首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The substitution of lysine for alanine (K232A) in the acyl-CoA:diacylglycerol acyltransferase, which is encoded by the DGAT1 gene, was tested for the significance for breeding evaluation of bulls of the holsteinized Black-and-White breed. The breeding value was estimated by the DYDC (daughter yield deviation to contemporaries) method with modification. The frequency of allele 232K in the bulls examined was 0.28, lower than in Holstein bulls (0.4–0.6). The greatest effect of the A232K substitution was observed for the percent fat milk yield (1.4σ) and milk yield (0.76σ), and a lower effect was established for the milk protein yield (0.47σ) and percent protein milk yield (0.44σ). In the case of milk fat yield, the effect was nonsignificant. A method was proposed for converting the data on fat yield in order to obtain significant results in this case as well. The effect of the A232K substitution was estimated at 154 kg for milk yield, 2.8 kg for milk protein yield, 0.079% for percent milk fat, and 0.015% for percent milk protein yield. The results are discussed in the context of multiple pleiotropic effects of the K232A substitution in the DGAT1 gene. It is proposed that the K232A substitution of the DGAT1 gene may be used as a golden standard in comparisons of the effect on milk production traits for the total gene set. This approach will allow a meta-analysis of the gene effects in spite of the different dairy cattle breeds and methods used to analyze their breeding value. In view of more than 30-year experience of using sperm of Holstein bulls, including those breeds in North America, it was noted that the effect of the A232K substitution on milk production traits agreed well with the data reported for the North American commercial population of Holstein cattle.  相似文献   

2.
Smaragdov MG 《Genetika》2011,47(1):126-132
The substitution of lysine for alanine (K232A) in the acyl-CoA-diacylglycerol acyltransferase, which is encoded by the DGAT1 gene, was tested for the significance for breeding evaluation of stud bulls of the holsteinized Black-and-White breed. The breeding value (deviation of milk productivity in daughters compared with cows of the same age) was estimated by the DYDC (daughter yield deviation to contemporary) method with modification. The frequency of allele 232K in the bulls examined was 0.28, lower than in Holstein bulls (0.4-0.6). The greatest effect of the A232K substitution was observed for the percent fat content in milk (1.4 sigma) and milk yield (0.76 sigma), and a lower effect was established for the milk protein yield (0.47 sigma) and percent protein content in milk (0.44 sigma). In the case of milk fat yield, the effect was nonsignificant. A method was proposed for converting the data on fat yield in order to obtain significant results in this case as well. The effect of the A232K substitution was estimated at 154 kg for milk yield, 2.8 kg for protein yield, 0.079% for percent fat content, and 0.015% for percent protein content. The results are discussed in the context of multiple pleiotropic effects of the K232A substitution in the DGAT1 gene. It is proposed that the K232A substitution of the DGAT1 gene be used as a golden standard in comparisons of the effect on milk productivity for the total gene set. This approach will allow a meta-analysis of the gene effects in spite of the differences in dairy cattle breeds and methods used to analyze their breeding value. In view of more than 30-year experience of using sperm of Holstein stud bulls, including those bred in North America, it was noted that the effect of the A232K substitution on milk productivity traits agreed well with the data reported for the North American commercial population of Holstein cattle.  相似文献   

3.
D. Sun  J. Jia  Y. Ma  Y. Zhang  Y. Wang  Y. Yu  Y. Zhang 《Animal genetics》2009,40(6):997-1000
Previous studies have demonstrated that the p.Lys232Ala substitution in the acylCoA: diacylglycerol acyltransferase ( DGAT1 ) gene and the p.Phe279Tyr mutation in the growth hormone receptor ( GHR ) gene are the causative quantitative trait loci underlying milk yield and composition on BTA14 and BTA20 respectively. To examine their applications in the genetic improvement of Chinese dairy cattle productivity, we herein investigated the effects of the DGAT1 p.Lys232Ala and GHR p.Phe279Tyr mutations on milk, fat and protein yield, as well as fat and protein percentage in the milk of 1222 Holstein cows. Genotyping was performed using PCR-RFLP for DGAT1 or primer-introduced restriction analysis (PCR-PIRA) for GHR . With a mixed animal model, the significant associations of the DGAT1 p.Lys232Ala substitution with 305-day milk, fat and protein yield were identified ( P  =   0.0001). The DGAT1 allele that encode lysine at position 232 was associated with increased 305-day milk fat yield, but with decreased 305-day milk and protein yield, whereas the GHR p.Phe279Tyr mutation was found to be significantly associated with protein percentage ( P  =   0.0014). The allele substitution effect of p.279Phe by p.279Tyr may lead to a significant increase in protein percentage. Our findings indicate that DGAT1 p.232Ala and GHR p.279Phe could be used to increase milk yield and protein yield of Chinese Holstein cows.  相似文献   

4.
Diacylglycerol–O–acyltransferase (DGAT1) gene encodes the rate-limiting enzyme of triglyceride synthesis. A polymorphism in this gene, DGAT1 K232A, has been associated with milk production and composition in taurine breeds. However, this polymorphism is not a good tool for ascertaining the effects of this QTL in Bos indicus (Zebu), since the frequency of the DGAT1 232A allele is too low in these breeds. We sequenced the 3′-untranslated region of DGAT1 gene in a sample of bulls of the breeds Guzerá (Bos indicus) and Holstein (Bos taurus) and, using in silico analysis, we searched for genetic variation, evolutionary conservation, regulatory elements, and possible substitution effects. Six single nucleotide (SNPs) and one insertion-deletion (INDEL) polymorphisms were found in the Guzerá bulls. Additionally, we developed a preliminary association study, using this INDEL polymorphism as a genetic marker. A significant association was detected (P ≤ 0.05) between the INDEL (DGAT1 3′UTR INDEL) and the breeding values (BV) for protein, fat, and milk yields over a 305-day lactation period. The DGAT1 3′ UTR INDEL genotype I/I (I, for insertion) was associated with lower BVs (?38.77 kg for milk, ?1.86 kg for fat, and ?1.48 kg for protein yields), when compared to the genotype I/D (D, for deletion). I/D genotype was lower D/D genotype (?34.98 kg milk, ?1.73 kg fat, and ?1.09 kg protein yields). This study reports the first polymorphism of DGAT1 3′UTR in the Guzerá breed, as well as its association with BV for milk protein, fat, and milk yields.  相似文献   

5.
Recent reports identified DGAT1 (EC 2.3.1.20) harboring a lysine to alanine substitution (K232A) as a candidate gene with a strong effect on milk production traits. Our objective was to estimate the frequency of the DGAT1 K232A polymorphism in the main Zebu and Taurine breeds in Brazil as well as in Zebu x Taurine crossbreds as a potential QTL for marker-assisted selection. Samples of 331 animals from the main Brazilian breeds, Nellore, Guzerat, Red Sindhi, Gyr, Holstein, and Gyr x Holstein F1 were genotyped for DGAT1 K232A polymorphism (A and K alleles) using the PCR-RFLP technique. The highest frequency of the A allele was found in the Holstein sample (73%) followed by Gyr x Holstein F1 (39%). Gyr and Red Sindhi showed low frequencies of A alleles (4 and 2.5%, respectively). The A allele was not found in the Nellore and Guzerat samples. Our results could be used to guide association studies between this locus and milk traits in these breeds.  相似文献   

6.
Dominance may be an important source of non-additive genetic variance for many traits of dairy cattle. However, nearly all prediction models for dairy cattle have included only additive effects because of the limited number of cows with both genotypes and phenotypes. The role of dominance in the Holstein and Jersey breeds was investigated for eight traits: milk, fat, and protein yields; productive life; daughter pregnancy rate; somatic cell score; fat percent and protein percent. Additive and dominance variance components were estimated and then used to estimate additive and dominance effects of single nucleotide polymorphisms (SNPs). The predictive abilities of three models with both additive and dominance effects and a model with additive effects only were assessed using ten-fold cross-validation. One procedure estimated dominance values, and another estimated dominance deviations; calculation of the dominance relationship matrix was different for the two methods. The third approach enlarged the dataset by including cows with genotype probabilities derived using genotyped ancestors. For yield traits, dominance variance accounted for 5 and 7% of total variance for Holsteins and Jerseys, respectively; using dominance deviations resulted in smaller dominance and larger additive variance estimates. For non-yield traits, dominance variances were very small for both breeds. For yield traits, including additive and dominance effects fit the data better than including only additive effects; average correlations between estimated genetic effects and phenotypes showed that prediction accuracy increased when both effects rather than just additive effects were included. No corresponding gains in prediction ability were found for non-yield traits. Including cows with derived genotype probabilities from genotyped ancestors did not improve prediction accuracy. The largest additive effects were located on chromosome 14 near DGAT1 for yield traits for both breeds; those SNPs also showed the largest dominance effects for fat yield (both breeds) as well as for Holstein milk yield.  相似文献   

7.
We report the cloning and initial characterization of the genes encoding DGAT2 (diacylglycerol transferase 2), MOGAT1 and MOGAT2 (monoacylglycerol transferases 1 and 2) in domestic cattle (Bos taurus). The three closely related genes belong to a gene family with at least eight members in mammals and are candidate genes for quantitative traits related to dietary fat uptake, lipid synthesis and storage. MOGAT2 and DGAT2 form a tandem and were mapped to bovine chromosome (BTA) 15q25-->q26 by fluorescence in situ hybridization. MOGAT1 was localized to BTA 2q43-->q44. The three genes were investigated for polymorphisms that might be associated with breeding values for milk fat percentage in the dairy breeds German Holstein, German Simmental and German Brown. All the detected polymorphisms were located outside exons or, with one exception, were silent. In MOGAT1, a missense mutation in exon 4 was found that causes a non-conservative substitution of cysteine170 (uncharged, hydrophobic) by lysine (positively charged, hydrophilic). However, allele frequency estimates from pooled DNA samples revealed no significant association of the observed polymorphisms with breeding values for milk fat percentage. A comparative analysis of chromosomal locations and exon-intron structure of the known members of the DGAT2/MOGAT gene family in humans, rodents and cattle indicates an ancient tandem duplication of the ancestor gene combined with an intron gain (or loss) in one copy. Further members of the family may have arisen by duplications of this gene tandem via two rounds of interchromosomal or genome duplications as well as further local (single) gene duplication and loss events.  相似文献   

8.
The bovine growth hormone receptor (GHR) gene has been identified as a strong positional and functional candidate gene influencing milk production. A non-synonymous single nucleotide polymorphism (SNP) in exon 8 leads to a phenylalanine to tyrosine amino acid substitution (F279Y) in the receptor. The aim of the study was to estimate the effects of the F279Y mutation on milk yield, fat, protein, casein, and lactose yield and content, as well as somatic cell score (SCS), in a German Holstein dairy cattle population. The analysis of 1,370 dairy cows confirmed a strong association of the F279Y polymorphism with milk yield, as well as with fat, protein, and casein contents. Furthermore, increasing effects on lactose yield and content for the 279Y allele were found. Even though the tyrosine variant occurred as the minor allele (16.5%), its substitution effects were 320 kg (305 d), 0.02 kg per day, and 0.07 kg per day for milk, casein, and lactose yields, respectively. The same allele had negative effects on fat, protein, and casein contents. Finally, the high-milk-yield tyrosine allele was also associated with lower SCS (p < 0.05). The data support the high potential of the F279Y polymorphism as a marker for the improvement of milk traits in selection programs.  相似文献   

9.
Performance of dairy cattle clones and evaluation of their milk composition   总被引:2,自引:0,他引:2  
Genetic and phenotypic performance of U.S. Holstein embryo-split and nuclear-transfer clones was documented for yield and fitness traits. For cows, mean genetic superiority based on pedigree was 186 kg of milk, 9 kg of fat, and 7 kg of protein for embryo-split clones and 165, 10, and 8 kg, respectively, for nuclear-transfer clones compared with the population for the same birth year; pedigree advantage for male clones generally was slightly greater. Estimates of genetic merit that considered a clone's own performance as well as pedigree merit were slightly lower for embryo-split cows than for their full siblings for yield but not for milk composition (fat and protein percentages), mastitis resistance (somatic cell score), longevity (productive life), or cow fertility (daughter pregnancy rate); no corresponding genetic differences were found for nuclear-transfer cows or for cloned bulls regardless of clone type. For bulls, estimated genetic merit based on daughter yield was more similar for clone pairs with apparent identical genotype than for pairs from the same biotechnology but nonidentical as confirmed by blood typing. Yield deviations were lower for clones than for their full siblings. Milk composition (total solids, fat, fatty acid profile, lactose, and protein) also was compared for nuclear-transfer clones (Brown Swiss, Holstein, and Holstein-Jersey cross) with non-cloned cows and literature values; no differences were found for gross chemical composition of milk. No obvious differences were evident between cloned and non-cloned animals or for the milk that they produced.  相似文献   

10.

An oligonucleotide microarray—which allows for parallel genotyping of many SNPs in genes involved in cow milk protein biosynthesis—was used to identify which of the 16 candidate SNPs are associated with milk performance traits in Holstein cows. Four hundred cows were genotyped by the developed and validated microarray. Significant associations were found between four single SNPs, namely DGAT1 (acyloCoA:diacylglycerol acyltransferase), LTF (lactoferrin), CSN3 (kappa-casein), and GHR (growth hormone receptor) and with fat and protein yield and percentage. Many significant associations between combined genotypes (two SNPs) and milk performance traits were found. The associations between the combined genotypes DGAT1/LTF and DGAT1/LEPTIN analyzed traits are presented as examples.

The microarray based on APEX (Arrayed Primer Extension) is a fast and reliable method for multiple SNP analysis of potential application in marker-assisted selection. After further development, the chip may prospectively be used for dairy cattle paternity analysis and evolutionary studies.  相似文献   

11.
Variations in the growth hormone receptor (GHR) gene sequence are associated with performance traits in cattle. For example, the single nucleotide polymorphism (SNP) F279Y in transmembrane exon 8 has a strong association with milk yield. In this study, 32 previously unreported, putative novel SNPs (31 in the 5′ non‐coding region) were identified by resequencing ~19 kb of the GHR gene in genomic DNA from 22 cattle of multiple breeds. A population of 848 Holstein–Friesian AI sires was subsequently genotyped for the 32 putative novel SNPs and seven published SNPs (including F279Y, one in exon 1A promoter and five in exon 10). Associations between each segregating SNP and genetic merit for performance were quantified in the 848 Holstein–Friesians using weighted animal linear mixed models. Six of the published SNPs and seven of the novel SNPs were associated with at least one of the traits – milk yield, fat yield, protein yield, fat percentage, protein percentage, somatic cell score, calving interval, survival and growth and size traits. Even when the allelic substitution effect (P < 0.001) of F279Y was accounted for, the allelic substitution effect of one of the novel SNPs (GHR4.2) in the 5′ non‐coding region of GHR was associated with a lactation milk yield of 37.46 kg (P < 0.001). GHR4.2 and F279Y were not in linkage disequilibrium (r2 = 0.00, D’ = 0.04) in the 848 Holstein–Friesians, indicating that their association with milk yield was independent.  相似文献   

12.
An oligonucleotide microarray-which allows for parallel genotyping of many SNPs in genes involved in cow milk protein biosynthesis-was used to identify which of the 16 candidate SNPs are associated with milk performance traits in Holstein cows. Four hundred cows were genotyped by the developed and validated microarray. Significant associations were found between four single SNPs, namely DGAT1 (acyloCoA:diacylglycerol acyltransferase), LTF (lactoferrin), CSN3 (kappa-casein), and GHR (growth hormone receptor) and with fat and protein yield and percentage. Many significant associations between combined genotypes (two SNPs) and milk performance traits were found. The associations between the combined genotypes DGAT1/LTF and DGAT1/LEPTIN analyzed traits are presented as examples. The microarray based on APEX (Arrayed Primer Extension) is a fast and reliable method for multiple SNP analysis of potential application in marker-assisted selection. After further development, the chip may prospectively be used for dairy cattle paternity analysis and evolutionary studies.  相似文献   

13.
Stearoyl-CoA desaturase (SCD) is a multifunctional complex enzyme important in the cellular biosynthesis of fatty acids. The present study was to investigate the association of the SCD gene with milk production traits in dairy cattle. Two single nucleotide polymorphisms (SNPs) (g.6926A>G and g.8646A>G) in introns 3 and 4, and three SNPs (g.10153A>G, g.10213T>C and g.10329C>T) in exon 5 were identified with pooled DNA sequencing and genotyped using matrix-assisted laser desorption/ionization time of flight mass spectrometry assay in 752 Chinese Holstein cows. Polymorphism g.10329C>T was predicted to result in an amino acid replacement from alanine to valine in the SCD protein. With a mixed animal model, the significant associations of the five SNPs with 305-day milk, fat and protein yields and protein percentage were determined. We further demonstrated cows with heterozygous genotypes (A/G or C/T) had highest 305 day milk yield, fat yield, protein yield and lowest protein percentage. Heterozygous cows with genotype AG at the g.6926A>G locus showed the greatest milk yield (P < 0.0001), fat yield (P < 0.0001) and protein yield (P < 0.0001) among other heterozygous genotypes at any of the loci. Dominance effects of all identified SNPs on milk, fat and protein yields and protein percentage were significant. Moreover, significant allele substitution effects at g.6926A>G locus on milk yield and at g.10213T>C on protein yield were observed. Five-locus haplotypes and strong linkage disequilibrium (D' > 0.9) between the five SNPs were also observed. The results suggest that identified polymorphisms could be potential genetic markers to improve the production performance of Chinese Holstein.  相似文献   

14.
A substitution of thyrosine for phenylalanine (F297Y) in the transmembrane domain of the growth hormone receptor (GHR) was tested for significance for breeding evaluation of bulls of the holstenized Black-and-White breed. The breeding value was estimated by the method of daughter yield deviation to contemporaries with modification. The frequency of genotype FF in the bulls examined was 0.37, lower than in Holstein bulls (0.67). The F297Y substitution exerted the greatest effect on the milk fat content (1.5??) and milk yield (0.8 ??) and a lower effect on the milk fat yield (0.6 ??), milk protein yield (0.5 ??), and milk protein content (0.6 ??). The GHR4.2 single nucleotide substitution (SNP) in the promoter of the GHR gene did not affect the milk production traits. A substitution of asparagine for serine (S18N) in the transmembrane domain of the prolactin receptor (PRLR) was also examined, but it did not significantly affect the milk production traits. The results are discussed in the context of the hypothesis that multiplicity of causal mutations of a particular gene is common and should be taken into account in the genetics of quantitative traits.  相似文献   

15.
A genome wide scan was performed on a total of 2093 Italian Holstein proven bulls genotyped with 50K single nucleotide polymorphisms (SNPs), with the objective of identifying loci associated with fertility related traits and to test their effects on milk production traits. The analysis was carried out using estimated breeding values for the aggregate fertility index and for each trait contributing to the index: angularity, calving interval, non-return rate at 56 days, days to first service, and 305 day first parity lactation. In addition, two production traits not included in the aggregate fertility index were analysed: fat yield and protein yield. Analyses were carried out using all SNPs treated separately, further the most significant marker on BTA14 associated to milk quality located in the DGAT1 region was treated as fixed effect. Genome wide association analysis identified 61 significant SNPs and 75 significant marker-trait associations. Eight additional SNP associations were detected when SNP located near DGAT1 was included as a fixed effect. As there were no obvious common SNPs between the traits analyzed independently in this study, a network analysis was carried out to identify unforeseen relationships that may link production and fertility traits.  相似文献   

16.
Milk and dairy products are considered the main sources of saturated fatty acids, which are a valuable source of nutrients in the human diet. Fat composition can be adjusted through guided nutrition of dairy animals but also through selective breeding. Recently, a dinucleotide substitution located in the exon 8 of the gene coding for acyl CoA: diacylglycerol acyltransferase 1 (DGAT1), that alters the amino acid sequence from a lysine to an alanine (p.Lys232Ala) in the mature protein, was shown to have a strong effect on milk fat content in some cattle breeds. Therefore, the objectives of this work were to study the occurrence of the DGAT1 p.Lys232Ala polymorphism in Romanian Holstein cattle and Romanian Buffalo breeds and to further investigate its possible influence on fat percentage and fatty acid profiles. The results obtained in this study show that in Romanian Holstein cattle the K allele is associated with increased fat percentage and higher levels of C16:0 and C18:0 fatty acids. The ratio of saturated fatty acids versus unsaturated fatty acids (SFA/UFA) was also higher in KK homozygous individuals, whereas the fractions of C14:0, unsaturated C18 decreased. The DGAT1 p.Lys232Ala polymorphism revealed a high genetic variance for fat percentage, unsaturated C18, C16:0, and SFA/UFA. Although the effect of this polymorphism was not so evident for short chain fatty acids such as C4:0–C8:0, it was significant for C14:0 fatty acids. We concluded that selective breeding of carriers of the A allele in Romanian Holsteins can contribute to improvement in unsaturated fatty acids content of milk. However, in buffalo, the lack of the A allele makes selection inapplicable because only the K allele, associated with higher saturated fatty acids contents in milk, was identified.  相似文献   

17.
The maternal effect has been widely proposed to affect the production traits in domestic animals. However, the sequence polymorphisms of mitochondrial DNA (mtDNA) and association with milk production traits in Holstein cows have remained unclear. In this study, we investigated the single nucleotide polymorphisms (SNPs) of mtDNA ATPase 8/6 genes and association with four milk production traits of interest in 303 Holstein cows. A total of 18 SNPs were detected among the 842 bp fragment of ATPase 8/6 genes, which determined six haplotypes of B. taurus (H1-H4) and B. indicus (H5-H6). The mixed model analysis revealed that there was significant association between haplotype and 305-day milk yield (MY). The highest MY was observed in haplotype H4. However, we did not detect statistically significant differences among haplotypes for the traits of milk fat (MF), milk protein (MP), and somatic cell count (SC). The overall haplotype diversity and nucleotide diversity of ATPase 8/6 genes were 0.563 ± 0.030 and 0.00609 ± 0.00043, respectively. The results suggested that mitochondrial ATPase 8/6 genes could be potentially used as molecular marker to genetically improve milk production in Holstein cows.  相似文献   

18.
We genotyped 58 single nucleotide polymorphisms (SNPs) in 25 candidate genes in about 800 Italian Holstein sires. Fifty‐six (minor allele frequency >0.02) were used to evaluate their association with single traits: milk yield (MY), milk fat yield (FY), milk protein yield (PY), milk fat percentage (FP), milk protein percentage (PP), milk somatic cell count (MSCC); and complex indexes: longevity, fertility and productivity–functionality type (PFT), using deregressed proofs, after adjustment for familial relatedness. Thirty‐two SNPs were significantly associated (proportion of false positives <0.05) with different traits: 16 with MSCC, 15 with PY, 14 with MY, 12 with PFT, eight with longevity, eight with FY, eight with PP, five with FP and two with fertility. In particular, a SNP in the promoter region of the PRLR gene was associated with eight of nine traits. DGAT1 polymorphisms were highly associated with FP and FY. Casein gene markers were associated with several traits, confirming the role of the casein gene cluster in affecting milk yield, milk quality and health traits. Other SNPs in genes located on chromosome 6 were associated with PY, PP, PFT, MY (PPARGC1A) and MSCC (KIT). This latter association may suggest a biological link between the degree of piebaldism in Holstein and immunological functions affecting somatic cell count and mastitis resistance. Other significant SNPs were in the ACACA, CRH, CXCR1, FASN, GH1, LEP, LGB (also known as PAEP), MFGE8, SRC, TG, THRSP and TPH1 genes. These results provide information that can complement QTL mapping and genome‐wide association studies in Holstein.  相似文献   

19.
J. Yao  S. E. Aggrey  D. Zadworny  J. F. Hayes    U. Kuhnlein 《Genetics》1996,144(4):1809-1816
Sequence variations in the bovine growth hormone (GH) gene were investigated by single strand conformation polymorphism (SSCP) analysis of seven amplified fragments covering almost the entire gene (2.7 kb). SSCPs were detected in four of these fragments and a total of six polymorphisms were found in a sample of 128 Holstein bulls. Two polymorphisms, a T->C transition in the third intron (designated GH4.1) and an A->C transversion in the fifth exon (designated GH6.2), were shown to be associated with milk production traits. GH4.1(c)/GH4.1(c) bulls had higher milk yield than GH4.1(c)/GH4.1(t) (P <= 0.005) and GH4.1(t)/GH4.1(t) (P <= 0.0022) bulls. GH4.1(c)/GH4.1(c) bulls had higher kg fat (P <= 0.0076) and protein (P <= 0.0018) than GH4.1(c)/GH4.1(t) bulls. Similar effects on milk production traits with the GH6.2 polymorphism were observed with the GH6.2(a) allele being the favorable allele. The average effects of the gene substitution for GH4.1 and GH6.2 are similar, with +/-300 kg for milk yield, +/-8 kg for fat content and +/-7 kg for protein content per lactation. The positive association of GH4.1(c) and GH6.2(a) with milk production traits may be useful for improving milk performance in dairy cattle.  相似文献   

20.
Breed additive and non-additive effects, and genetic parameters of lactation milk yield (LYD), 305-day milk yield (305YD), lactation length (LL), milk yield per day of lactation (DM) and lifetime milk yield (LTYD) were estimated in Ethiopian Boran cattle and their crosses with Holstein in central Ethiopia. The data analyzed included 2360 lactation records spread over 15 years. Ethiopian Boran cattle were consistently inferior (P < 0.01) to the Ethiopian Boran-Holstein crosses for the dairy traits studied. When the crosses were compared, LYD, 305YD and DM were higher (P < 0.01) for 75% and 87.5% crosses compared to 50% and 62.5% ones. However, the 50% crosses had higher (P < 0.01) LTYD than the other genetic groups. The individual additive genetic breed differences for milk production traits were all significant (P < 0.01). The estimates, in favor of Holstein, were 2055 ± 192 kg for LYD, 1776 ± 142 kg for 305YD, 108 ± 24 days for LL, 5.9 ± 0.5 kg for DM and 3353 ± 1294 kg for LTYD. Crossbreeding of the Holstein with the Ethiopian Boran resulted in desirable and significant (P < 0.01) individual heterosis for all milk production traits. The heterosis estimates were, 529 ± 98, 427 ± 72 kg, 44 ± 12 days 1.47 ± 0.23 kg and 3337 ± 681 kg, for LYD, 305YD, LL, DM and LTYD, respectively. The maternal heterotic effects were non-significant (P > 0.05) for all traits. Heritabilities of LYD, 305YD, LL, DM and LTYD for Ethiopian Boran were 0.20 ± 0.03, 0.18 ± 0.03, 0.26 ± 0.03, 0.13 ± 0.03 and 0.02 ± 0.04, respectively. The corresponding estimates for crosses were 0.10 ± 0.002, 0.11 ± 0.003, 0.63 ± 0.02, 0.45 ± 1.05 and 0.24 ± 0.11, respectively. Selection within each of the genetic groups and crossbreeding should substantially improve the milk production potential of the Ethiopian Boran breed under such production system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号