首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary— The cellulose-protein fibrils, which constitute by far the bulk of the fibrous fraction of the sea peach tunic (Halocynthia papillosa), were structurally and chemically characterized, either in situ or after extraction procedures, with the use of classical electron microscoy combined with diffraction contrast imaging and electron diffraction, histochemistry, affinity cytochemistry and chemical analysis. These fibrils exhibit a cross-sectional shape close to a parallelogram. The cyrstallites forming their core, with lateral dimensions ranging from roughly 5 to 20 nm, are composed of native cellulose of higher crystallinity than that of plant cellulose. They are associated with acid mucopolysaccharidés (amps) and proteins which form a coating material appearing as a continuous sheath enveloping the axial crystallite in the cuticular layer or as patches more-or-less periodically distributed around and along the fibre axis in the fundamental layer. Tunicin, the alkali-insoluble fibrous fraction, is not pure cellulose, yielding only 22–60% of its dry weight as glucose equivalents, depending on the tunical layer. It is suggested that in addition to the high degree of crystallinity of the tunical cellulose, the presence of a significant amount of coating material composed of amino acids and proteoglycans firmly linked to cellulose molecules contributes to tunicin's high resistance to hydrolysis.  相似文献   

2.
Summary The primary and secondary cysts of Saprolegnia ferax and the secondary cysts of Dictyuchus sterile have a two layered wall structure, the outer layer of which bears various types of spines. These spines, and the outer wall layer are derived from preformed structures (bars) found in the cytoplasm prior to encystment. Golgi derived vesicles appear to contribute to the inner layer of the primary cyst wall of S. ferax. The outer surface of the secondary cyst walls of this species has fibrils which are not embedded in matrix material.  相似文献   

3.
Cell walls of Chlorococcum oleofadens Trainor & Bold were examined ultrastructurally and chemically. The wall of zoospores has a uniform 30 nm width and a regular lamellar pattern. Zoospores and young vegetative cell walk exhibit periodicities, consisting of 20 nm ridges on the outer layer. Vegetative cell walls have a variable thickness of Up to 800 nm and are composed of multiple layers of electron dense material. Further, vegetative walk contain a microfibrillar material composed predominantly of glucose and presumed to be cellulose. Except for this cellulose, vegetative cell wall chemistry is very similar to that of Chlamydomemas being composed of glycoprotein rich in hydroxyproline. The hydroxyproline in Chlorococcum walls is linked glycosidically to a mixture of hetrooligosaccharides composed of arabinose and galactose, and in one instance, an unknown 6-deoxyhexose. Altogether, the glycoprotein complex accounts for at least 52% of the wall. The amino acid composition of the walls is stikingly similar to those of widely different plant species. Indirect evidence indicates zoospore cell walls are also chemically similar to those of Chlamydomonas, and like them, are cellulose free. Thus a major chemical difference between zoospore and vegetative cell walk of Chlorococcum is the presence of cellulose in the latter. The contribution of this microfibrillar cellulose to the physical properties of the vegetative wall is discussed.  相似文献   

4.
We have isolated from a Kentucky stream a bacterial strain capable of killing the cyst form of Giardia lamblia. This bacterium, designated Sun4, is a Gram-negative, aerobic rod which produces a yellow pigment, but not of the flexirubin-type. Although true gliding motility has not been observed in Sun4, this strain does exhibit a spreading colony morphology when grown on R2A agar. Strain Sun4 has been identified by 16S rRNA sequencing and phylogenetic analysis as belonging to the genus Flavobacterium, and is most closely related to Cytophaga sp. strain Type 0092 and associated Flavobacterium columnare strains. Lipid analysis also identified fatty acids characteristic of the Cytophaga–Flavobacterium group of bacteria. In culture, Sun4 is able to degrade casein and cellulose, but not chitin, gelatin, starch, or agar. Degradation of Giardia cysts by Sun4 appears to require direct cellular contact as neither cell-free extracts nor cells separated from the cysts by dialysis membranes showed any activity against cysts. Activity against Giardia cysts is rapid, with Sun4 killing over 90% of cysts within 48 h. Strain Sun4 requires elevated levels of Ca2+ for optimal growth and degradative activity against Giardia cysts. We propose that bacterial strains such as Sun4 could be used as biological control agents against Giardia cysts in drinking water treatment systems.  相似文献   

5.
SYNOPSIS. The behavior of the amoeba H. castellanii was investigated in various carbon and nitrogen deficient media with a view to developing a satisfactory replacement medium for the study of encystment and excystment. Media which had been devised for other soil amoebae did not cause H. castellanii to encyst. In these media there was an efflux of material from the cells which was independent of osmolarity but which was minimized by the addition of magnesium. Maximal encystment occurred in a medium containing magnesium chloride alone. The cysts produced in the magnesium chloride replacement medium are viable and readily excyst when resuspended in the growth medium. The cysts contain cellulose, which is not present in the vegetative amoebae, and differ from the amoebae in their greater resistance to induced lysis and mechanical injury.  相似文献   

6.
Cyst formation in Ceratium hirundinella (O. F. Müll.) Bergh was studied by light and electron microscopy, using material from several lakes and reservoirs and also laboratory cultures. Cells preparing to encyst build up large quantities of starch and lipid and at the same time reduce their other cell components. The cyst is released from the theca as a naked cell bounded by a double membrane. The most commonly found cyst deposits a layer of electron-dense granules containing silicon on the outer membrane and lays down a cellulose-like material between the two membranes. Cysts without the electron-dense granules are commonly formed in cultures but rarely found in lakes. These cysts appear less resistant to decay and do not show the reorganization of cell contents for dormancy. It is suggested that C. hirundinella has both a resting cyst, forming part of the life cycle, and a temporary cyst stage.  相似文献   

7.
The distribution of cellulose and callose in the walls of pollen tubes and grains of Nicotiana tabacum L. was examined by electron microscopy using gold-labelled cellobiohydrolase for cellulose and a (1,3)-β-D-glucan-specific monoclonal antibody for callose. These probes provided the first direct evidence that cellulose co-locates with callose in the inner, electron-lucent layer of the pollen-tube wall, while both polymers are absent from the outer, fibrillar layer. Neither cellulose nor callose are present in the wall at the pollen-tube tip or in cytoplasmic vesicles. Cellulose is first detected approximately 5–15 μm behind the growing tube tip, just before a visible inner wall layer commences, whereas callose is first observed in the inner wall layer approximately 30 μm behind the tip. Callose was present throughout transverse plugs, whereas cellulose was most abundant towards the outer regions of these plugs. This same distribution of cellulose and callose was also observed in pollen-tube walls of N. alata Link et Otto, Brassica campestris L. and Lilium longiflorum Thunb. In pollen grains of N. tabacum, cellulose is present in the intine layer of the wall throughout germination, but no callose is present. Callose appears in grains by 4 h after germination, increasing in amount over at least the first 18 h, and is located at the interface between the intine and the plasma membrane. This differential distribution of cellulose and callose in both pollen tubes and grains has implications for the nature of the β-glucan biosynthetic machinery. Received: 20 February 1988 / Accepted: 25 March 1998  相似文献   

8.
ABSTRACT. Flagellar cysts of Blastocrithidia triatomae form from active flagellates by diminution in size. The pellicular microtubules disappear. The inner layer of the cell membrane thickens progressively as the organism shrinks. The fully formed cyst has an electrondense layer that corresponds to the outer layer of the unit membrane. An electron-lucent layer is approximately twice the thickness of the middle layer of the unit membrane. Inside that is a 92 nm layer that may represent the cytoplasm. The nuclear content is in the form of whorled bundles of 10–15 nm fibrils. The kinetoplast was not seen in electron micrographs of cysts.  相似文献   

9.
Acanthamoeba cysts are resistant to unfavorable physiological conditions and various disinfectants. Acanthamoeba cysts have 2 walls containing various sugar moieties, and in particular, one third of the inner wall is composed of cellulose. In this study, it has been shown that down-regulation of cellulose synthase by small interfering RNA (siRNA) significantly inhibits the formation of mature Acanthamoeba castellanii cysts. Calcofluor white staining and transmission electron microscopy revealed that siRNA transfected amoeba failed to form an inner wall during encystation and thus are likely to be more vulnerable. In addition, the expression of xylose isomerase, which is involved in cyst wall formation, was not altered in cellulose synthase down-regulated amoeba, indicating that cellulose synthase is a crucial factor for inner wall formation by Acanthamoeba during encystation.  相似文献   

10.
Aims: Bacterial cellulose is an extracellular polysaccharide secreted by Acetobacter xylinum, which has become a novel material increasingly used in food and medical industries. However, its broad application is limited by its low yield and high cost. 1‐Methylcyclopropene (1‐MCP) is a potent inhibitor to either exogenous or endogenous ethylene during the biological senescence of plants, which has been broadly applied in commercial preservation of fruits and vegetables. The purpose of this study was to investigate the effects of 1‐MCP on both the growth of Acet.  xylinum and its cellulose production to demonstrate the potential enhancement of bacterial cellulose yield. Methods and Results: Three groups of samples were fermented under agitated culture with 125 rev min?1 rotational speed. To the culture media, 0·14 mg of 1‐MCP contained in 100 mg dextrose powder was added on assigned days or on the first culture day only. Results from the measurement of bacterial cell concentration and bacterial cellulose yield at the end of a 12‐day culture demonstrated that cultures excluding 1‐MCP displayed a higher cell concentration and a lower cellulose production, while cultures containing 1‐MCP produced 15·6% more cellulose (1‐MCP added on day 1) and 25·4% (1‐MCP added on each assigned day) with less biomass. Conclusions: 1‐MCP was able to affect the growth of Acet. xylinum cells and resulted in increasing bacterial cellulose yield up to 25·4% over controls, which did not contain 1‐MCP. Significance and Impact of the Study: This was the first study to use the growth inhibitor of plants to investigate its effects on bacterial growth and production. It also demonstrated a significant enhancement of bacterial cellulose yield by the addition of 1‐MCP during the common agitated culture of Acet. xylinum.  相似文献   

11.
Dendraster excentricus eggs fertilized in ConA (10 μg/ml) elevate vitelline layers and expel cortical granule contents into the perivitelline space. The granule material does not disperse but remains composed as discrete spheres. The elevated vitelline layer remains thin and weak. It is not a true fertilization membrane because it lacks the structural material supplied by the granules.  相似文献   

12.
T. Fujino  T. Itoh 《Protoplasma》1994,180(1-2):39-48
Summary The cell wall of a green alga,Oocystis apiculata, was visualized by electron microscopy after preparation of samples by rapid-freezing and deep-etching techniques. The extracellular spaces clearly showed a random network of dense fibrils of approximately 6.4 nm in diameter. The cell wall was composed of three distinct layers: an outer layer with a smooth appearance and many protuberances on its outermost surface; a middle layer with criss-crossed cellulose microfibrils of approximately 15–17 nm in diameter; and an inner layer with many pores between anastomosing fibers of 8–10 nm in diameter. Both the outer and the inner layer seemed to be composed of amorphous material. Cross-bridges of approximately 4.2 nm in diameter were visualized between adjacent microfibrils by the same techniques. The cross-bridges were easily distinguished from cellulose microfibrils by differences in their dimensions.  相似文献   

13.
A hydrate of cellulose II can be formed by swelling Fortisan fibers in hydrazine and then washing in water. The hydrate is stable at 93% relative humidity and has a monoclinic unit cell with dimensions a = 9.02 Å, b = 9.63 Å, c = 10.34 Å, and γ = 116.0°; the space group is P21. The unit cell contains disaccharide sections of two chains and approximately four water molecules. The structure was refined using the LALS method, based on 10 observed and 10 unobserved reflections. An antiparallel arrangement of adjacent chains was assumed, since this occurs in cellulose II (the starting material), and the hydrate also reverts to cellulose II on dehydration. Refinement of the positions and side-chain conformations of the chains shows that the chains are stacked in the same way as in cellulose II, and the hydrate is formed by insertion of water molecules between the stacks. However, all efforts to arrange the water molecules in crystallographically regular positions led to unsatisfactory agreement between the observed and calculated intensities. These results suggest an irregular arrangement of the water molecules, which was modeled using water-weighted atomic scattering factors. The analysis resulted in two refined models with relative chain staggers of ~ +c/4 and ~ -c/4, which are indistinguishable in terms of the x-ray agreement. Our preference is for the +c/4 model, for which the stacks of chains are analogous to those in cellulose II.  相似文献   

14.
Water samples, taken from the intake and rapid filter system of a water purification plant, were analyzed using an immunofluorescence antibody method for detecting the presence of Giardia cysts and Cryptosporidium oocysts. Giardia cysts and Cryptosporidium oocysts were found in the intake water from zero to 38.7 cysts/100 l and 1.7–50.5 oocysts/100 l with averages of 9.6 cysts/100 l and 19.4 oocysts/100 l. Giardia cysts and Cryptosporidium oocysts were also detected in the samples taken from the rapid filtration unit with mean concentrations of zero to 2.3 cysts/100 l and 0–2.5 oocysts/100 l, respectively. The efficacy of the rapid filter in suspended material and (oo)cyst removal was significant. The removal late was 56–97% for suspended material and 69–100% for the (oo)cysts.  相似文献   

15.
The cell of Pyrocystis spp. is covered by an outer layer of material resistant to strong acids and bases. Internal to this layer much of the cell wall is composed of cellulose fibrils. The presence of cellulose fibrils was established by staining raw and ultra-violet–peroxide-cleaned cell walls and by combining X-ray diffraction spectroscopy with electron microscope observation. Carbon replicas of freeze-etched preparations and thin sections of P. lunula walls show outer layers, inside them ca. 24 layers of crossed parallel cellulose fibrils (4–5 nm thick, ca. 12 nm wide), then a region of smaller (ca. 6–12 nm diameter) fibrils in a disperse texture, and then the plasma membrane. Cellulose fibrils in the parallel texture are constructed of 3–5 elementary fibrils ca. 3 nm in diameter. Walls of P. fusiformis and P. pseudonctiluca also have cellulose fibrils in a crossed parallel texture similar to those of P. lunula. The Gymnodinium-type swarmer from lunate P. lunula appears to have a cell wall ultrastructure typical of other “naked” dinoflagellates.  相似文献   

16.
The occurrence and distribution of dinoflagellate resting cysts were investigated at 11 locations in the south-eastern part of the North Sea. Twenty-six known cyst species and 7 unknown cyst types, which may act as seed population for planktonic dinoflagellate blooms, have been recorded for the first time in the area. The most common cysts in recent sediments were those ofScrippsiella trochoidea, Zygabikodinium lenticulatum, Peridinium dalei, Scrippsiella lachrymosa, Protoceratium reticulatum, Protoperidinium denticulatum, andP. conicum. At all stations,S. trochoidea dominated the cyst assemblages with a maximal abundance of 1303 living cysts/cm3 in the uppermost half centimetre. Cysts of the potentially toxic dinoflagellatesAlexandrium cf.excavatum andA. cf.tamarense were scarce. In the upper 2-cm layer of sediment, dinoflagellate cysts were found in concentrations of 1.8 up to 682 living cysts/cm3. Empty cysts constituted 22–56% of total cyst abundance. The comparative distribution of the cysts showed a general increase in abundance from inshore sites to the offshore area, whereby sandy stations exhibited the lowest cyst abundance and diversity. The wide distribution of living and empty cysts ofScrippsiella lachrymosa suggests that its motile form, which has not been officially recorded in the area until now, is a common plankton organism in German coastal waters. The relatively high abundance of cysts in recent sediments demonstrates the potential importance of benthic resting stages for the initiation of dinoflagellate blooms in the study area.  相似文献   

17.
Forty-five species of dinoflagellates were surveyed for the presence of a pellicular layer in the amphiesma or cell covering. Such a layer was found in 15 of the 20 genera studied. Half the pellicles tested were resistant to acetolysis and may contain a sporopollenin-like material similar to that of some dinoflagellate cyst walk. Most organisms which formed pellicles were capable of reinforcing this layer with cellulose. Pellicles of Heterocapsa niei (Loeblich) Morrill & Loeblich and Scrippsiella trochoidea (Stein) Loeblich were studied with the electron microscope. Evidence is presented indicating that dividing cells of S. trochoidea from new walls while still enclosed in the parental pellicular layer.  相似文献   

18.
Zusammenfassung In Extrakten wachsender Kulturen von Acanthamoeba castellanii konnte ein cellulose-abbauendes Enzymsystem nachgewiesen werden. Es besteht aus einer reduzierende Zucker abspaltenden Komponente mit einem pH-Optimum bei 4, einer viscositätsverändernden Komponente mit einem pH-Optimum bei 6 und einer -Glucosidase mit einem pH-Optimum von 3,5. Bei pH 4 sind die Celluloseabbauprodukte Cellobiose und Glucose, bei pH 6 höhermolekulare Oligosaccharide.Während der Entwicklung in einem nährstofffreien Salzmedium nehmen die Cellulaseaktivitäten ab: Vor dem Start der Cellulosesynthese sind noch etwa 30% der ursprünglich vorhandenen Celluloseaktivität nachzuweisen, fertige Cysten besitzen noch etwa 10% der Aktivität.Die Bedeutung des Cellulassenzymsystems wird ausgehend von der Tatsache diskutiert, daß die Excystierung ohne Abbau der Cystenwand, in die die Cellulose eingelagert ist, stattfindet.
The cellulase enzymes system during growth and development of Acanthamoeba castellanii
It could be shown that extracts of growing cultures of Acanthamoeba castellanii contained a cellulose degrading system. Reducing sugars are split off by one component of this system at an optimum of pH 4, another enzyme changes the viscosity at an optimum of pH 6, and a third component is a -glucosidase with an optimum at pH 3.5. At pH 4 the cellulose degradation products are cellobiose and glucose; at pH 6 higher molecular weight oligosaccharides are produced.During the development from trophozoites to cysts in a nutrient-free medium, the activities of both cellulases decline: Prior to the start of cellulose synthesis only 30%, and in cysts only 10% of the original existing activities are detectable.The biological function of the cellulase enzyme system is discussed together with a consideration of the fact that excystment takes place without digestion of the cyst wall in which the cellulose is deposited.
  相似文献   

19.
While investigating dinoflagellate cyst assemblages in surface sediments of the Gulfs of Naples and Salerno (Mediterranean Sea), we found a new calcareous resting cyst. This cyst has a round to oval body surrounded by a thick mineral layer, which gives it the shape of a Napoleon hat, with a flat, oval face bearing the archeopyle and a convex keel on the opposite side. The cyst shape is variable in both natural samples and clonal cultures. The organic membrane underlying the calcareous covering is resistant to acetolysis, thus demonstrating the presence of sporopolleninlike material. The cyst germinated into a motile stage having the same morphological features and thecal plate pattern as Peridinium tyrrhenicum Balech. We believe the validity of the genus Pentapharsodinium Indelicato & Loeblich should be accepted. Based on the comparative examination of the species we collected and of a similar species, Pentapharsodinium trachodium Indelicato & Loeblich, we propose Pentapharsodinium tyrrhenicum as a new combination for Peridinium tyrrhenicum. The genus Pentapharsodinium also includes P. dalei Indelicato & Loeblich (= Peridinium faeroense Dale), which produces spiny, organic-walled cysts. The presence of species forming calcareous cysts and species producing noncalcareous cysts in the same genus raises questions about maintaining the family Calciodinellaceae. This family should only include calcareous cyst-forming peridinioids, in order to maintain a unified system of classification of fossil and recent dinoflagellates.  相似文献   

20.
ABSTRACT. Isoenzyme electrophoretic techniques were applied to the characterization of seven Sarcocystis spp. that had been identified by conventional morphological studies. Cystozoites were harvested from macroscopic cysts from sheep, cattle, and mice and from microscopic cysts from sheep, cattle, and goats. Soluble cystozoite extracts were subjected to cellulose acetate gel electrophoresis and characterized at 15 of the 39 enzyme loci examined. Genetic relationships among isolates were examined by simple phenetic clustering. Two different morphological types of macroscopic cysts from sheep, identified as S. gigantea (syn. S. ovifelis) and S. medusiformis, consistently differed at 40% of the loci examined. Such genetic divergence confirms their separate morphotypic classification. Both differed from microscopic cyst isolates from sheep at 87% of the loci examined; however, two different morphotypes of microscopic cysts were found in the sheep sampled (thick-walled and thin-walled cysts). Until sufficient numbers of each type can be isolated and examined separately, both were regarded as belonging to the species S. tenella (syn. S. ovicanis). Macroscopic and microscopic cysts from cattle consistently differed at 80% of the loci thereby supporting their separate classification as S. hirsuta (syn. S. bovifelis) and S. cruzi (syn. S. bovicanis), respectively. Isolates from goats (microscopic cysts identified as S. capracanis) differed from S. tenella and S. cruzi at 20% and 47% of the loci, respectively. All macroscopic cyst isolates from the various host animal species (including S. muris from mice) differed from each other at nearly all loci. Isoenzyme electrophoretic techniques therefore provided genetic evidence supporting the classification of these various Sarcocystis spp. by their morphological characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号