultured on glucose, yeast extract, malt extract (GYM) medium from infected Spirogyra sp. filaments, with infection of healthy algal filaments using these cultures by Saprolegnia asterophora, but not by P. gracile, induced in the laboratory. Growth responses and tropic responses of the fungi to the algal host could not be demonstrated.  相似文献   

20.
The sexual process of C. moewusii from gametic activation through germination of the zygote has been studied with phase-contrast and electron microscopy. Long strands emerging from the gametic flagellar tips are the site of early flagellar attraction which is followed by union of compatible flagella within common flagellar sheaths. The gametic connecting strand is formed by coordinated elongation of the plasma papillae of a gametic pair and the penetration of the former through their wall papillae while the flagella are in intimate association. After the free-swimming period, the gametic pairs aggregate in a second period of clumping. The connecting strand is abscised and extruded during plas-mogamy as are the flagellar basal bodies. Evidence is presented which suggests union of the gametic plastids, and stages in karyogamy are illustrated. Formation of the wall layers, accumulation of starch and lipids, and changes in plastid organization in the maturing and germinating zygote are described as is the formation of the gonal walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号