首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thecadinium inclinatum Balech and four new marine sand‐dwelling species of the dinoflagellate genus Thecadinium are described from the sandy beaches along the coast of Shikoku, Japan. Thecadinium inclinatum is thecate, bilaterally flattened, elliptical in shape, non‐photosynthetic, and measures 55–75 μ in length and 43–59 μ in depth. The epi‐ and hypotheca theca are semielliptical and the thecal surface is smooth with small pores. The plate formula is Po (pore plate), 3′, 7″,?c,?s, 5″′1″′.Thecadinium ovatum sp. nov. is thecate, non‐photosynthetic, bilaterally flattened and almost oval in lateral view. The cell measures 40–50 μm in length and 33–40 μm in depth. The hypotheca has two or three strong antapical spines. The plate formula is 3′, 6″,6c, 5s?, 5″′, 1″′. Thecadinium striatum sp. nov. is thecate, non‐photosynthetic, bilaterally flattened and somewhat elliptical in lateral view. The cell is 33–41 μm long and 23–30 μm deep. Several striae are present on the hypotheca. The plate formula is 3′, 6″, 6c, 5s?, 5″′, 1″″. Thecadinium yashimaense sp. nov. is bilaterally flattened, photosynthetic and elliptical in ventral view. The cell is 44–65 μm long and 23–36 μm wide. The thecal surface is smooth with small pores. he cingulum forms a steep left–handed spiral. The plate formula is Po, 3′, la, 6″, 5c, 4s, 5″′, 1″′. Thecadinium arenarium sp. nov. is somewhat wedge‐shaped in ventral view, photosynthetic with brownish chloroplasts and almost rounded in cross section. The cingulum forms a steep left‐handed spiral. The cell measures 35–41 μm in length and 25–30 μm in width. The thecal surface is weakly reticulated with small pores. The hypotheca is conical. The plate formula is Po, 3′, la, 6″, 5c, 4s, 5″′, 1″″.  相似文献   

2.
3.
Using light and electron microscopy, the diatom species Aulacoseira islandica (O. Müll.) Sim. was examined with special emphasis on the following characteristics: structure of the valve areolae, heterovalvy, and distribution of the rimoportulae. The mantle and valve face areolae were pores containing volate occlusions. However, observations only using transmission electron microscopy may result in an incomplete interpretation because of the fragility of the dissected system of volae. Relief valves with a stepped mantle and intaglio valves with a plain mantle occurred. Another form of heterovalvy resulted from the formation of separation valves. Linking valves had spatulate spines while separation valves bore tapering spines. In Aulacoseira, the rimoportulae usually occurred near the “Ringleiste.” The presence of several rimoportulae on the mantle was one of the most striking features in Aulacoseira islandica.  相似文献   

4.
A new marine benthic Prorocentrum species from sandy habitats of South Brittany (northwestern France), P. consutum sp. nov., is described using LM and SEM and molecular phylogenetic analyses. Cells have a subcircular to broadly ovoid shape and are plainly flattened. They are 57–61 μm long and 52–55 μm wide. A central pyrenoid is present, and the kidney‐shaped nucleus is positioned in the posterior region. In right valve view, the periflagellar area is deeply excavated, and the left valve forms a prominent apical ridge. The periflagellar area consists of nine platelets, and a small narrow collar is present around the flagellar pore. The ornamentation of this new species is very peculiar and is characterized by a ring of round areolae located at the periphery of the valves, each areola containing three or four pores. Apart from this ring of areolae, the cell surface is smooth and with scattered pores. Pores are not present in the center of the right or left valve. The intercalary band is generally narrow and faintly striated horizontally. The molecular phylogenetic position of P. consutum sp. nov. was inferred using SSU and LSU rDNA. In both analyses, this species branched with high support in the clade comprising species with a symmetric shape and appeared to be a sister group to that formed by P. lima and other tropical benthic species, such as P. arenarium, P. belizeanum, P. hoffmannianum, and P. maculosum.  相似文献   

5.
The marine planktonic thecate dinoflagellate Phalacroma turbineum Kofoid et Michener was found at two oceanic stations in the southern Gulf of Mexico and studied by light and scanning electron microscopy. This species is extremely rare and has not been reported since 1911. The terms reticules and septa are introduced here for structures of theca and cingulum of the species. The peculiar morphological characters of P. turbineum are described: (1) two separate pores that might represent flagellar pores, (2) right and left sulcal lists are united, (3) left sulcal list showed no apparent ribs, (4) a parasagittal list occurs in the hypotheca as continuation of the left sulcal list, (5) structural complexity of the cingulum, with septa along the cingulum, (6) strong ribs supporting the two cingular lists, (7) large and spaced reticules in the theca, with elevated ridges, and (8) an elongation of the hypotheca. No chloroplasts were detected. The morphology and taxonomy of P. turbineum are discussed, especially the possibility that the species may be considered as belonging to a new genus. Finally, although information is yet limited, we suggest that the species is distributed in equatorial and tropical zones of both the Atlantic and Pacific Oceans, in oceanic environments.  相似文献   

6.
Three new dinoflagellate species, Gambierdiscus polynesiensis, sp. nov., Gambierdiscus australes, sp. nov., and Gambierdiscus pacificus, sp. nov., are described from scanning electron micrographs. The morphology of the three new Gambierdiscus species is compared with the type species Gambierdiscus toxicus Adachi et Fukuyo 1979, and two other species: Gambierdiscus belizeanus Faust 1995 and Gambierdiscus yasumotoi Holmes 1998. The plate formula is: Po, 3′, 7", 6C, 8S, 5‴, 1p, 2". Culture extracts of these three new species displayed both ciguatoxin- and maitotoxin-like toxicities. The following morphological characteristics differentiated each species. 1) Cells of G. polynesiensis are 68–85 μm long and 64–75 μm wide, and the cell’s surface is smooth. They are identified by a large triangular apical pore plate (Po), a narrow fish-hook opening surrounded by 38 round pores, and a large, broad posterior intercalary plate (1p) wedged between narrow postcingular plates 2‴ and 4‴. Plate 1p occupies 60% of the width of the hypotheca. 2) Cells of G. australes also have a smooth surface and are 76–93 μm long and 65–85 μm wide in dorsoventral depth. They are identified by the broad ellipsoid apical pore plate (Po) surrounded by 31 round pores and a long and narrow 1p plate wedged between postcingular plates 2‴ and 4‴. Plate 1p occupies 30% of the width of the hypotheca. 3) Cells of G. pacificus are 67–77 μm long and 60–76 μm wide in dorsoventral depth, and its surface is smooth. They are identified by the four-sided apical pore plate (Po) surrounded by 30 round pores. A short narrow 1p plate is wedged between the wide postcingular plates 2‴ and 4‴. Plate 1p occupies 20% of the width of the hypotheca. These three newly described species were also characterized by isozyme electrophoresis and DNA sequencing of the D8–D10 region of their large subunit (LSU) rRNA genes. The consistency between species designations based on SEM microscopy and classification inferred from biochemical and genetic heterogeneities was examined among seven isolates of Gambierdiscus. Their classification into four morphospecies was not consistent with groupings inferred from isozyme patterns. Three molecular types could be distinguished based on the comparison of their LSU rDNA sequences. Although G. toxicus TUR was found to be more closely related to G. pacificus, sp. nov. than to other G. toxicus strains, the molecular classification was able to discriminate G. polynesiensis, sp. nov. and G. australes, sp. nov. from G. toxicus. These results suggest the usefulness of the D8–D10 portion of the Gambierdiscus LSU rDNA as a valuable taxonomic marker.  相似文献   

7.
Two new dinoflagellate species, Prorocentrum hoffmannianum and Prorocentrum ruetzlerianum, and four known species, Prorocentrum emarginatum Fukuyo 1981, Prorocentrum mesicanum Tafall 1942, Prorocentrum concavum Fukuyo 1981, and Prorocentrum lima (Ehr.) Dodge 1975, from floating detritus and sediments in a subtropical mangrove island, Twin Cays, Belize, Central America are described from scanning electron micrographs. Differences in the following characters of surface micromorphology separated the species: ornamentation of thecal plates (shape, size, and number of valve pores and areolae) and the architecture of the periflagellar area and intercalary band.  相似文献   

8.
This study indicates that bilaterally flattened, armored, benthic dinoflagellates are more diverse in morphology than previously known. A new species, Plagiodinium belizeanum Faust et Balech gen. et. sp. nov., is described in floating detritus from Twin Cays, Belize, mangrove habitats. Plagiodinium belizeanum cells are small, with dimensions of 26.5–30.5 μm in length, 20–24.5 μm in width, and 6.5–8.5 μm in depth. Cells are oblong and bilaterally compressed with a posteriorly located, spherical nucleus, many chloroplasts, and spherical starch granules. The epitheca descends ventrally, is cap-shaped, and is composed of five plates and a very small platelet provisionally named P0 situated in the center. The epitheca is narrowly oval in apical view with a pointed truncated ventral side and a rounded dorsal side. The cingulum is composed of five plates. The hypotheca is constructed of five posteriorly elongated postcingular plates and one antapical plate. The sulcus is very short and narrow, comprised of five very small plates. The thecal plate arrangement of P. belizeanum is P0, 5′, O″, 5C, 5″′, 1″″, 5S. No lists are present. Thecal plates have a smooth surface with small and irregularly scattered pores. The intercalary band is smooth on outer cell surface and broadly striated on its inner surface. We conclude that P. belizeanum represents a new, benthic, peridinioid, armored genus, Plagiodinium gen. nov. The taxonomic position of P. belizeanum sp. nov. is compared to related sand-dwelling and bilaterally flattened benthic dinoflagellates.  相似文献   

9.
Frustules of a clonal culture of Melosira roeseana Rabenh. were examined with light and scanning electron microscopy. Vegetative valves in the post-auxospore (full size) stage exhibit a larger width/length ratio than those in the pre-auxospore (size-reduced) stage. Cells form chains by linking spines of adjacent valves which occur at the periphery of the valve face-mantle junction. Three or jour large pores occur at the center of the valve face, with the diameter of each pore tapering from the inner to the outer valve surface; these pores are often occluded by siliceous processes. Features of M. roeseana, not shown previously for Melosira, include a “stepped” mantle, on only one of the two valves resulting from the same cell division, flattened processes attached to short siliceous stalks on the valve face, disk-like processes on the mantle, and an open girdle band with up to eight antiligulae. Siliceous scales on the surface of the initial cell are remnants of the auxospore wall. The epivalve of the initial cell is larger in diameter than the hypovalve, and both valves lack linking spines and a step on the valve surface. The initial, cell epicingulum consists of only two bands; the hypocingulum has up to seven. Initial cells with four or more hypocingular bands divide to form new post-auxospore filaments. Melosira roeseana should not be included in the genus Melosira as it is presently defined by the type species, M. nurnmuloides C. Ag. Major differences include irregular linking spines, a closed pseudoloculate valve construction, and labiate processes on the valve face and mantle of M. nummuloides, compared with well-defined linking spines, a valve constructed of a basal siliceous layer perforated by poroid areolae, and labiate processes lacking on the valve of M. roeseana.  相似文献   

10.
The thecal surface morphology of Scrippsiella subsalsa (Ostenfeld) Steidinger et Balech was examined using the scanning electron microscope. This species is distinguished by a number of morphological characteristics. Apical plate 1′ is wide, asymmetric, and pentagonal, and it ends at the anterior margin of the cingulum. Intercalary plates 2a and 3a are separated by apical plate 3′. The apical pore complex includes a large Po plate with a raised dome at the center and a deep canal plate with thickened margins at plates 2′, 3′, and 4′. The intercalary bands are wide and deeply striated. The cingulum is deep, formed by six cingular plates; its surface is transversely striated and aligned with a row of minute pores. The cingular list continues around postcingular plate 1′” to form a sulcal list. The sulcal list is a flexible ribbon with a rounded tip that protrudes posteriorly, partially covering the sulcal plates. The hypotheca is lobed, and the antapical plates are irregularly shaped and wide in antapical view. The thecal surface is vermiculate to reticulate. A comparison in morphology and ecology is presented between S. subsalsa and other known Scrippsiella species.  相似文献   

11.
The development of the mucilage on the outer surface of Navicula confervacea (Kütz.) Grun., a raphed, filamentous diatom, was studied with scanning electron microscopy. This nonstructural cell wall material, present on the surface after critical-point drying and absent after acid cleaning, was of two types: strands and papillae. Strands were associated with the raphe system, areolae, elongated pores of the mantle, and all girdle sutures. Organic papillae were a common feature of valves, valvo-copulae and pleurae, but their origin and distribution could not be explained since they often occurred between the obvious openings in the frustule. Strands from the raphe and areolae may function in attaching terminal cells to a substrate and adjacent cells to each other. Other strands of the girdle arise from sutures during cell enlargement and continue to lengthen and intertwine until the individual frustules within a filament are obscured. Strands from sutures might originate from the advalvar row of pores of the girdle bands since these pores lie along the suture, but direct observation of this was not made. Secretion between, the bands also cannot be ruled out. Although mucilaginous papillae may sometimes occur at random on the entire surface of frustules, there is also a distinct, narrow multiseriate row of them around the edge of valves without marginal spines.  相似文献   

12.
Three new dinoflagellate species, Karenia papilionacea sp. nov., Karenia selliformis sp. nov., and Karenia bidigitata sp. nov., were compared with the toxic species Karenia mikimotoi (Miyake & Kominami ex Oda) G. Hansen & Moestrup, Karenia brevis (Davis) G. Hansen & Moestrup, and Karenia brevisulcata (Chang) G. Hansen & Moestrup using the same fixative. Distinguishing morphological characters for the genus Karenia included a smooth theca and a linear apical groove. The new species can be distinguished on the basis of morphological characters of vegetative cells that include the location and shape of the nucleus; the relative excavation of the hypotheca; the characteristics of apical and sulcal groove extensions on the epitheca; the cellular shape, size, and symmetry; the degree of dorsoventral compression; and the presence of an apical protrusion or carina. Species with pronounced dorsoventral compression swim in a distinctive fluttering motion. An intercingular tubular structure traversing the proximal and distal ends of the cingulum is common to the species of Karenia, Karlodinium micrum (Leadbeater & Dodge) J. Larsen, Gymnodinium pulchellum J. Larsen, and Gyrodinium corsicum Paulmier. Molecular phylogenetic analyses of rDNA sequence alignments show that the new species are phylogenetically distinct but closely related to K. mikimotoi and K. brevis.  相似文献   

13.
A new species, Ostreopsis labens Faust et Morton sp. nov., is described from three marine habitats: lagoonal water and lagoonal sand from the barrier reef of Belize, and associated with macroalgae from coral reef habitats of Oshigaki and Iriomote Islands, Japan. Dimensions of Ostreopsis labens cells are 60–86 μm long, 70–80 μm wide, and 81–110 μm in dorsoventral depth. Cells are broadly ovoid, anterioposteriorly compressed bearing a spherical nucleus and many chloroplasts. The epitheca is convex and composed of three apical plates, seven precingular plates, and an apical pore plate. The cingulum is composed of six plates. The hypotheca is constructed of five postcingular plates, one posterior intercalary, and two antapical plates. The sulcus is small, recessed, and hidden and exhibits a ventral pore and a ridged, curved plate. The thecal arrangement of O. labens is Po, 3′, 7″ 6C, 6S(?), Vp, Rp, 5″, 1p, 2″. Only one sulcal list is present. The thecal plates have a smooth surface with distinct round pores. The intercalary band between the thecal plates is smooth. A row of marginal pores line the lipped cingulum. Ostreopsis species are anteroposteriorly flattened, photosynthetic, benthic dinoflagellates that are more diverse in ecology than previously known. Ostreopsis labens is capable of living in three marine habitats: in the water column, in sand, and on macroalgal surfaces. It was most numerous in sand and less in lagoonal waters, and only a few cells were associated with macroalgae. Light and scanning electron microscopy studies revealed engulfed cells within O. labens, which indicates mixotrophic/phagotrophic behavior. A ventral opening situated in the cingulum of O. labens exhibits size variability; it may serve as an opening for engulfiing food particles because it varies in size. We propose that ingestion of prey by O. labens occurs through the ventral opening, the proposed feeding apparatus of this species, which is similar to the function of the peduncle-like structure of mixotrophic dinoflagellates. The behavior of O. labens appears similar to that previously described for Dinophysis species.  相似文献   

14.
Coscinodiscus radiatus Ehrenb. and Thalassiosira eccentrica (Ehrenb.) Cleve were grown in a silicate-limited chemostat at silicate concentrations below 1 μg-atoms · l?1. The resulting abnormal valves of C. radiatus lacked a thickened ring around the foramina; their pore membranes were thinner and their loculi shallower than those in normal cells. Abnormal valves of T. eccentrica had a fasciculate areolae pattern; they lacked a silica covering over the foramina and some tangential areolae walls. Neither abnormal valve could be termed a new species.  相似文献   

15.
The O‐antigen is a highly diverse structure expressed on the outer surface of Gram‐negative bacteria. The products responsible for O‐antigen synthesis are encoded in the wbe region, which exhibits extensive genetic diversity. While heterogeneous O‐antigens are observed within Vibrio species, characterization of these structures has been devoted almost exclusively to pathogens. Here, we investigate O‐antigen diversity among coastal marine Vibrio splendidus‐like isolates. The wbe region was first identified and characterized using the sequenced genomes of strains LGP32, 12B01 and Med222. These regions were genetically diverse, reflective of their expressed O‐antigen. Additional isolates from physically distinct habitats in Plum Island Estuary (MA, USA), including within animal hosts and on suspended particles, were further characterized based on multilocus sequence analysis (MLSA) and O‐antigen profiles. Results showed serotype diversity within an ecological setting. Among 48 isolates which were identical in three MLSA genes, 41 showed gpm genetic diversity, a gene closely linked to the wbe locus, and at least 12 expressed different O‐antigen profiles further suggesting wbe genetic diversity. Our results demonstrate O‐antigen hyper‐variability among these environmental strains and suggest that frequent lateral gene transfer generates wbe extensive diversity among V. splendidus and its close relatives.  相似文献   

16.
Almost 80 years ago, a radiation scheme based on structural resemblance was first outlined for the marine order Dinophysiales. This hypothetical radiation illustrated the relationship between the dinophysioid genera and included several independent, extant lineages. Subsequent studies have supplied additional information on morphology and ecology to these evolutionary lineages. We have for the first time combined morphological information with molecular phylogenies to test the dinophysioid radiation hypothesis in a modern context. Nuclear‐encoded LSU rDNA sequences including domains D1‐D6 from 27 species belonging to Dinophysis Ehrenb., Ornithocercus F. Stein, Phalacroma F. Stein, Amphisolenia F. Stein, Citharistes F. Stein, and Histioneis F. Stein were obtained from the Indian Ocean. Previously, LSU rDNA has only been determined from one of these. In Bayesian analyses, Amphisolenia formed a long basal clade to the other dinophysioids. These diverged into two separate lineages, the first comprised species with a classical Phalacroma outline, also including the type species P. porodictyum F. Stein. Thus, we propose to reinstate the genus Phalacroma. The relationship between the genera in the second lineage was not well resolved. However, the molecular phylogeny supported monophyly of Histioneis and Citharistes and showed the genus Dinophysis to be polyphyletic and in need of a taxonomic revision. Species of Ornithocercus grouped with Citharistes, but this relationship remained unresolved. The phylogenetic trees furthermore revealed convergent evolution of several morphological characters in the dinophysioids. According to the molecular data, the dinophysioids appeared to have evolved quite differently from the radiation schemes previously hypothesized. Four dinophysioid species had identical LSU rDNA sequences to other well‐established species.  相似文献   

17.
The morphology of the valve of Coscinodiscus wailesii and the development of its siliceous architecture, studied in the SEM and TEM, is compared with valve formation in Thalassiosira eccentrica (Ehrenberg.) Cleve. Though the areolae-architecture of these two species differs in such that the cribrum is proximal and the foramen distal in T. eccentrica, and in C. wailesii the cribrum is distal and the foramen proximal, the formation of their complex loculate system is similar, displacing a centrifugal growth pattern with respect to the valve, and a proximal to distal, sequentially. During base layer formation a hitherto undescribed rib system outlines the prospective areolae. The vertical differentiation is in principle the same as in T. eccentrica and also the cribra are formed centripetally in relation to the areolae in both species. The location of the cribra at the proximal or distal side, therefore, seems to be of minor importance for the sequence of silica deposition. Variation in girdle bands is discussed with respect to cell division. The prophasic nuclear migration from the interphase position to the girdle bands, where mitosis is performed, seems to be necessary for triggering the formation of the unilateral cleavage furrow that later forms a cleavage ring with excentric position. The divided nuclei migrate with the ingrowing cleavage furrow to the center of the newly created protoplasmic surfaces to initiate valve formation.  相似文献   

18.
A new photosynthetic, sand‐dwelling marine dinoflagellate, Ailadinium reticulatum gen. et sp. nov., is described from the Jordanian coast in the Gulf of Aqaba, northern Red Sea, based on detailed morphological and molecular data. A. reticulatum is a large (53–61 μm long and 38–48 μm wide), dorsoventrally compressed species, with the epitheca smaller than the hypotheca. The theca of this new species is thick and peculiarly ornamented with round to polygonal depressions forming a foveate‐reticulate thecal surface structure. The Kofoidian thecal tabulation is APC (Po, cp), 4′, 2a, 6′′, 6c, 4s, 6′′′, 1p, 1′′′′ or alternatively it can be interpreted as APC, 4′, 2a, 6′′, 6c, 4s, 6′′′, 2′′′′. The plate pattern of A. reticulatum is noticeably different from described dinoflagellate genera. Phylogenetic analyses based on the SSU and LSU rDNA genes did not show any supported affinities with currently known thecate dinoflagellates.  相似文献   

19.
20.
A small diatom, Hygropetra gelasina sp. nov., obtained from wet moss is described. This diatom is similar to Hygropetra balfouriana (Grunow ex Cleve) Krammer & Lange‐Bertalot, which was found in the same moss sample. Fine structural observations revealed that H. gelasina has a reduced raphe slit and depressions along the margin of the axial area, at the proximal ends of the striae. Both species are characterized by multiple rows of areolae in each stria and a hexagonal pattern of sub‐pores similar to that in Pinnularia, but differing in the position of the areola occlusions or hymenes, which are internal in Hygropetra. Comparison with Frankophila, which shares the characteristics of reduced raphe slits and areola structure with Hygropetra, provides a reference for future taxonomic study of these related genera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号