首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The promoter region of the pur operon, which contains 12 genes for inosine monophosphate biosynthesis from phosphoribosylpyrophosphate, and the purA gene, encoding the adenylosuccinate synthetase, were compared among wild-type and three purine-producing Bacillus subtilis strains. A single nucleotide deletion at position 55 (relative to translation start site) in purA gene was found in a high inosine-producing strain and in a high guanosine-producing strain, which correlates with the absence of adenylosuccinate synthetase activity in these strains. Within the pur operon promoter of high guanosine-producing strain, in addition to a single nucleotide deletion in PurBox1 and a single nucleotide substitution in PurBox2, there were 4 substitutions in the flanking region of the PurBoxes and 32 nucleotide mutations in the 5′ untranslated region. These mutations may explain the purine accumulation in purine-producing strains and be helpful to the rational design of high-yield recombinant strains.  相似文献   

2.
Masahiro Ogaki 《Genetica》1966,37(1):391-402
The facet number of heterozygous females of theBar-eye mutant ofDrosophila melanogaster varies from ±154 to ±665 according to the full eye strains combined with the mutant. TheBar character is commonly recognized as a semidominant, but its manifestation varies from nearly complete dominance to recessiveness according to the mode of the heterozygous combination. Virtually the same is true of the mutantLobe 2 which is usually acknowledged as a complete dominant, but may be manifested as an incompletely dominant gene. Thew e andb gp strains decrease the eye size of the heterozygotes withBar, but increase the eye size of the heterozygotes withLobe 2.Co-isogenic strains ofBar, bar-3 andeyeless 2 mutants with Oregonisogenic increase the facet number to degrees 1.4–1.8 times of the original strains. However, the co-isogenicLobe 2 strain with the same Oregonisogenic strain reduces the facets completely, and makes virtually all individuals eye-less. These observations indicate that the same genetic background may give an opposite effect to different small-eye mutants. Analysis was carried out for modifying genes ofbar-3. Modifiers were detected on all large chromosomes, besides a recessive major gene located on the 2nd chromosome of Oregon-isogenic strain.A part of this work was performed in the Division of Biology, California Institute of Technology, Pasadena.  相似文献   

3.
Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C‐RDP‐II), which contains 584 rice accessions and are genotyped with 700 000 single‐nucleotide polymorphism (SNP) markers. The C‐RDP‐II accessions were inoculated with three blast strains collected from different rice‐growing regions in China. Genome‐wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide‐binding site leucine‐rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up‐regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR‐Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non‐strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.  相似文献   

4.
Summary Standard laboratory yeast strains have from four to five genes encoding the methionine initiator tRNA (IMT). Strain S288C has four IMT genes with identical coding sequences that are colinear with the RNA sequence of tRNA I Met . Each of the four IMT genes from strain S288C is located on a different chromosome. A fifth IMT gene with the same coding sequence is present in strain A364A but not in S288C. By making combinations of null alleles in strain S288C, we show that each of the four IMT genes is functional and that tRNA I Met is not limiting in yeast strains with three or more intact genes. Strains containing a single IMT2, 3 or 4 gene grow only after amplification of the remaining IMT gene. Strains with only the IMT1 gene intact are viable but grow extremely slowly; normal growth is restored by the addition of another IMT gene by transformation, providing a direct test for IMT function.Abbreviations IMT and imt (imt=initiator methionine tRNA), designate the genotype of the wild-type and the mutant alleles respectively, of the initiator methionine transfer RNA gene - met-tRNA I Met methionylated initiator methionine transfer RNA - eIF-2 eukaryotic initiation factor two - GTP guanosine 5-triphosphate The calculation of Td values (the temperature at which half of the duplex is dissociated) for oligonucleotides used as probes in hybridizations was based on the assumption that the increase in Td value was 4° C for each G:C base pair and 2° C for each A:T base pair (Wallace et al. 1981)  相似文献   

5.
6.
Strain distribution patterns (SDPs) of selected loci previously mapped to murine Chromosomes (Chrs) 10, 13, 17, and 18 are reported for the AXB, BXA recombinant inbred (RI) strain set derived from the progenitor strains A/J (A) and C57BL/6J (B). The loci included the simple sequence length polymorphisms (D10Nds1, D10Mit2, D10Mit10, D10Mit14, D13Mit3, D13Nds1, D13Mit10, D13Mit13, D13Mit7, D13Mit11, D17Mit18, D17Mit10, D17Mit20, D17Mit3, D17Mit2, D18Mit17, D18Mit9, and D18Mit4), the restriction fragment length polymorphisms Pdea and Csfmr, and the biochemical marker AS-1. These loci were chosen because they map to genomic regions that had few or no genetic markers in the AXB, BXA RI set. Several of these loci also were typed in backcross progeny of matings of the (AXB)F1 to strain A or B. The strain distribution patterns for chromosomes 10, 13, 17, and 18 are reported, and the gene order and map distances determined from the backcross data. The addition of these markers to the AXB, BXA RI strain set increases the genomic region over which linkage for new markers can be detected.  相似文献   

7.
Summary In order to localize the genes coding for zein, the major storage protein of maize endosperm, zein 125I-mRNA and 3H-cDNA labelled at high specific activity were used for in situ hybridization on heterozygous interchanges and paracentric inversions of the KYS strain of Zea mays. The analysis of the diplotene-metaphase I microsporocytes indicated the presence of zein structural genes on the long arm of chromosomes 4 and 5, the short arm of chromosome 7 and the distal segment of the long arm of chromosome 10. The two hybridization sites on chromosomes 7 and 10 are found near opaque-2 and opaque-7 loci which are known to regulate zein synthesis. The present data are discussed in relation to results obtained by other authors using genetical mapping of zein genes.  相似文献   

8.
The ribosomal RNA multigene family in Escherichia coli comprises seven rrn operons of similar, but not identical, sequence. Four operons (rrnC, B, G, and E) contain genes in the 16S–23S intergenic spacer region (ISR) for tRNAGlu-2 and three (rrnA, D, and H) contain genes for tRNAIle-1 and tRNAAla-1B. To increase our understanding of their molecular evolution, we have determined the ISR sequence of the seven operons in a set of 12 strains from the ECOR collection. Each operon was specifically amplified using polymerase chain reaction primers designed from genes or open reading frames located upstream of the 16S rRNA genes in E. coli K12. With a single exception (ECOR 40), ISRs containing one or two tRNA genes were found at the same respective loci as those of strain K12. Intercistronic heterogeneity already found in K12 was representative of most variation among the strains studied and the location of polymorphic sites was the same. Dispersed nucleotide substitutions were very few but 21 variable sites were found grouped in a stem-loop, although the secondary structure was conserved. Some regions were found in which a stretch of nucleotides was substituted in block by one alternative, apparently unrelated, sequence (as illustrated by the known putative insertion of rsl in K12). Except for substitutions of different sizes and insertions/deletions found in the ISR, the pattern of nucleotide variation is very similar to that found for the 16S rRNA gene in E. coli. Strains K12 and ECOR 40 showed the highest intercistronic heterogeneity. Most strains showed a strong tendency to homogenization. Concerted evolution could explain the notorious conservation of this region that is supposed to have low functional restrictions. Received: 31 July 1997 / Accepted: 17 October 1997  相似文献   

9.
Summary Using genetic hybridization analysis we identified seven polymorphic genes for the fermentation of melibiose in different Mel+ strains of Saccharomyces cerevisiae. Four laboratory strains (1453-3A, 303-49, N2, C.B.11) contained only the MEL1 gene and a wild strain (VKM Y-1830) had only the MEL2 gene. Another wild strain (CBS 4411) contained five genes: MEL3, MEL4, MEL5, MEL6 and MEL7. MEL3-MEL7 were isolated and identified by backcrosses with Mel parents (X2180-1A, S288C). A cloned MEL1 gene was used as a probe to investigate the physical structure and chromosomal location of the MEL gene family and to check the segregation of MEL genes from CBS 4411 in six complete tetrads. Restriction and Southern hybridization analyses showed that all seven genes are physically very similar. By electrokaryotyping we found that all seven genes are located on different chromosomes MEL1 on chromosome II as shown previously by Vollrath et al. (1988), MEL2 on VII, MEL3 on XVI, MEL4 on XI, MEL5 on IV, MEL6 on XIII, and MEL7 on VI. Molecular analysis of the segregation of MEL genes from strain CBS 4411 gave results identical to those from the genetic analyses. The homology in the physical structure of this MEL gene family suggests that the MEL loci have evolved by transposition of an ancestral gene to specific locations within the genome.  相似文献   

10.
A single formamidase, which is different from the formamidases found in other tissues, occurs in the brains of mice. This enzyme is here called formamidase-5 and the gene symbol is designated For-5. Two alleles are recognized on the basis of their differential heat sensitivity: For-5 b is relatively heat stable and is present in strain C57BL/6J, while For-5 d is relatively heat sensitive and is present in strain DBA/2J. The heat sensitivity of formamidase-5 in 44 other inbred strains and substrains was tested and found to resemble that of C57BL/6J or DBA/2J. Thirty-six recombinant inbred strains derived from progenitors that differed at For-5 were studied to test for single-gene inheritance and linkage with other loci. Complete concordance was found with the esterase-10 locus (Es-10), indicating close linkage. The 99% upper confidence limit of the distance between For-5 and Es-10 is 3.7 centimorgans (cM). Es-10 is located on chromosome 14 about 19 cM from the centromere. An independent demonstration of linkage of For-5 with Es-10 and another chromosome 14 marker, hairless (hr), is provided by the finding that the HRS/J strain, which has been sibmated for 60 generations with forced heterozygosity at the hr locus, is cosegregating at For-5 and Es-10. A survey of 32 inbred strains and substrains revealed that the For-5 d allele is associated with the Es-10 b allele, and that the For-5 b allele is associated with Es-10 a and Es-10 c. Formamidase-5 segregates as expected in the F2 generation of crosses between strains bearing For-5 b and For-5 d alleles. It is possible that this unique formamidase of the brain is involved in the metabolism of a neurotransmitter substance.This research was sponsored in part by the Department of Energy under contract with the Union Carbide Corporation and in part by NIH Research Grant GM-18684 from the National Institute of General Medical Sciences. J. C. F. is a predoctoral Fellow supported by Grant CA 09104 from the National Cancer Institute. The Biology Division of Oak Ridge National Laboratory and the Jackson Laboratory are fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

11.
12.
 The strains BALB/cHeA (BALB/c) and STS/A (STS) differ in production of IL-4 and IL-10, two Th2 cytokines, after stimulation of spleen cells with Concanavalin A, STS being a low and BALB/c a high producer. We analyzed the genetic basis of this strain difference using the recombinant congenic (RC) strains of the BALB/c-c-STS/Dem (CcS/Dem) series. This series comprises 20 homozygous strains. Each CcS/Dem strain contains a different, random set of approximately 12.5% genes of the "donor" strain STS and approximately 87.5% of the "background" strain BALB/c. We selected for further analysis the RC strain production intermediate between BALB/c and STS. In (CcS-20×BALB/c)F2 hybrids we found that different loci control expression of IL-4 and IL-10. Cypr1 (cytokine production 1) on chromosome 16 near D16Mit15 controls IL-4 production, whereas the production of IL-10 is influenced by loci Cypr2 near D1Mit14 and D1Mit227 on chromosome 1 and Cypr3 marked by D5Mit20 on chromosome 5. In addition, the relationship between the level of these two cytokines depends on the genotype of the F2 hybrids at a locus cora1 (correlation 1) on chromosome 5. This differential genetic regulation may be relevant for the understanding of biological effects of T-helper cells in mice of different genotypes. Received: 2 March 1998 / Revised: 8 June 1998  相似文献   

13.
14.
Summary Restriction sites were compared in the mitochondrial DNA (mtDNA) molecules from representatives of two closely related species of fruit flies: nine strains ofDrosophila teissieri and eight strains ofDrosophila yakuba. Nucleotide diversities amongD. teissieri strains and amongD. yakuba strains were 0.07% and 0.03%, respectively, and the nucleotide distance between the species was 0.22%. Also determined was the nucleotide sequence of a 2305-nucleotide pari (ntp) segment of the mtDNA molecule ofD. teissieri that contains the noncoding adenine+thymine (A+T)-rich region (1091 ntp) as well as the genes for the mitochondrial small-subunit rRNA, tRNAf-met, tRNAgln, and tRNAile, and portions of the ND2 and tRNAval genes. This sequence differs from the corresponding segment of theD. yakuba mtDNA by base substitutions at 0.1% and 0.8% of the positions in the coding and noncoding regions, respectively. The higher divergence due to base substitutions in the A+T-rich region is accompanied by a greater number of insertions/deletions than in the coding regions. From alignment of theD. teissieri A+T-rich sequence with those ofD. yakuba andDrosophila virilis, it appears that the 40% of this sequence that lies adjacent to the tRNAile gene has been highly conserved. Divergence between the entireD. teissieri andD. yakuba mtDNA molecules, estimated from the sequences, was 0.3%; this value is close to the value (0.22%) obtained from the restriction analysis, but 10 times lower than the value estimated from published DNA hybridization results. From consideration of the relationships of mitochondrial nucleotide distance and allozyme genetic distance found among seven species of theDrosophila melanogaster subgroup, the mitochondrial nucleotide distance observed forD. teissieri andD. yakuba is anomalously low in relation to the nuclear genetic distance.  相似文献   

15.
Three genes and one mutant gene for tRNAPhe (GAA) and one gene for tRNAAla (UGC) were isolated from a whole-cell DNA library of Arabidopsis thaliana. All three tRNAPhe genes are identical in their nucleotide sequence, but differ in their 5 and 3 flanking regions. The mutant tRNAPhe (GAA) gene differs from the other three genes by one nucleotide change from highly conserved G to C at the 57th nucleotide position. The primary structure of the first tRNAAla gene was also determined in this experiment.  相似文献   

16.
The high‐multiple mating system of Euplotes crassus is known to be controlled by multiple alleles segregating at a single locus and manifesting relationships of hierarchical dominance, so that heterozygous cells would produce a single mating‐type substance (pheromone). In strain L‐2D, now known to be homozygous at the mating‐type locus, we previously identified two pheromones (Ec‐α and Ec‐1) characterized by significant variations in their amino acid sequences and structure of their macronuclear coding genes. In this study, pheromones and macronuclear coding genes have been analyzed in strain POR‐73 characterized by a heterozygous genotype and strong mating compatibility with L‐2D strain. It was found that POR‐73 cells contain three distinct pheromone coding genes and, accordingly, secrete three distinct pheromones. One pheromone revealed structural identity in amino acid sequence and macronuclear coding gene to the Ec‐α pheromone of L‐2D cells. The other two pheromones were shown to be new and were designated Ec‐2 and Ec‐3 to denote their structural homology with the Ec‐1 pheromone of L‐2D cells. We interpreted these results as evidence of a phenomenon of gene duplication at the E. crassus mating‐type locus, and lack of hierarchical dominance in the expression of the macronuclear pheromone genes in cells with heterozygous genotypes.  相似文献   

17.
Most M type 5 group A streptococcal strains were found to contain a single emm-like gene between virR and scpA (the Vir reguion), but two distinct emm-like genes were identified in the Vir regulon of the MS strain NCTC8193. The complete sequences of both of these genes were determined. One, called emm5.8193, was shown to be a minor variant of the previously described emm5 gene from strain Manfredo. The second, designated enn5.8193, expresses an IgG-binding protein when cloned in Escherichia coli. A comparison of enn5.8193 with emm-like gene sequences from other strains indicated that it has a mosaic structure, consisting of distinct segments originating from emm-like genes in different OF+ and OFstrains. These data provide the first clear evidence that the horizontal transfer of emm-like sequences between distinct strains contributes to the evolution of group A streptococcal emm-like genes and Vir regulons.  相似文献   

18.
The genetic basis of negative selection of Tcrb-Vll+ T cells   总被引:1,自引:0,他引:1  
Non-H-2 genes responsible for negative selection of Tcrb-V 11+ T cells were examined using backcross mice of various strains with C58, which does not delete Tcrb-V 11+ T cells. Two independently segregating genes were found: one leading to partial deletion was closely linked toLy-2/Ly-3 on chromosome 6, and the second giving virtually complete deletion has not yet been mapped. The A strain had only the former, whereas BALB/c, BALBK, B10.BR, CBA-T6, C3H/He, and DBA/2 expressed both of these genes. Although a gene(s) of the NIH strain led only to partial deletion, the chromosomal localization of the gene(s) has not yet been determined: no informative polymorphic molecules are expressed from genes on chromosome 6 of this strain.  相似文献   

19.
The complete nucleotide sequence of the mitochondrial genome was determined for a conger eel, Conger myriaster (Elopomorpha: Anguilliformes), using a PCR-based approach that employs a long PCR technique and many fish-versatile primers. Although the genome [18,705 base pairs (bp)] contained the same set of 37 mitochondrial genes [two ribosomal RNA (rRNA), 22 transfer RNA (tRNA), and 13 protein-coding genes] as found in other vertebrates, the gene order differed from that recorded for any other vertebrates. In typical vertebrates, the ND6, tRNAGlu, and tRNAPro genes are located between the ND5 gene and the control region, whereas the former three genes, in C. myriaster, have been translocated to a position between the control region and the tRNAPhe gene that are contiguously located at the 5′ end of the 12S rRNA gene in typical vertebrates. This gene order is similar to the recently reported gene order in four lineages of birds in that the latter lack the ND6, tRNAGlu, and tRNAPro genes between the ND5 gene and the control region; however, the relative position of the tRNAPro to the ND6–tRNAGlu genes in C. myriaster was different from that in the four birds, which presumably resulted from different patterns of tandem duplication of gene regions followed by gene deletions in two distantly related groups of organisms. Sequencing of the ND5–cyt b region in 11 other anguilliform species, representing 11 families, plus one outgroup species, revealed that the same gene order as C. myriaster was shared by another 4 families, belonging to the suborder Congroidei. Although the novel gene orders of four lineages of birds were indicated to have multiple independent origins, phylogenetic analyses using nucleotide sequences from the mitochondrial 12S rRNA and cyt b genes suggested that the novel gene orders of the five anguilliform families had originated in a single ancestral species. Received: 13 July 2000 / Accepted: 30 November 2000  相似文献   

20.
Mice bearing the H-2 w7 haplotype have five C4-related genes and constitutively express the Slp antigen. To understand the structure and evolution of the five C4-related genes of the C3H.W7 mouse, we have determined nucleotide sequences of the 5 end region of these genes. A C4/Slp hybrid nature was confirmed for three of five C4-related genes as predicted previously by restriction enzyme analysis. The nucleotide sequences of the 5 flanking regions of these three hybrid genes showed close similarity to that of the C4 gene, while the 3 side of the ninth exon of the three hybrid genes showed close similarity to that of the Slp gene. In contrast, the regions between the first exon and the middle of the ninth exon of the three hybrid genes showed a mosaic structure of C4-like and Slp-like sequences. Moreover, the boundaries of the C4-like and Slp-like sequences were quite different among the three hybrid genes. The pattern of nucleotide sequence diversity in this region among the five C4-related sequences could be mainly explained not by point mutations but by gene conversions or unequal crossovers. These results suggest that multiple genetic recombinational events between two homologous sequences played an important role in the generation and diversification of the extra copies of the C4/Slp gene in the H-2 w7 mouse.The nucleotide sequence data reported in this paper have been submitted to the DDBJ, EMBL, and GenBank nucleotide sequence databases and have been assigned the accession numbers D90167-71.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号