首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic virus. VEEV was a significant human and equine pathogen for much of the past century, and recent outbreaks in Venezuela and Colombia (1995), with about 100,000 human cases, indicate that this virus still poses a serious public health threat. The live attenuated TC-83 vaccine strain of VEEV was developed in the 1960s using a traditional approach of serial passaging in tissue culture of the virulent Trinidad donkey (TrD) strain. This vaccine presents several problems, including adverse, sometimes severe reactions in many human vaccinees. The TC-83 strain also retains residual murine virulence and is lethal for suckling mice after intracerebral (i.c.) or subcutaneous (s.c.) inoculation. To overcome these negative effects, we developed a recombinant, chimeric Sindbis/VEE virus (SIN-83) that is more highly attenuated. The genome of this virus encoded the replicative enzymes and the cis-acting RNA elements derived from Sindbis virus (SINV), one of the least human-pathogenic alphaviruses. The structural proteins were derived from VEEV TC-83. The SIN-83 virus, which contained an additional adaptive mutation in the nsP2 gene, replicated efficiently in common cell lines and did not cause detectable disease in adult or suckling mice after either i.c. or s.c. inoculation. However, SIN-83-vaccinated mice were efficiently protected against challenge with pathogenic strains of VEEV. Our findings suggest that the use of the SINV genome as a vector for expression of structural proteins derived from more pathogenic, encephalitic alphaviruses is a promising strategy for alphavirus vaccine development.  相似文献   

2.
Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic pathogen. Recent outbreaks in Venezuela and Colombia in 1995, involving an estimated 100,000 human cases, indicate that VEEV still poses a serious public health threat. To develop a safe, efficient vaccine that protects against disease resulting from VEEV infection, we generated chimeric Sindbis (SIN) viruses expressing structural proteins of different strains of VEEV and analyzed their replication in vitro and in vivo, as well as the characteristics of the induced immune responses. None of the chimeric SIN/VEE viruses caused any detectable disease in adult mice after either intracerebral (i.c.) or subcutaneous (s.c.) inoculation, and all chimeras were more attenuated than the vaccine strain, VEEV TC83, in 6-day-old mice after i.c. infection. All vaccinated mice were protected against lethal encephalitis following i.c., s.c., or intranasal (i.n.) challenge with the virulent VEEV ZPC738 strain (ZPC738). In spite of the absence of clinical encephalitis in vaccinated mice challenged with ZPC738 via i.n. or i.c. route, we regularly detected high levels of infectious challenge virus in the central nervous system (CNS). However, infectious virus was undetectable in the brains of all immunized animals at 28 days after challenge. Hamsters vaccinated with chimeric SIN/VEE viruses were also protected against s.c. challenge with ZPC738. Taken together, our findings suggest that these chimeric SIN/VEE viruses are safe and efficacious in adult mice and hamsters and are potentially useful as VEEV vaccines. In addition, immunized animals provide a useful model for studying the mechanisms of the anti-VEEV neuroinflammatory response, leading to the reduction of viral titers in the CNS and survival of animals.  相似文献   

3.
4.
We have identified a cellular protein from a continuous mosquito cell line (C6/36) that appears to play a significant role in the attachment of Venezuelan equine encephalitis (VEE) virus to these cells. VEE virus bound to a 32-kDa polypeptide present in the C6/36 plasma membrane fraction, and binding to this polypeptide was dose dependent and saturable and competed with homologous and heterologous alphaviruses. These observations suggest that this polypeptide binds virus via a receptor-ligand interaction. The 32-kDa polypeptide was expressed on the surfaces of C6/36 cells, and monoclonal antibodies directed against either this cell polypeptide or the VEE virus E2 glycoprotein, which is thought to be the viral attachment protein, interfered with virus attachment. Collectively, these data provide evidence suggesting that the 32-kDa polypeptide serves as a receptor for VEE virus infection of cells. We have characterized this cell polypeptide as a laminin-binding protein on the basis of its ability to interact directly with laminin as well as its immunologic cross-reactivity with the high-affinity human laminin receptor.  相似文献   

5.
6.
7.
8.
9.
Venezuelan equine encephalitis (VEE) and eastern equine encephalitis (EEE) viruses are important, naturally emerging zoonotic viruses. They are significant human and equine pathogens which still pose a serious public health threat. Both VEE and EEE cause chronic infection in mosquitoes and persistent or chronic infection in mosquito-derived cell lines. In contrast, vertebrate hosts infected with either virus develop an acute infection with high-titer viremia and encephalitis, followed by host death or virus clearance by the immune system. Accordingly, EEE and VEE infection in vertebrate cell lines is highly cytopathic. To further understand the pathogenesis of alphaviruses on molecular and cellular levels, we designed EEE- and VEE-based replicons and investigated their replication and their ability to generate cytopathic effect (CPE) and to interfere with other viral infections. VEE and EEE replicons appeared to be less cytopathic than Sindbis virus-based constructs that we designed in our previous research and readily established persistent replication in BHK-21 cells. VEE replicons required additional mutations in the 5' untranslated region and nsP2 or nsP3 genes to further reduce cytopathicity and to become capable of persisting in cells with no defects in alpha/beta interferon production or signaling. The results indicated that alphaviruses strongly differ in virus-host cell interactions, and the ability to cause CPE in tissue culture does not necessarily correlate with pathogenesis and strongly depends on the sequence of viral nonstructural proteins.  相似文献   

10.
Specific lymphocyte transformation to viral antigen was detected in individuals vaccinated with live, attenuated Venezuelan equine encephalitis (VEE) virus vaccine, strain TC-83. Suspensions of purified, inactivated virus were used an antigen in 250-μ1 lymphocyte cultures, and under optimal conditions the assay demonstrated 10-fold greater incorporation of 14C-thymidine by lymphocytes from immune than from nonimmune people. The rise in lymphocyte transformation response occurred 1 week after vaccination. The magnitude and range of the lymphocyte transformation response to the VEE viral antigen were similar to the responses seen using antigens derived from five other microbial sources: Francisella tularensis, Coccidioides immitis, Mycobacterium tuberculosis, Streptococcus, and parainfluenza virus. Autologous plasma containing antibody exerts an inhibitory effect on cultures from immune individuals. The onset, magnitude of response, and specificity of this in vitro assay are correlated with the clinical and pathological events of VEE virus infection.  相似文献   

11.
Infection of pigeons by airborne Venezuelan equine encephalitis virus   总被引:2,自引:0,他引:2  
  相似文献   

12.
Recombinant vaccinia virus vectors were constructed which expressed the major surface glycoprotein G of human respiratory syncytial (RS) virus. The biological activity of the G protein expressed from these vectors was assayed. Inoculation of rabbits with live recombinant virus induced high titers of antibody which specifically immunoprecipitated RS virus G protein and was capable of neutralizing RS virus infectivity. Immunization of mice by either the intranasal or the intraperitoneal route with recombinant virus that expressed only the G protein resulted in complete protection of the lower respiratory tract upon subsequent challenge with live RS virus.  相似文献   

13.
14.
Hydrophobic alkylating compounds like 1,5-iodonaphthylazide (INA) partitions into biological membranes and accumulates selectively into the hydrophobic domain of the lipid bilayer. Upon irradiation with far UV light, INA binds selectively to transmembrane proteins in the viral envelope and renders them inactive. Such inactivation does not alter the ectodomains of the membrane proteins thus preserving the structural and conformational integrity of immunogens on the surface of the virus. In this study, we have used INA to inactivate Venezuelan equine encephalitis virus (VEEV). Treatment of VEEV with INA followed by irradiation with UV light resulted in complete inactivation of the virus. Immuno-fluorescence for VEEV and virus titration showed no virus replication in-vitro. Complete loss of infectivity was also achieved in mice infected with INA treated plus irradiated preparations of VEEV. No change in the structural integrity of VEEV particles were observed after treatment with INA plus irradiation as assessed by electron microscopy. This data suggest that such inactivation strategies can be used for developing vaccine candidates for VEEV and other enveloped viruses.  相似文献   

15.
16.
Primary cell cultures, a continuous cell line, and a diploid cell line were grown on an artificial capillary system. The cells were subsequently infected with Venezuelan equine encephalitis virus, and viral replication was studied. Extracellular fluids harvested from this system contained high titers of virus and were relatively free of cell debris.  相似文献   

17.
18.
The initial steps of Venezuelan equine encephalitis virus (VEE) spread from inoculation in the skin to the draining lymph node have been characterized. By using green fluorescent protein and immunocytochemistry, dendritic cells in the draining lymph node were determined to be the primary target of VEE infection in the first 48 h following inoculation. VEE viral replicon particles, which can undergo only one round of infection, identified Langerhans cells to be the initial set of cells infected by VEE directly following inoculation. These cells are resident dendritic cells in the skin, which migrate to the draining lymph node following activation. A point mutation in the E2 glycoprotein gene of VEE that renders the virus avirulent and compromises its ability to spread beyond the draining lymph blocked the appearance of virally infected dendritic cells in the lymph node in vivo. A second-site suppressor mutation that restores viral spread to lymphoid tissues and partially restore virulence likewise restored the ability of VEE to infect dendritic cells in vivo.  相似文献   

19.
The interaction of the VEE virus virions with human LBP was investigated. The affinely purified 43 kDa recombinant LBP (rLBP) of man was found to interact effectively with the VEE virus virions purified in immune enzyme assay. The affinity constant of 43 kDa rLBP with virions was equal to 4.3-4.8 x 10(7) M-1. The rabbit antiviral polyclonal antibodies blocked the interaction of rLBP with the VEE virus virions. According to Western blot, rLBP is capable of interacting with the E1 glycoprotein of the VEE virus, which suggests the presence of a specific epitope of binding with LBP in the surface of the E1-E2 heterodimer of the VEE virus. The results confirm that human LBP could be a receptor for the VEE virus.  相似文献   

20.
Venezuelan equine encephalitis (VEE) is a re-emerging, mosquito-borne viral disease with the potential to cause fatal encephalitis in both humans and equids. Recently, detection of endemic VEE caused by enzootic strains has escalated in Mexico, Peru, Bolivia, Colombia and Ecuador, emphasizing the importance of understanding the enzootic transmission cycle of the etiologic agent, VEE virus (VEEV). The majority of work examining the viral determinants of vector infection has been performed in the epizootic mosquito vector, Aedes (Ochlerotatus) taeniorhynchus. Based on the fundamental differences between the epizootic and enzootic cycles, we hypothesized that the virus-vector interaction of the enzootic cycle is fundamentally different from that of the epizootic model. We therefore examined the determinants for VEEV IE infection in the enzootic vector, Culex (Melanoconion) taeniopus, and determined the number and susceptibility of midgut epithelial cells initially infected and their distribution compared to the epizootic virus-vector interaction. Using chimeric viruses, we demonstrated that the determinants of infection for the enzootic vector are different than those observed for the epizootic vector. Similarly, we showed that, unlike A. taeniorhynchus infection with subtype IC VEEV, C. taeniopus does not have a limited subpopulation of midgut cells susceptible to subtype IE VEEV. These findings support the hypothesis that the enzootic VEEV relationship with C. taeniopus differs from the epizootic virus-vector interaction in that the determinants appear to be found in both the nonstructural and structural regions, and initial midgut infection is not limited to a small population of susceptible cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号