共查询到5条相似文献,搜索用时 0 毫秒
1.
采用PCR方法以正常中国人脐带血提取总DNA为模板,扩增出1.5Kb的粒细胞集落刺激因子(G-CSF)基因组基因,序列分析证实其正确性,将其插入小鼠乳清酸蛋白(WAP)基因的起支密码子ATG臆的KpnI位点,使其受控于2.6kb的WAP调控序列,从而构建乳腺表达载体pWGG。回收经EcoRI酶切后的8.7kb片段用于显微注射,共注射1200枚受精卵,移植至受体34母鼠,产生仔鼠85只,经PCR检测 相似文献
2.
根据斑马鱼、大西洋鲑和人等物种巴知的瘦素受体基因核苷酸保守区序列设计一对简并引物,通过RT-PCR法从草鱼肝胰脏中首次克隆获得草鱼瘦素受体基因的片段序列.该片段序列长713 bp,编码237个氨基酸,氨基酸序列分析表明草鱼瘦素受体基因片段氨基酸序列与其他物种的相似性在35% -86%之间.通过邻接法(Neighbor Joining,NJ)构建系统进化树显示,鱼类的瘦素受体独立聚成一支,草鱼与金鱼、斑马鱼聚成一支,再与日本青鳉、黑点青鳉、红鳍东方鲀和大西洋鲑聚成一支.通过实时荧光定量PCR分析草鱼瘦素受体基因的组织差异表达,结果表明,草鱼瘦素受体基因在肝胰脏、肌肉、脑、心脏、脾和肠系膜脂肪组织中均有表达,其中在脾脏组织中表达量最多,显著高于其他组织(P<0.05),其次是心脏、脑、肌肉和肠系膜脂肪组织,在肝胰脏组织中表达量最低,且显著低于其他组织(P<0.05). 相似文献
3.
Genciana Terova Simona Rimoldi Fabio Brambilla Rosalba Gornati Giovanni Bernardini Marco Saroglia 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2009,152(4):306-316
The expression and regulation of sodium-independent glucose transporter (GLUT)-2, in relation to hypoxia has not yet been explored in fish or other vertebrates. In this study, the complete open-reading frame for sea bass GLUT2 was isolated and deposited in the GenBank. The predicted 12 transmembrane domains of the protein (508 amino acids) are presented. A phylogenetic tree was constructed on GLUT2 sequences of sea bass and those of other teleost, amphibian, avian, and mammalian species. We also analyzed acute and chronic hypoxia-induced changes in the expression of hepatic GLUT2 mRNA, using one-tube, two-temperature, real-time RT-PCR with which gene expression can be absolutely quantified by the standard curve method. The number of GLUT2 mRNA copies was significantly increased in response to both acute (1.9 mg/L, dissolved oxygen for 4 h) and chronic (4.3 mg/L, DO for 15 days) hypoxia conditions. The hypoxia-related changes in GLUT2 mRNA copy number support the view that GLUT2 is involved in the adaptation response to hypoxia in sea bass, a marine hypoxia-sensitive species. We realize that the GLUT2 mRNA levels in our study do not measure the physiological effects produced by the protein. Thus, we can only speculate that, under hypoxic conditions, GLUT2 probably functions to allow the glucose produced from liver glycogen to leave the hepatocytes. 相似文献
4.
《Cell cycle (Georgetown, Tex.)》2013,12(8):1611-1620
The 49-member human ATP binding cassette (ABC) gene family encodes 44 membrane transporters for lipids, ions, peptides or xenobiotics, four translation factors without transport activity, as they lack transmembrane domains, and one pseudogene. To understand the roles of ABC genes in pluripotency and multipotency, we performed a sensitive qRT-PCR analysis of their expression in embryonic stem cells (hESCs), bone marrow-derived mesenchymal stem cells (hMSCs) and hESC-derived hMSCs (hES-MSCs). We confirm that hES-MSCs represent an intermediate developmental stage between hESCs and hMSCs. We observed that 44 ABCs were significantly expressed in hESCs, 37 in hES-MSCs and 35 in hMSCs. These variations are mainly due to plasma membrane transporters with low but significant gene expression: 18 are expressed in hESCs compared with 16 in hES-MSCs and 8 in hMSCs, suggesting important roles in pluripotency. Several of these ABCs shared similar substrates but differ regarding gene regulation. ABCA13 and ABCB4, similarly to ABCB1, could be new markers to select primitive hMSCs with specific plasma membrane transporterlow phenotypes. ABC proteins performing basal intracellular functions, including translation factors and mitochondrial heme transporters, showed the highest constant gene expression among the three populations. Peptide transporters in the endoplasmic reticulum, Golgi and lysosome were well expressed in hESCs and slightly upregulated in hMSCs, which play important roles during the development of stem cell niches in bone marrow or meningeal tissue. These results will be useful to study specific cell cycle regulation of pluripotent stem cells or ABC dysregulation in complex pathologies, such as cancers or neurological disorders. 相似文献
5.
Qiong Wang Sigurdur Trausti Karvelsson Aristotelis Kotronoulas Thorarinn Gudjonsson Skarphedinn Halldorsson Ottar Rolfsson 《Molecular & cellular proteomics : MCP》2022,21(2):100185
Breast cancer cells that have undergone partial epithelial–mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-β. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer. 相似文献