首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Bioluminescence is broadly distributed in marine dinoflagellates and has been intensively studied in Lingulodinium (Gonyaulax) polyedra. In this species, bioluminescence is regulated in a circadian fashion; the enzyme (luciferase) and the luciferin (substrate)‐binding protein are synthesized and degraded on a daily basis. Synthesis of both proteins is regulated at the level of translation. The L. polyedra luciferase gene is composed of three contiguous domains that are greater than 75% identical at the nucleic acid level. Possible explanations for the high degree of sequence conservation include: (1) the domains evolved through a recent duplication event; (2) the sequence similarity is maintained by a molecular process such as gene conversion; or (3) there is a functional role associated with the primary nucleic acid sequence, such as in the translational regulation of luciferase expression. The phylogenetic relationship of dinoflagellates predicted from 18S rDNA genes provides a framework for examining the molecular evolution of the regulation of luciferase expression and of genes encoding luciferase and the luciferin‐binding protein. In particular, we are examining the evolution of the circadian rhythm of bioluminescence and of luciferase abundance, the presence/absence of the luciferin‐binding protein, and the molecular structure of the luciferase gene. We anticipate that this approach will distinguish between regions of the luciferase molecule that are conserved for enzyme function versus those concerned with the regulation of protein expression. In addition, it will provide insight into the evolution of the regulatory processes and pathways.  相似文献   

3.
4.
Two species of laboratory-reared nonbioluminescent dinoflagellates, Gymnodinium splendens (photo-synthetic) and Crypthecodinium cohnii (hetero-trophic), were observed to posses abundant quantities of randomly moving structures, which are contained in vacuoles. When viewed with the electron microscope, 2 shapes of regular, geometric particles, here termed particulate inclusions, were observed. The morphology of the particulate inclusions is described.  相似文献   

5.
Inorganic carbon uptake was investigated in two marine dinoflagellates, Amphidinium carterae Hulburt and Heterocapsa oceanica Stein. Mass spectrometric and potentiometric assays indicated that both species lacked external carbonic anhydrase (CA). The presence of internal CA was demonstrated by potentiometric assay and by the inhibition of photosynthesis upon the addition of 500 μM ethoxyzolamide a membrane‐permeable inhibitor of CA. The capacity for bicarbonate transport was investigated by comparing the calculated rate of spontaneous CO2 formation at pH 8.2 and 25°C with the rate of photosynthesis after the addition of 100 μM NaHCO3. Both species appeared to have a very limited capacity for direct bicarbonate uptake. Monitoring of CO2 and O2 fluxes in both species by mass spectrometry demonstrated a rapid uptake of CO2 on illumination, to concentrations below the CO2 equilibrium concentration, indicating an effective selective uptake of CO2. This dependence of photosynthesis on free CO2 alone suggests that these species are CO2 limited in their natural environment because the CO2 concentration of seawater is very low.  相似文献   

6.
Intact algal chloroplasts have been found in the digestive glands of 5 species of Opisthobranchia belonging to the order Saccoglossa. Preliminary studies on 3 of these confirm their endosymbiotic nature. It is suggested that the occurrence of these endosymbiotic organelles may be widespread among related species of Saccoglossa. Their independent functional existence supports the view that chloroplasts possess a system of nonchromosomal inheritance.  相似文献   

7.
SUMMARY: Two pools of different characteristics were examined for bacterial content, marine and alien. Comparative monthly counts showed little consistency over the sampling periods and no definite seasonal variation. Temperature, pH and light had little direct influence. Chromogenic strains were few. Most marine bacteria were small Gram-negative rods; a high proportion liquefied gelatin, but other biochemical reactions were weak.
The amount of dissolved oxygen increased with exposure of the pools but decreased in a third pool devoid of visible flora and fauna. All three pools showed a marked increase in marine bacterial content during intertidal exposure. The coli-aerogenes organisms content was low and, as in the case of soil and fresh water, the strains showed no definite seasonal variation.  相似文献   

8.
9.
Toxic and nontoxic species of marine dinoflagellates were characterized using fluorescent lectins. Lectin binding was detected by epifluorescence as well as spectrofluorometry. The binding assay of fluorescent lectins readily differentiated between morphologically similar species (i.e the toxic dinoflagellate Gymnodinium catenatum and the nontoxic Gymnodinium sp.). Lectins appear to be a useful tool to distinguish among different clones of the same species and, thus, possibly as a tool in dinoflagellate identification. Moreover, the lectins used show that thecate species have more binding sites and diversity in glycan moieties than athecate species.  相似文献   

10.
11.
12.
13.
THE PRESERVATION OF MARINE BACTERIA   总被引:5,自引:5,他引:0  
  相似文献   

14.
The very long chain highly unsaturated C28 fatty acids, octacosaheptaenoic [28:7(n-6)] and octacosaoctaenoic acid [28:8(n-3)], were found to be associated with phospholipids, obtained by fractionation of total lipid extracts into distinct lipid classes, in 4 and 6, respectively, of 16 examined dinoflagellates. An interfraction comparison of fatty acids associated with phospholipids and glycolipids has also shown that the phospholipid fractions contained the majority (over 75% in 12 of 16 strains) of docosahexaenoic acid [22:6(n-3)] and traces of tetracosanoic acid (24:0). By contrast, the highly unsaturated C18 fatty acids octadecatetraenoic [18:4(n-3)] and octadecapentaenoic acid [18:5(n-3)] were primarily recovered from a chloroplast-associated glycolipid fraction comprised of monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol. In 12 of 16 strains, an interfraction comparison showed that over 90% of 18:5(n-3) was found to be associated with glycolipids. These findings indicate that the C28 fatty acids are located and probably synthesized in the cytoplasm or in an organelle other than the chloroplast, possibly with 22:6(n-3) and 24:0 as precursors, whereas the C18 fatty acids 18:4(n-3) and 18:5(n-3) are glycolipid constituents apparently synthesized within the chloroplast. The function(s) of these C28 fatty acids as components of phospholipids in cellular membranes is currently unknown.  相似文献   

15.
Living cells of the diatom Ethmodiscus rex (Rat-Iray) Wiseman & Hendey 1953 were found in the plankton of the southern Sargasso Sea. Apparently, this is the first report, of E rex from the plankton of the Atlantic Ocean. Scanning electron microscopy of peroxide-cleaned frustules revealed, some new morphological features for this species. When viewed, from inside the frustule, the puncta appear as rimmed pits. From outside the frustule, they appear to he shallow depressions with a small opening at the bottom. The so-called mucous tubules in the center of the valve were seen from the out side to be elongate slits and from the inside as obliquely directed flattened cylinders which cap the tubes.  相似文献   

16.
在细胞高密度培养后的各种不同条件下,通过停止提供碳源和洗涤细胞培养法来观察专性化能自养海洋氢弧菌(Hydrogenovibriomarinus)胞内糖原和胞内葡萄糖碳酸酶活性变化发现:这株自养细菌胞内的糖原起能量储存的作用。最大的糖原降解为76.5%,是发生在碳源和能源饥饿的有氧状态下。  相似文献   

17.
海洋微生物在赤潮生消过程中的作用   总被引:24,自引:0,他引:24  
赤潮是指在一定环境条件下,海水中某种浮游植物、原生动物或细菌在短时间内突发性繁殖或高度聚集而引发的一种生态异常,使海水变色并造成危害的现象。    相似文献   

18.
DETERMINATION OF CARBOHYDRATE METABOLISM OF MARINE BACTERIA   总被引:19,自引:2,他引:17       下载免费PDF全文
  相似文献   

19.
Acrylylcholine, choline O-sulfate, and a yet unidentified choline ester have been isolated from cells of Amphidinium carteri. Natural and synthetic acrylyl choline had approximately 1/4,000 the activity of acetylcholine and choline O-sulfate about 1/20,000 the activity on isolated Mercenaria mercenaria heart.  相似文献   

20.
The fatty acid and sterol compositions of five species of marine dinoflagellates (Scrippsiella sp. Symbiodinium microadriaticum Freud, Gymnodinium sp., Gymnodinium sanguineum Hirasaki, and Fragilidium sp.) are reported. All contained the major fatty acids that are considered common in dinoflagellates, but the proportions were quite variable, and some species contained low contents of some polyunsaturated fatty acids. Concentration ranges for the major fatty acids were: 16:0 (9.0%–24.8%), 18:4(n-3) (2.5%–11.5%), 18:5(n-3) (7.0%–43.1%), 20:5(n-3) (EPA) (1.8%–20.9%), and 22:6(n-3) (DHA) (9.9%– 26.3%). Small amounts of novel very-long-chain highly unsaturated C28 fatty acids occurred in all species. Each dinoflagellate contained a complex mixture of 4-methyl sterols and 4-desmethyl sterols. Four species contained cholesterol, although the amounts were highly variable (from 0.2% of total sterols in Scrippsiella sp. to 45.6% in Fragilidium sp.). All but G. sanguineum contained the 4-methyl sterol dinosterol, and all species contained sterols lacking a double bond in the ring system (i.e. stanols); in Scrippsiella sp. cholestanol composed 24.3% of the total sterols. Other common features of the 4-methylsterol profiles were the presence of 23,24-dimethyl alkylation and unsaturation at Δ22 in the side chain. In Scrippsiella sp., four steroidal ketones were identified: cholestanone, dinosterone, 4α,23,24-trimethyl-5α-cholest-8(14)-en-3-one, and dinostanone. The structures of these corresponded to the major sterols in this species, suggesting that the sterols and steroidal ketones are biosynthetically linked. Steroidal ketones were not detected in the other species. Although fatty acid profiles can be used to distinguish among algal classes, they were not useful for differentiating among dinoflagellate species. In contrast, whereas some taxonomic groupings of dinoflagellates display similar sterol patterns, others, such as the gymnodinoids studied here, clearly do not. The combination of fatty acid, sterol, and steroidal ketone profiles may be useful complementary chemotaxonomic tools for distinguishing morphologically similar species. The identification of steroidal ketones supports earlier suggestions that certain dinoflagellates might be a significant source of such components in marine environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号