首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recovery of plasmid DNA from Clostridium perfringens 10543A and 3626B cleared lysates was significantly improved by the addition of 0.2% (vol/vol) diethylpyrocarbonate (DEP) before protoplast disruption in the cleared lysate protocol. Three previously undetected, large-molecular-mass plasmids (45.2, 51.9, and 68.2 megadaltons) were isolated from modified DEP-treated cleared lysates of C. perfringens 3626B. Two plasmids (9.4 and 30 megadaltons) were recovered from C. perfringens 10543A modified DEP-treated cleared lysates which previously required dye-buoyant density gradient centrifugation for visualization on agarose gels. Unsuccessful attempts to isolate plasmid DNA from Brij 58 cleared lysates of extracellular DNase-negative mutants of C. perfringens suggested the deleterious DNase activity was not extracellular. Cellular localization studies indicated that the cell wall-compartmentalized cell fraction contained 72.2% of the total DNase activity, whereas the extracellular and intracellular fractions demonstrated much less (26.8 and 1.0%, respectively). Cleared lysates prepared with DEP demonstrated much less DNase activity than cleared lysates prepared without DEP. The variable and irreproducible recovery of plasmid DNA from C. perfringens cleared lysates was attributed to cell wall-compartmentalized DNase.  相似文献   

2.
The sequence-specific affinity chromatographic isolation of plasmid DNA from crude lysates of E. coli DH5alpha fermentations is addressed. A zinc finger-GST fusion protein that binds a synthetic oligonucleotide cassette containing the appropriate DNA recognition sequence is described. This cassette was inserted into the SmaI site of pUC19 to enable the affinity isolation of the plasmid. It is shown that zinc finger-GST fusion proteins can bind both their DNA recognition sequence and a glutathione-derivatized solid support simultaneously. Furthermore, a simple procedure for the isolation of such plasmids from clarified cell lysates is demonstrated. Cell lysates were clarified by cross-flow Dean vortex microfiltration, and the permeate was incubated with zinc finger-GST fusion protein. The resulting complex was adsorbed directly onto glutathione-Sepharose. Analysis of the glutathione-eluted complex showed that plasmid DNA had been recovered, largely free from contamination by genomic DNA or bacterial cell proteins.  相似文献   

3.
Recovery of plasmid DNA from Clostridium perfringens 10543A and 3626B cleared lysates was significantly improved by the addition of 0.2% (vol/vol) diethylpyrocarbonate (DEP) before protoplast disruption in the cleared lysate protocol. Three previously undetected, large-molecular-mass plasmids (45.2, 51.9, and 68.2 megadaltons) were isolated from modified DEP-treated cleared lysates of C. perfringens 3626B. Two plasmids (9.4 and 30 megadaltons) were recovered from C. perfringens 10543A modified DEP-treated cleared lysates which previously required dye-buoyant density gradient centrifugation for visualization on agarose gels. Unsuccessful attempts to isolate plasmid DNA from Brij 58 cleared lysates of extracellular DNase-negative mutants of C. perfringens suggested the deleterious DNase activity was not extracellular. Cellular localization studies indicated that the cell wall-compartmentalized cell fraction contained 72.2% of the total DNase activity, whereas the extracellular and intracellular fractions demonstrated much less (26.8 and 1.0%, respectively). Cleared lysates prepared with DEP demonstrated much less DNase activity than cleared lysates prepared without DEP. The variable and irreproducible recovery of plasmid DNA from C. perfringens cleared lysates was attributed to cell wall-compartmentalized DNase.  相似文献   

4.
Abstract Wild-type cells of Streptomyces hydrogenans ATCC 19631, strain HY A1, show a remarkable degree of genetic instability with regard to the biosynthesis of 17β-hydroxysteroid dehydrogenase. As plasmids might be responsible for this phenomenon we tried to detect plasmids in lysates of this microorganism. Streptomyces lividans , strain TK64 (pIJ916), was used as reference strain, containing a 19-kb plasmid with low abundancy. Whereas plasmid DNA could be shown in lysates of S. lividans TK64, no plasmid DNA was detectable in lysates of S. hydrogenans .  相似文献   

5.
There is an increasing interest in the development of scaleable and reproducible plasmid DNA purification protocols for vaccine and gene therapy. The use of an integrated unit operation, comprising tangential flow microfiltration coupled with the adsorption of contaminants onto nitrocellulose membranes as a single processing step was examined in this work. Experiments were performed using a custom-built tangential flow microfiltration rig (membrane area=12.5 cm(2)). Tangential flow filtration-adsorption of E. coli lysates containing a plasmid product removed most solids (>75%) and decreased chromosomal DNA contamination by 75% w/w. Total plasmid DNA concentration and supercoiled content of the permeate were virtually identical to those of the feed, indicating a recovery yield of 100% (transmission equal to 1). Results were similar for E. coli lysates containing either a 6.9 kb or a 20 kb plasmid. Significant reductions in RNA, endotoxin, and protein levels were also observed. The reproducibility and potential for scale up of this integrated filtration-adsorption operation makes it at attractive option for intermediate- to large-scale pharmaceutical-grade plasmid processing.  相似文献   

6.
Relatively rapid methods for the determination of relative genome molecular mass (Mr) and the estimation of plasmid copy number have been developed. These methods are based on the ability of the Bio-Rad high-pressure liquid chromatography hydroxylapatite column to separate and quantify single-stranded DNA, double-stranded DNA, and plasmid DNA. Genome Mr values were calculated from reassociation kinetics of single-stranded DNA as measured with the hydroxylapatite column. Bacteriophage T4 DNA was used to establish a C0t (moles of nucleotides times seconds per liter), or standard reassociation value. From this C0t value, C0t values for Escherichia coli B, Beggiatoa alba B18LD, and Streptomyces coelicolor were determined by comparative calculations. From those calculated C0t values, the Mr values of 1.96 X 10(9) for E. coli, 2.02 X 10(9) for B. alba, and 3.28 X 10(9) for S. coelicolor were estimated. Plasmid concentration was determined from cleared lysates by comparing the integrated area under the phosphate buffer-eluted plasmid peak to values obtained with known amounts of plasmid. The plasmid copy number was estimated by multiplying the ratio between the amounts of plasmid and chromosomal DNA by the ratio between the Mr values of the chromosome and the plasmid. A copy number of 29 was obtained from a culture of E. coli HB101 harboring pBR322 grown to a culture density of 1.6 X 10(9) CFU . ml-1.  相似文献   

7.
Relatively rapid methods for the determination of relative genome molecular mass (Mr) and the estimation of plasmid copy number have been developed. These methods are based on the ability of the Bio-Rad high-pressure liquid chromatography hydroxylapatite column to separate and quantify single-stranded DNA, double-stranded DNA, and plasmid DNA. Genome Mr values were calculated from reassociation kinetics of single-stranded DNA as measured with the hydroxylapatite column. Bacteriophage T4 DNA was used to establish a C0t (moles of nucleotides times seconds per liter), or standard reassociation value. From this C0t value, C0t values for Escherichia coli B, Beggiatoa alba B18LD, and Streptomyces coelicolor were determined by comparative calculations. From those calculated C0t values, the Mr values of 1.96 X 10(9) for E. coli, 2.02 X 10(9) for B. alba, and 3.28 X 10(9) for S. coelicolor were estimated. Plasmid concentration was determined from cleared lysates by comparing the integrated area under the phosphate buffer-eluted plasmid peak to values obtained with known amounts of plasmid. The plasmid copy number was estimated by multiplying the ratio between the amounts of plasmid and chromosomal DNA by the ratio between the Mr values of the chromosome and the plasmid. A copy number of 29 was obtained from a culture of E. coli HB101 harboring pBR322 grown to a culture density of 1.6 X 10(9) CFU . ml-1.  相似文献   

8.
Numerous methods have previously been reported for the final steps in the large-scale purification of plasmid DNA. Although gel permeation and reverse-phase high-performance liquid chromatography have been utilized for this procedure in the past, the limited capacity of these systems often necessitated multiple rounds of chromatography, especially with the high copy number plasmids commonly in use today. In this paper, the use of the high-capacity, high-resolution Protein-Pak DEAE 8HR column is presented for the large-scale isolation of highly purified plasmid DNA from crude E. coli cell lysates. Up to 5 mg of plasmid DNA have been purified in a single 50-minute chromatography run. The purified DNA demonstrated excellent biological activity as demonstrated by restriction endonuclease digestion, E. coli transformation and DNA-mediated gene transfection of eukaryotic cells.  相似文献   

9.
氧化硅包裹的磁性纳米粒子纯化质粒DNA   总被引:1,自引:0,他引:1  
质粒的分离纯化在分子生物学实际工作中占有重要地位.本文采用氧化硅包裹的磁性纳米粒子,平均粒径为20 nm左右,在外加磁场的作用下,从细胞粗提掖中快速分离质粒DNA.用这种方法成功地从大肠杆菌DH5α浓缩和纯化得到了pUC19质粒,该质粒具有生物活性,可直接用于限制性酶切和细胞转化等分子生物学下游操作.  相似文献   

10.
The separation of structurally related impurities from pharmaceutical plasmid DNA by highly scalable purification techniques is a challenge for biochemical engineering. Next to RNA, proteins, and lipopolysaccharides, the chromosomal DNA of the plasmid replicating host has to be removed. Here, we describe the application of reverse micellar extraction for the separation of chromosomal from plasmid DNA. By applying different procedures for alkaline lysis, bacterial lysates with different amounts of chromosomal DNA were generated. A reverse micellar extraction step enabled us to deplete the concentration of this impurity below the required level of 50 mg g−1 of plasmid DNA with almost complete plasmid recovery.  相似文献   

11.
Use of plasmid DNA (pDNA) in the emerging gene therapy requires pure DNA in large quantities requiring production of safe DNA on large scale. While a number of kit-based DNA purification techniques have become popular, large scale cost effective purification of DNA remains a technological challenge. Most traditional, as well as newly developed methods for DNA purification are expensive, tedious, use toxic reagents, and/or generally not amenable for scaled up production. Our attempts to develop a scalable adsorptive separation technology resulted in successful use of indigenously developed rigid cross-linked cellulose beads for single step purification of pDNA from alkaline cell lysates. This mode of purification employs a combination of intra-particle interactions that could give a product plasmid DNA free from chromosomal DNA, RNA and host proteins in a single scalable chromatographic step. The technology can be employed as a batch adsorption step on small scale, or on a large scale column chromatography. A high copy number 9.8 kb plasmid (from an Escherichia coli strain) was purified in yields of 77 and 52%, respectively in batch and column modes. The product obtained was homogeneous supercoiled plasmid with no RNA and protein contamination confirmed by quantitative analysis, agarose gel electrophoresis and SDS-PAGE.  相似文献   

12.
A method that gives high recovery of deoxyribonucleic acid (DNA) from crude bacterial lysates using ethidium bromide-cesium chloride density gradient centrifugation is presented. After Pronase digestion and shearing of the lysate, essentially 100% recovery of chromosomal DNA and a reproducible recovery of covalently closed circular (CCC) plasmid DNA is obtained for a specific plasmid in a given strain. This method should be useful for comparing the CCC plasmid/chromosome ratio of various plasmid-host combinations.  相似文献   

13.
Pharmaceutical-grade plasmid DNA for use in vaccines and gene therapy requires the development of reproducible and scaleable downstream processes. Shearing of chromosomal DNA at the commencement of the purification results in fragments that are difficult to separate from supercoiled plasmid DNA. Regulatory standards will probably require that the level of chromosomal DNA contamination is kept below 0.01 mg mg(-1) plasmid DNA. This work reports the use of nitrocellulose membranes to decrease chromosomal DNA contamination in plasmid DNA preparations derived from a 450-l bioreactor. Clarified lysates, resuspended PEG precipitates and anion exchange chromatography elutes were filtered through nitrocellulose. In all the cases, chromosomal DNA was selectively retained by the membrane while most supercoiled plasmid DNA was recovered in the filtrate. Contamination levels dropped from over 27% to below 1% as measured by Southern analysis. Under ionic strength conditions equal to or above 1.5 M NaCl, a fraction of the contaminant RNA was also retained by the nitrocellulose membrane.  相似文献   

14.
We have shown previously that a sequence-specific DNA-binding protein based on the Lac repressor protein can isolate pre-purified DNA efficiently from simple buffer solution but our attempts to purify plasmids directly from crude starting materials were disappointing with impractically low DNA yields. We have optimized the procedure and present a simple affinity methodology whereby plasmid DNA is purified directly by mixing two crude cell lysates, one cell lysate containing the plasmid and the other the protein affinity ligand, without the need for treatment by RNaseA. After IMAC chromatography, high purity supercoiled DNA is recovered in good yields of 100-150 microg plasmid per 200 mL shake flask culture. Moreover, the resulting DNA is free from linear or open-circular plasmid DNA, genomic DNA, RNA, and protein, to the limits of our detection. Furthermore, we show that lyophilized affinity ligand can be stored at room temperature and re-hydrated for use when required.  相似文献   

15.
We have isolated chromosomal mutants of an Escherchia coli K-12 strain that maintain higher levels of an F' plasmid. The mutants are designated as plasmid copy number (pcn) mutants. They were detected by selecting for increased lactose fermentation in bacteria deleted for the lac operon but harboring an F'lacI,P pro+ plasmid. When examined for the amount of F' plasmid deoxyribonucleic acid (DNA) by the dye-CsCl isopycnic technique, the mutants show two to seven times as much covalently closed, circular (CCC) DNA as does the parental strain. The increased plasmid level in one mutant strain (pcn-24) was confirmed by DNA-DNA hybridization; however, this latter technique indicated about a twofold lower increase when compared with the increase measured for pcn-24 by the dye-CsCl technique. In mutant pcn-24 the increased amount of F' DNA reflects a proportional increase in monomeric-size plasmid molecules because oligomeric forms are not found. Also, in mutant pcn-24 the extra CCC plasmid copies do not seem to be randomly distributed throughout the cell's cytoplasm but appear complexed in situ with their host's folded chromosome. In all pcn mutants examined to date, the classical sex factor F is maintained at normal levels, whereas the viral plasmid Pl CM is maintained at two to three times the normal level. In all 17 pcn mutants isolated, the pcn mutation maps on the chromosome and not on the plasmid. Finally, the absolute amount of CCC F' DNA detectable in lysates of the six different pcn mutants examined decreased 50 to 90% upon incubation of the lysate at 37 C. In contrast, no loss of CCC DNA occurs when lysates of the parental F' strain are incubated at 37 C.  相似文献   

16.
A method of isolating circular plasmid DNA from cleared lysates of E. coli is described. Purification is achieved by virtue of the rapid re-annealing kinetics or supercoiled DNA. After a brief denaturation step, double stranded plasmid DNA is separated from denatured chromosomal DNA and RNA in a two-phase partition system using dextran and polyethylene glycol. The method is much more rapid than the conventional dye-centrifugation technique and plasmid DNA of comparable purity and yield is obtained.  相似文献   

17.
Buoyant density analysis of transducing lysates derived from Staphylococcus aureus and Escherichia coli indicated that phage particles bearing plasmid determinants contain a quantity of DNA equivalent to that found in the lytic particles. Transducing particles that bear plasmid determinants smaller than viral DNA must therefore contain a quantity of DNA in excess of a single plasmid genome. In the E. coli P1vir system, a dependence upon host-mediated recombination for the transduction of small plasmids, but not for large R factors or chromosomal genes, was observed. However, no evidence for the involvement of such functions in the transduction of S. aureus plasmids was obtained. Although the origin of the additional DNA in plasmid transducing particles has not been identified, circumstantial evidence has been presented in the staphylococcal system indicating that transducing particles carrying a small tetracycline plasmid are not formed by the wrapping of multiple copies of this plasmid DNA.  相似文献   

18.
Fifteen strains of cyanobacteria, mainly Nostoc and Anabaena species, were screened for plasmids using five rapid procedures. Two of these methods, based on alkaline extraction and phenol extraction of cleared lysates respectively, were successful with a total of ten species, the latter method proving more sensitive. Plasmids ranging from less than 2.6 to at least 30 mD were isolated; most of the strains examined possessed one or two plasmids, while five lacked detectable plasmid DNA.  相似文献   

19.
Crude lysates of Staphylococcus aureus can transform Bacillus subtilis   总被引:2,自引:0,他引:2  
Plasmids can be transferred from Staphylococcus aureus to Bacillus subtilis by crude lysates prepared with penicillin or lysostaphin. These lysates mediate drug-resistance plasmid transformation in competent B. subtilis at an efficiency paralleling that of purified DNA.  相似文献   

20.
Hamster mitochondrial DNA is cleaved into two fragments (4.2 and 11.4 kilobase pairs of DNA (kb)) by the restriction enzyme, Eco RI. Recombinant DNA molecules formed in vitro between an Escherichia coli plasmid, Co1E1 - Ampr, and Eco RI-digested hamster mitochondrial DNA were transformed into E. coli K12. The translation products of the parent plasmid, Co1E1 - Ampr, and recombinant plasmid DNAs containing (i) the 4.2 kb mitochondrial DNA fragment and (ii) the 11.4 kb fragment were characterized on sodium dodecyl sulfate-polyacrylamide gels using bacterial mini-cell lysates. The Co1E1 - Ampr plasmid specifies at least six polypeptides whose structural genes comprise 56% of the plasmid DNA. Insertion of hamster mitochondrial DNA at the Eco RI site of the plasmid alters the relative rate of synthesis of these six polypeptides and induces the occurrence of a new band on sodium dodecyl sulfate-polyacrylamide gels which is probably not specified by the inserted mitochondrial DNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号