首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low levels of adenosine 3′,5′-monophosphate (cyclic AMP) were detected in the cyanobacterium Anabaena variabilis using a protein binding assay and two radioisotopic labelling methods. The basal concentration of intracellular cyclic AMP ranged from 0.27 pmol/mg protein in A. variabilis Kutz grown under heterotrophic conditions to 1.0–2.7 pmol/mg protein in A. variabilis strain 377 grown autotrophically. Extracellular cyclic AMP was found to comprise as much as 90% of the total cyclic AMP in rapidly growing cultures. When A. variabilis strain 377 was starved of nitrogen, a 3–4-fold increase in intracellular cyclic AMP was observed during the 24 h period coincident with early heterocyst development.  相似文献   

2.
Abstract— Cryoplates were implanted on the surface of the cortex in 32 chronic rat preparations. These devices were used both to freeze and to extract small samples of tissue. Coolant was circulated through each device by small flexible polyethylene tubes. Two series of experiments were performed. In the first, the animals were unrestrained and showed no behavioral signs of stress during the freeze fixation. The temperature responses of the cryoplates were very rapid (?632°C/s), and samples more than 1 mm thick were frozen and extracted within a few hundred ms following the onset of cooling. Each sample was analyzed for 3′.5′-adenosine monophosphate (cyclic AMP) and protein content. The results from the cryoplate group (25.6 ± 15.6pmol cyclic AMP/mg protein) were compared to those obtained from two other groups in which freeze fixation was produced by immersion in liquid nitrogen (13.6 ± 4.6pmol/mg protein) or decapitation into liquid nitrogen (18.6 + 7.6pmol/mg protein). In the second series of experiments, three types of stress (limb restraint, non-adaptation to the experimental situation, and moderate cutaneous electric shock) were induced separately in order to determine the influence of each on cortical levels of cyclic AMP. Control animals were highly adapted to the experimental situation, freely moving and not shocked. The samples from each of the stressed groups showed a statistically significant (P≤. 0.01) reduction in cyclic AMP in comparison with the level in the controls (control: 29.3 pmol/mg protein; restrained: 14.2pmol/mg protein; unadapted: 9.6pmol/mg protein; shocked: 7.1 pmol/mg protein). Thus, psychological and physical stress reduced cyclic AMP content in parietal cortex. Results from the second series of experiments suggest that the significantly higher mean and larger standard deviation of the cryoplate group in the first series are due to less psychological and physical stress being evoked by our method; different types of stress appear to account for the two different lower levels found in the immersion and decapitation groups. We believe that our method of cryogenic tissue fixation offers an improved approach to study of the neurochemical correlates of behavioral and neuroelectric events in the conscious animal.  相似文献   

3.
Low levels of adenosine 3',5'-monophosphate (cyclic AMP) were detected in the cyanobacterium Anabaena variabilis using a protein binding assay and two radioisotopic labelling methods. The basal concentration of intracellular cyclic AMP ranged from 0.27 pmol/mg protein in A. variabilis Kutz grown under heterotrophic conditions to 1.0--2.7 pmol/mg protein in A. variabilis strain 377 grown autotrophically. Extracellular cyclic AMP was found to comprise as much as 90% of the total cyclic AMP in rapidly growing cultures. When A. variabilis strain 377 was starved of nitrogen, a 3--4-fold increase in intracellular cyclic AMP was observed during the 24 h period coincident with early heterocyst development.  相似文献   

4.
Abstract— Fourteen animals each received 4 cutaneous shocks with an interval of 3–5 min between them. During a fifth trial 3–5 min later, eleven subjects received a fifth shock and then 3–30 s afterwards, as cerebral slow potentials developed in response to the stimulus, samples of parietal cortex were rapidly frozen and extracted by a cryoplate. Three baseline subjects received no shock at the time of the fifth trial and had their parietal tissue samples taken without the presence of slow potentials. A correlation coefficient of r=?0.77 (P < 0.01) was observed between the slow potential amplitude on the surface of the parietal cortex at the time of the sampling and the analyzed level of cyclic AMP in the underlying tissue. Five of the shocked animals whose samples were taken before the slow potentials increased significantly showed a tissue level of 11.1 ± 3.0 pmol cyclic AMP/mg protein. This level was significantly higher (P < 0.01) than that of the baseline animals (3.1 ± 2.0 pmol cyclic AMP/mg protein). The other six shocked animals who had developed large slow potentials manifested a cyclic AMP level that was not different from the baseline group. It is concluded that a reoccurring cutaneous shock results in the immediate increase in the level of cyclic AMP in the parietal cortex and that within 30 s this level decreases in proportion to the amplitude of the slow potential that develops in the same region.  相似文献   

5.
Cyclic GMP and cyclic AMP levels in eight different rat tissues were examined after animlas were immersed in liquid nitrogen. In order of decreasing concentration, cerebellu, kidney, lung and cerebral cortex contained the greatest quantities fo cyclic GMP. These tissues also contained relatively high concentrations of cyclic AMP. Compared to values in animals which were sacrificed in liquid nitrogen, levels of both nucleotides in many of the tissues examined were altered by decapitation or anesthesia with ether and pentobarbital. Decapitation increased the levels of both cyclic GMP and cyclic AMP in cerebellum, lung, heart, liver and skeletabl muscle. However, decapitation increased only cyclic AMP in cerebral cortex and kidney. Our previously reported high level of cyclic GMP in lung was attributed to ether anesthesia and surgical removal which increased the cyclic GMP content in lung, heart, testis and skeletal muscle. The effect of ether on cyclic GMP levels in lung and heart was blocked by pretreatment of animals with atropine which indicated that cholinergic agents increase cyclic GMP content in these tissues. Acetylcholine and carbachol in the presence of theophylline increased the accumulation of cyclic GMP in incubations of rat lung minces. Increases in cyclic GMP and cyclic AMP levels in cerebellum with ether anesthesia were prevented if rats were immersed in liquid nitrogen after anesthesis with ether. Anesthesia with pentobarbital decreased the levels of cyclic GMP in cerebellum and kidney and increased the nucleotide in heart, liver, testis and skeletal muscle compared to levels in tissues from animals immersed in liquid nitrogen. However, pentobarbital increased cyclic AMP levels in cerebellum and cerebral cortex and decreased the nucleotide in liver, kidney, testis and skeletal muscle. These studies provide a possible explanation for the variability in in vivo levels of cyclic GMP and cyclic AMP which have been previously reported. In addition, these studies support the hypothesis that the synthesis and degradation of cyclic AMP and cyclic GMP are regulated independently and not necessarily in a parallel or reciprocal manner. These studies also suggest that the increase accumulation of one cyclic nucleotide has no major effect on the synthesis and/or metabolism of the other; however, such interactions cannot be entirely excluded from the results of this study.  相似文献   

6.
Normal male rats were made chronically diabetic by injection of alloxan or acutely diabetic by injection of anti-insulin serum. The concentration of cyclic AMP in epididymal adipose tissue was increased approximately 24 h after alloxan administration and up to 7-fold 72 h post-alloxan. Treatment of alloxan-diabetic rats with insulin for 4 h completely suppressed lipolysis but only partially suppressed cyclic AMP levels; 6 h following insulin treatment cyclic AMP levels were normal. When segments of the epididymal fat bodies were incubated in vitro the high cyclic AMP levels were not maintained but instead decreased spontaneously. Addition of insulin to the incubation media decreased lipolysis in tissues of diabetic rats to levels measured in tissues of normal rats and accelerated the decline in cyclic AMP levels but did not return cyclic AMP levels to normal. Rats rendered acutely insulin deficient by injection of anti-insulin serum showed increased plasma glucose and free fatty acid levels and increased adipose tissue free fatty acid, and cyclic AMP levels 30 min following injection of the antiserum. Plasma glucagon levels increased but not until 2 h following anti-insulin serum, thereby excluding the possibility that an increment in plasma glucagon is the primary stimulus for the acceleration of lipolysis in diabetes. These data are consistent with the view that control of adipose tissue cyclic AMP levels in situ is an important physiologic action of insulin.  相似文献   

7.
In open-chest pentothal-chloralose anesthetized dogs, plasma catecholamine and cyclic AMP levels were evaluated in the aortic and coronary sinus blood, during stimulations of the left ansa subclavia (1, 2, and 4 Hz). Basal aortic and coronary sinus catecholamine levels were respectively 0.373 +/- 0.090 and 0.259 +/- 0.048 ng/mL and cyclic AMP levels averaged 21.4 +/- 1.4 and 20.9 +/- 1.6 pmol/mL. Statistically significant increases in cyclic AMP levels were induced by sympathetic stimulations at 1 Hz (2.0 +/- 0.6 pmol/mL, 2 Hz (2.5 +/- 1.2 pmol/mL) and 4 Hz (6.5 +/- 1.5 pmol/mL), concomitantly with elevations of coronary sinus catecholamine levels. Sotalol (5 mg/kg) abolished the increases in coronary sinus cyclic AMP levels induced in coronary sinus cyclic AMP output averaged 282 +/- 30 pmol/min (1 Hz), 662 +/- 160 pmol/min (2 Hz), and 1679 +/- 242 pmol/min (4 Hz). Sympathetically induced cyclic AMP output (4Hz) was blunted by sotalol (-81 +/- 14 pmol/min). Aortic cyclic AMP levels were not significantly influenced by stellate stimulation. Intense correlations were found between increased in coronary sinus plasma catecholamines and cyclic AMP concentration levels (r = 0.81, slope - 1.45, ordinate = -1.42, n = 15) as well as between delta cyclic AMP output versus delta catecholamine output values in the coronary sinus (r = 0.93. slope output levels. Intracoronary infusion of phenylephrine (10 micrograms/min) or nitroprusside (200 micrograms/min) had no influence on cyclic AMP plasma levels whereas aortic and coronary sinus levels were respectively increased 5.5 +/- 1.9 and 7.3 +/- 1.4 pmol/mL during the administration of isoproterenol (5 micrograms/min). These data suggested that plasma cyclic AMP constitutes a sensitive index of cardiac beta-adrenergic activity elicited by the release of endogenous catecholamine during stellate stimulations.  相似文献   

8.
Basal activity and hormonal responsiveness of the adenylate cyclase-adenosine 3′,5′-monophosphate system were examined in premalignant liver from rat chronically fed the hepatic carcinogen DL-ethionine, and these data were correlated with endogenous levels of plasma glucagon. By 2 weeks basal hepatic cyclic AMP levels, determined in tissue quick-frozen in situ, were 2-fold higher in rats ingesting ethionine than in the pair-fed control. Enhanced tissue cyclic AMP content was associated with an increase in the adenylate cyclase activity of whole homogenates of fresh liver from rats fed ethionine (68 ± 5 pmol cyclic AMP/10 min per mg protein) compared to control (48 ± 4). Cyclic AMP-dependent protein kinase activity ratios were also significantly higher (control, 0.38 ± 0.04; ethionine 0.55 ± 0.05) and the percent glycogen synthetase activity in the glucose 6-phosphate-independent form was markedly reduced (control, 52 ± 7%; ethionine, 15 ± 1.5 %) in the livers of ethionine-fed rats compared to the controls, suggesting that the high total hepatic cyclic AMP which accompanied ethione ingestion was biologically effective. These changes persisted throughout the 38 weeks of drug ingestion. Immunoreactive glucagon levels, determined in portal venous plasma, were 8-fold higher than control after 2 weeks of the ethionine diet (contro, 185 ± 24 pg/ml; ethionine, 1532 ± 195). Analogous to the changes in hepatic parameters, plasma glucagon levels remained elevated during the entire period of drug ingestion until the development of hepatomas. The hepatic cyclic AMP response to a maximal stimulatory dose of injected glucagon was blunted in vivo in ethionine-fed rats (control, 14-fold increase over basal, to 8.63 ± 1.1 pmol/mg wet weight; ethionine, 4.6-fold rise over basal, to 5.42 ± 0.9). Reduced cyclic AMP responses to both maximal and submaximal glucagon stimulation were also evident in vitro in hepatic slices prepared from rats fed the drug, and the reduction was specific to glucagon. Absolute or relative hepatic cyclic AMP responses to maximally effective concentrations of prostaglandin E1 or isoproterenol in hepatic slices from ethionine-fed rats were greater than or equal to those observed in control slices. Parallel alterations in hormonal responsiveness were observed in adenylate cyclase activity of whole homogenates of these livers, implying that the changes in cyclic AMP accumulation following hormone stimulation were related to an alteration in cyclic AMP generation in the premalignant tissue.In view of the recognized hepatic actions of glucagon and the desensitization of adenylate cyclase which can occur during sustained stimulation of the liver with this hormone, the endogenous hyperglucagonemia that accompanies ethionine ingestion could play a role in the pathogenesis of both the basal alterations in hepatic cyclic AMP metabolism and the reduced responsiveness to glucagon observed in liver from rats fed this carcinogen.  相似文献   

9.
Cyclic AMP levels in rabbit carotid bodies incubated under control conditions, 100% O2- or 95% O2/5% CO2- equilibrated medium, are close to 1 pmol/mg wet tissue (range 0.4-2.43 pmol/mg). Isobutylmethylxanthine (0.5 mM) increases cyclic AMP levels by a factor of 14 and 8 in HEPES- and CO2/CH3O(-)-buffered medium, respectively. Forskolin (0.5-10 microM) applied during 30 min increases cyclic AMP levels in a dose-dependent manner. Incubation of carotid bodies at low O2 tensions resulted in an elevation of cyclic AMP levels both in the absence and in the presence of isobutymethylxanthine. In the latter conditions cyclic AMP increase was maximum at an O2 tension of 46 mm Hg and tended to decrease at extremely low PO2. In isobutylmethylxanthine-containing Ca2(+)-free medium, cyclic AMP increased linearly with decreasing PO2 from 66 to 13 mm Hg; the absolute cyclic AMP levels attained in Ca2(+)-free medium were smaller than those observed in Ca2(+)-containing medium at any PO2. The differences between Ca2(+)-free and Ca2(+)-containing media appear to be due to the action of released neurotransmitters in the latter conditions, because dopamine and norepinephrine, which are known to be released by hypoxia in a Ca2(+)-dependent manner, increase cyclic AMP in the carotid body. Low pH/high PCO2 and high [K+]e increase cyclic AMP levels only in Ca2(+)-containing medium. Forskolin potentiates the release of catecholamines induced by low PO2. These results suggest that cyclic AMP plays an important role in the modulation of the chemoreception process.  相似文献   

10.
A sensitive method was developed for the simultaneous determination of six adenyl purines in human plasma by high-performance liquid chromatography. The adenyl purines (adenine, adenosine, AMP, ADP, ATP and cyclic AMP) were derivatized using 2-chloroacetaldehyde for fluorescence detection, and the reaction and separation conditions were reinvestigated to improve sensitivity for small volume sample analysis. Each derivatized purine was separated on a Capcell Pack SG120A™ column with mobile phase consisting of 0.05 M citric acid–0.1 M dipotassium hydrogen phosphate (pH 4.0)–methanol (97+3). The detection limits were 100–1000 fmol/ml by fluorescence detection, some 500 times better than previous reports. The proposed method was applied to determine adenyl purines in human plasma. The purine levels were as follows: ATP (9.2–22.2 pmol/ml), ADP (5.5–22.2 pmol/ml), AMP (0.8–3.2 pmol/ml). Other purines, adenine, adenosine, cAMP were lower than 0.1 pmol/ml.  相似文献   

11.
Guanosine 3′,5′-monophosphate (cyclic GMP) was found in the accessory gland of reproductively mature male house crickets (Acheta domesticus (L.)) up to the exceptionally high level of 500 pmol/mg protein (190−4) mol/kg wet weight). The identity of cricket cyclic GMP was confirmed by enzymatic and spectral analysis. A survey of 10 closely related species of Orthoptera indicated that high levels of cyclic GMP in the accessory gland occur only in the subfamily Gryllinae, to which A. domesticus belongs. In these crickets GMP in the accessory gland increases together with protein content during two weeks after the final molt. Levels are not augmented by dissection, and are independent of the presence of sperm in the seminal vesicles and of the production of spermatophores by the gland. The function of cyclic GMP in the accessory gland is not yet understood.  相似文献   

12.
Basal activity and hormonal responsiveness of the adenylate cyclase-adenosine 3',5'-monophosphate system were examined in premalignant liver from rats chronically fed the hepatic carcinogen DL-ethionine, and these data were correlated with endogenous levels of plasma glucagon. By 2 weeks basal hepatic cyclic AMP levels, determined in tissues quick-frozen in situ, were 2-fold higher in rats ingesting ethionine than in the pair-fed control. Enhanced tissue cyclic AM content was associated with an increase in the adenylate cyclase activity of whole homogenates of fresh liver from rats fed ethionine (68 +/- 5 pmol cyclic AMP/10 min per mg protein) compared to control (48 +/- 4). Cyclic AMP-dependent protein kinase activity ratios were also significantly higher (control, 0.38 +/- 0.04; ethionine 0.55 +/- 0.05) and the percent glycogen synthetase activity in the glucose 6-phosphate-independent form was markedly reduced (control, 52 +/- 7%; ethionine, 15 +/- 1.5%) in the livers of ethionine-fed rats compared to the controls, suggesting that the high total hepatic cyclic AMP which accompanied ethionine ingestion was bilogically effective. These changes persisted throughout the 38 weeks of drug ingestion. Immunoreactive glucagon levels, determined in portal venous plasma, were 8-fold higher than control after 2 weeks of the ethionine diet (control, 185 +/- 24 pg/ml; ethionine, 1532 +/- 195). Analogous to the changes in hepatic parameters, plasma glucagon levels remained elevated during the entire period of drug ingestion until the development of hepatomas. The hepatic cyclic AMP response to a maximal stimulatory dose of injected glucagon was blunted in vivo in ethionine-fed rats (control, 14 -fold increase over basal, to 8.63 +/- 1.1 pmol/mg wet weight; ethionine, 4.6-fold rise over basal, to 5.42 +/- 0.9). Reduced cyclic AMP responses to both maximal and submaximal glucagon stimulation were also evident in vitro in hepatic slices prepared from rats fed the drug, and the reduction was specific to glucagon. Absolute or relative hepatic cyclic AMP responses to maximally effective concentrations of protaglandin E1 or isoproterenol in hepatic slices from ethionine-fed rats were greater than or equal to those observed in control slices. Parallel alterations in hormonal responsiveness were observed in adenylate cyclase activity of whole homogenates of these livers, implying that the changes in cyclic AMP accumulation following hormone stimulation were related to an alteration in cyclic AMP generation in the premalignant tissue. In view of the recognized hepatic actions of glucagon and the desensitization of adenylate cyclase which can occur during sustained stimulation of the liver with this hormone, the endogenous hyperglucagonemia that accompanies ethionine ingestion could play a role in the pathogenesis of both the basal alterations in hepatic cyclic AMP metabolism and the reduced responsiveness to glucagon observed in liver from rats fed this carcinogen.  相似文献   

13.
Abstract: N -Acetylsuccinimidylglutamate [(asu)NAAG], a cyclic form of the peptide N -acetylaspartylglutamate (NAAG) in which the aspartyl residue is linked to glutamate via the α- and β-carboxylates, was identified and quantified by HPLC in the murine and bovine CNS. In the rat, the highest concentrations of (asu)NAAG were detected in the spinal cord (1.83 ± 0.15 pmol/mg of wet tissue weight) and brainstem (1.16 ± 0.08 pmol/mg wet weight), whereas the levels were below the limit of detection in cerebellum, hippocampus, and cerebral cortex. (Asu)NAAG was also detected in significant amounts in the superior colliculus and lateral genicutale nucleus (1.17 ± 0.05 and 0.82 ± 0.13 pmol/mg wet weight, respectively). Although the tissue content of (asu)NAAG was about three orders of magnitude lower than that of NAAG, levels of both peptides were positively correlated among different CNS regions ( r = 0.74, p < 0.003). In the rat spinal cord, (asu)NAAG levels progressively increased from week 2 to month 12 after birth. In bovine spinal cord, the contents of (asu)NAAG and NAAG were comparable in gray and white matter as well as in the dorsal and ventral horns. These results suggest that NAAG and (asu)-NAAG are closely related metabolically and raise the question of the physiological significance of such a cyclic peptide.  相似文献   

14.
Abstract— The effects of 121 m m -K+, 10 m m -glutamate, 5 m m -GABA, 1 m m -glycine, 0.1 m m -NE, and 1–10 μ m ACh on cyclic GMP levels in tissue slices prepared from cerebral cortex and cerebellum of mouse, rabbit, guinea-pig, cat, and rat were studied. Basal levels of cyclic GMP in the cerebella of mice, guinea-pigs and cats were 4–15 and 70 pmol/mg prot in rat, whereas in the cerebral cortex of the same animals, levels were only 0.6–2 pmol/mg prot. In contrast, basal levels of the cyclic nucleotide were 1–2 pmol/mg prot in both of these regions in rabbit brain. Only 121 m m -K+ was capable of increasing cyclic GMP levels in all the tissues studied. Elevations ranged from 30% in rat cerebral cortex to 2800% in mouse cerebellum. Glutamate produced a 30–1000% rise of cyclic GMP levels in all tissues except rabbit cerebellum. NE elevated levels of cyclic nucleotide 2- to 3-fold in slices of cerebellum from all species studied but had no effect in cerebral cortex. GABA and glycine had no effect in any tissue except mouse cerebellum. ACh had no consistent effect on levels of cyclic GMP in any brain region investigated. These results suggest that mechanisms regulating cyclic GMP levels in mammalian CNS vary among brain regions and among animal species.  相似文献   

15.
1. 5-HT (10(-4) M) had no effect on the activity of phosphofructokinase in Hymenolepis diminuta. Concentrations of ATP above 33 microM inhibited PFK activity; AMP and cyclic AMP relieved this inhibition. 2. Local levels of cyclic AMP may be indirectly modulated by NaF, guanylyl imidophosphate, or 5-HT in the presence of GTP, which stimulates adenylyl cyclase activity x2 in H. diminuta homogenates. 3. Fructose 2,6-bisphosphate (F2BP), a physiological regulator of PFK activity in rat liver, also relieved ATP-induced inhibition of PFK. F2BP was present in supernatants from the worms at about 20 mumol/g wet wt. 4. 5-HT may cause an increase in the rate of glycolysis in H. diminuta by elevating either cyclic AMP and/or AMP levels; these nucleotides can in turn increase PFK activity.  相似文献   

16.
Cyclic AMP and cyclic GMP levels were examined in Morris hepatoma explants in vivo. All eight tumor lines examined had significantly elevated cyclic AMP and cyclic GMP levels when compared to normal liver from tumor-bearing rats. No apparent correlation was observed between the rates of tumor growth and cyclic nucleotide levels; however, two tumor lines (3924A and 7288ctc) had very high levels of cyclic GMP.  相似文献   

17.
The expression of the synaptic vesicle protein, synaptotagmin, in developing rat superior cervical ganglia is influenced by transsynaptic factors associated with membrane depolarization. The present study examines the role of cyclic AMP in the regulation of synaptotagmin in neonatal superior cervical ganglia maintained in explant culture. Ganglia were treated for 48 h in vitro with the Na+‐channel ionophore, veratridine, or with pharmacological agents that alter cyclic AMP levels. Levels of cyclic AMP and synaptotagmin were determined by radioimmunoassay. Veratridine treatment significantly increased cyclic AMP in cultured ganglia, with a long time course, and also increased synaptotagmin levels. Drugs that elevate cyclic AMP levels significantly increased synaptotagmin levels, with similar magnitude to that produced by veratridine treatment. These pharmacological agents did not alter neuron survival or total ganglionic protein content. No additive effects were observed after combined treatment with veratridine and pharmacological agents that increased cyclic AMP. Agents that blocked adenylyl cyclase blocked the veratridine‐induced increase in synaptotagmin levels. The results suggest that regulation of expression of synaptotagmin in neonatal sympathetic neurons is mediated partially by cyclic AMP. © 2001 John Wiley & Sons, Inc. J Neurobiol 46: 281–288, 2001  相似文献   

18.
1. Methods are described for the extraction and assay of ATP, ADP, AMP, glucose 6-phosphate, l-glycerol 3-phosphate and citrate in rat epididymal adipose tissue incubated in vitro for 1hr. At this time of incubation rates of glucose uptake and outputs of glycerol, free fatty acids, lactate and pyruvate were shown to be constant. 2. In fat pads incubated in medium containing glucose (3mg./ml.) and albumin (20mg./ml.) the concentrations (in mmumoles/g. wet wt.) were: ATP, 70; ADP, 36; AMP, 9.0; glucose 6-phosphate, 3.0; l-glycerol 3-phosphate, 3.3; citrate, 8.1. 3. The volume of intracellular water calculated from ([(3)H]water space-[(14)C]sorbitol space), ([(14)C]urea space-inulin space) and (weight loss on drying-[(14)C]sorbitol space) was 1.4ml./100g. wet wt. of tissue. The intracellular volume was not changed by insulin, alloxan-diabetes or adrenaline. 4. When compared in terms of mumoles/ml. of intracellular water the concentration of ATP in adipose tissue was less than in heart and diaphragm muscles. The concentrations of ADP and AMP were greater both in absolute terms and relative to ATP. Insulin, alloxan-diabetes and adrenaline had no significant effects on the concentrations of the adenine nucleotides in adipose tissue. 5. The concentration of glucose 6-phosphate was increased by insulin and lowered by alloxan-diabetes and adrenaline. The concentration of l-glycerol 3-phosphate was increased by insulin, unchanged by alloxan-diabetes and lowered by adrenaline. The concentration of citrate was increased by adrenaline and alloxan-diabetes and unchanged by insulin. 6. The effect of glucose concentration in the medium on rates of glucose uptake in adipose tissue from normal rats and alloxan-diabetic rats was investigated. The K(u) of glucose uptake was 29-44mg./100ml. and the V(max.) was 0.77mg./g. wet wt. of tissue/hr. Insulin increased the V(max.) and alloxan-diabetes diminished it, but neither agent significantly altered the K(u). 7. The significance of these results in relation to control of metabolism of adipose tissue is discussed.  相似文献   

19.
Cyclic AMP, [3H]thymidine incorporation, and DNA content were measured in the cell cycle of Physarum polycephalum. A sensitive radioimmunoassay was employed to assay cyclic AMP so that plasmodia could be assayed individually. In contrast to previously published results (Lovely, J.R. and Threlfall, R.J. (1976) Biochem. Biophys. Res. Commun. 71, 789–795), no pre-mitotic peak of cyclic AMP was detected. In seven experiments levels of cyclic AMP showed only small changes in individual experiments and ranged from 1–6 pmol/mg protein in different experiments. When plasmodia in the immediate premitotic period were collected on the basis of nuclear mitotic morphology, no evidence of a peak of cyclic AMP was found. Light was found to increase plasmodial cyclic AMP in a rapid, transient fashion. However, the brief exposure of cell cycle samples to light during collection did not induce any apparent cell cycle specific peaks of cyclic AMP. Although the occurrence of extremely rapid transient peaks of cyclic AMP in the cell cycle cannot be ruled out, it appears likely that the P. polycephalum cell cycle can proceed normally without major changes in cyclic AMP.  相似文献   

20.
The effect of Ca2+ and putative neurotransmitters on formation of cyclic AMP and cyclic GMP has been studied in incubated slices of brain tissue. Cyclic AMP levels in cerebellar slices after about 90 min of incubation ranged from 10 pmol/mg protein in rabbit, to 25 in guinea pig, to 50 in mouse and 200 in rat. Cyclic GMP levels in the same four species showed no correlation with cyclic AMP levels and were, respectively, 1.3, 20, 5 and 30 pmol/mg protein. The absence of calcium during the prolonged incubation of cerebellar slices had little effect on final levels of cyclic AMP, while markedly decreasing final levels of cyclic GMP. Reintroduction of Ca2+ resulted in a rapid increase in cerebellar levels of cyclic GMP which was most pronounced for guinea pig where levels increased nearly 7-fold within 5 min. Prolonged incubation of guinea pig cerebral cortical slices in calcium-free medium greatly elevated cyclic AMP levels apparently through enhanced formation of adenosine, while having little effect on final levels of cyclic GMP. Norepinephrine and adenosine elicited accumulations of cyclic AMP and cyclic GMP in both guinea pig cerebral cortical and cerebellar slices. Glutamate, γ-aminobutyrate, glycine, carbachol, and phenylephrine at concentrations of 1 mM or less had little or noe effect on cyclic nucleotide levels in guinea pig cerebellar slices. Prostaglandin E1 and histamine slightly increased cerebellar levels of cyclic AMP. Isoproterenol increased both cyclic AMP and cyclic GMP. The accumulation of cyclic AMP and cyclic GMP elicited by norepinephrine in cerebellar slices appeared, baed on dose vs. response curves, agonist-antaganonist relationships and calcium dependency, to involve in both cases activation of a similar set of ß-adrenergic receptors. In cerebellar slices accumulations of cyclic AMP and cyclic GMP elicted by norepinephrine and by a depolarizing agent, veratridine, were strongly dependent on the presence of calcium. The stimulatory effects of adenosine on cyclic AMP and cyclic GMP formation were antagonized by theophylline. The lack of correlations between levels of cyclic AMP and cyclic GMP under the various conditions suggested independent activation of cyclic AMP- and cyclic GMP-generating systems in guinea pig cerebellar slices by interactions with Ca2+, norephinephrine and adenosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号