首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The actin-regulatory protein villin is tyrosinephosphorylated and associates with phospholipase C-1(PLC-1) in the brush border of intestinalepithelial cells. To study the mechanism of villin-associatedPLC-1 activation, we reconstituted in vitro the tyrosinephosphorylation of villin and its association with PLC-1. Recombinant villin was phosphorylated in vitro bythe nonreceptor tyrosine kinase c-src or by expression in the TKX1 competent cells that carry an inducible tyrosine kinase gene. Using invitro binding assays, we demonstrated that tyrosine-phosphorylated villin associates with the COOH-terminal Src homology 2 (SH2) domain ofPLC-1. The catalytic activity of PLC-1was inhibited by villin in a dose-dependent manner with half-maximalinhibition at a concentration of 12.4 µM. Villin inhibitedPLC-1 activity by sequestering the substratephosphatidylinositol 4,5-bisphosphate (PIP2), sinceincreasing concentrations of PIP2 reversed the inhibitory effects of villin on PLC activity. The inhibition ofPLC-1 activity by villin was reversed by the tyrosinephosphorylation of villin. Further, we demonstrated that tyrosinephosphorylation of villin abolished villin's ability to associate withPIP2. In conclusion, tyrosine-phosphorylated villinassociates with the COOH-terminal SH2 domain of PLC-1and activates PLC-1 catalytic activity. Villin regulatesPLC-1 activity by modifying its own ability to bindPIP2. This study provides biochemical proof of thefunctional relevance of tyrosine phosphorylation of villin andidentifies the molecular mechanisms involved in the activation ofPLC-1 by villin.

  相似文献   

2.
While there is circumstantial evidence to suggest a requirement for phospholipase C-1 (PLC-1) in actin reorganization and cell migration, few studies have examined the direct mechanisms that link regulators of the actin cytoskeleton with this crucial signaling molecule. This study was aimed to examine the role that villin, an epithelial cell-specific actin-binding protein, and its ligand PLC-1 play in migration in intestinal and renal epithelial cell lines that endogenously or ectopically express human villin. Basal as well as epidermal growth factor (EGF)-stimulated cell migration was accompanied by tyrosine phosphorylation of villin and its association with PLC-1. Inhibition of villin phosphorylation prevented villin-PLC-1 complex formation as well as villin-induced cell migration. The absolute requirement for PLC-1 in villin-induced cell migration was demonstrated by measuring cell motility in PLC-1–/– cells and by downregulation of endogenous PLC-1. EGF-stimulated direct interaction of villin with the Src homology domain 2 domain of PLC-1 at the plasma membrane was demonstrated in living cells by using fluorescence resonance energy transfer. These results demonstrate that villin provides an important link between the activation of phosphoinositide signal transduction pathway and epithelial cell migration. fluorescence resonance energy transfer; actin  相似文献   

3.
We have studiedthe prenuclear signal transduction pathway by which thyroid hormonepotentiates the antiviral activity of human interferon- (IFN-) inHeLa cells, which are deficient in thyroid hormone receptor (TR). Theaction of thyroid hormone was compared with that of milrinone, whichhas structural homologies with thyroid hormone.L-Thyroxine(T4),3,5,3'-L-triiodothyronine (T3), and milrinone enhanced theantiviral activity of IFN- up to 100-fold, a potentiation blocked bycycloheximide. The 5'-deiodinase inhibitor6-n-propyl-2-thiouracil did not blockthe T4 effect. 3,3',5,5'-Tetraiodothyroacetic acid prevented the effect ofT4 but not of milrinone. Theeffects of T4 and milrinone wereblocked by inhibitors of protein kinases C (PKC) and A (PKA) andrestored by PKC and PKA agonists; only the effect ofT4 was blocked by genistein, atyrosine kinase inhibitor. In separate models, milrinone was shown notto interact with nuclear TR-.T4 potentiation of the antiviralactivity of IFN- requires PKC, PKA, and tyrosine kinase activitiesbut not traditional TR.

  相似文献   

4.
Current evidence points to the existence of multiple processesfor bitter taste transduction. Previous work demonstrated involvement of the polyphosphoinositide system and an -gustducin(Ggust)-mediated stimulation of phosphodiesterase inbitter taste transduction. Additionally, a taste-enriched G protein-subunit, G13, colocalizes with Ggustand mediates the denatonium-stimulated production of inositol1,4,5-trisphosphate (IP3). Using quench-flow techniques, weshow here that the bitter stimuli, denatonium and strychnine, inducerapid (50-100 ms) and transient reductions in cAMP and cGMP andincreases in IP3 in murine taste tissue. This decrease ofcyclic nucleotides is inhibited by Ggust antibodies,whereas the increase in IP3 is not affected by antibodiesto Ggust. IP3 production is inhibited byantibodies specific to phospholipase C-2(PLC-2), a PLC isoform known to be activated byG-subunits. Antibodies to PLC-3 or toPLC-4 were without effect. These data suggest atransduction mechanism for bitter taste involving the rapid andtransient metabolism of dual second messenger systems, both mediatedthrough a taste cell G protein, likely composed ofGgust//13, with both systems beingsimultaneously activated in the same bitter-sensitive taste receptor cell.

  相似文献   

5.
Pumpkin seed globulin is composed of heterogeneous polypeptidechains, acidic and chains and basic 1 and 2 chains (12). This study showed that the basicchains had similar N-terminal sequences, Gly-Leu-Asp-Glu-Thr-Ile-for the 1 chain and Gly-Leu-Glu-Glu-Thr-Ile- for 2. On the contrary,the N-terminal sequences of the acidic and chains were dissimilar, Ile-Gln-Gly-Tyr- for the chain and no N-terminal residue for the chain, according to routine terminal analysis. Pyrrolidonylpeptidase digestion of the chain and its thermolysin digestion followed by Edman degradationsrevealed that the N-terminal sequence of the chain was < Glu-Ile-Glu-Gln-Gln-Glu-Pro(Trp,Ser)-. The N-terminal sequences and the C-terminal residuesindicated that the acidic and chains were more heterogeneous than the basic 1 and 2 chains.A preliminary study on the degradation of storage globulin isalso presented. (Received November 9, 1979; )  相似文献   

6.
In mammalian skeletal muscle,neuronal-type nitric oxide synthase (nNOS) is found to be enriched atneuromuscular endplates. Here we demonstrate the colocalization of thenicotinic acetylcholine receptor (nAChR, stained with -bungarotoxin)and nNOS (stained with a specific antibody) in murineC2C12 myotubes. However, coimmunoprecipitation experiments demonstrated no evidence for a direct protein-protein association between the nAChR and nNOS in C2C12myotubes. An antibody to the 1-subunit of the nAChR didnot coprecipitate nNOS, and an nNOS-specific antibody did notprecipitate the 1-subunit of the nAChR. Treatment ofmice with bacterial LPS downregulated the expression of nNOS inskeletal muscle, and treatment of C2C12 cellswith bacterial LPS and interferon- markedly decreased nNOS mRNA andprotein expression. In contrast, mRNA and protein of the nAChR (-,-, and -subunits) remained unchanged at the mRNA and proteinlevels. These data demonstrate that nNOS and the nAChR are colocalizedin murine skeletal muscle and C2C12 cells but differ in their expressional regulation.

  相似文献   

7.
To determine whether homocysteine(Hcy)-mediated activation of endocardial endothelial (EE) cells isameliorated by peroxisome proliferator-activated receptor (PPAR), weisolated EE cells from mouse endocardium. Matrix metalloproteinase(MMP) activity and intercellular adhesion molecule (ICAM)-1 in EE cellswere measured in the presence and absence of Hcy, and ciprofibrate (CF;PPAR- agonist) or 15-deoxy-12,14-prostaglandinJ2 (PGJ2; PPAR- agonist) by zymography andWestern blot analyses, respectively. Results suggest that Hcy-mediated MMP activation and ICAM-1 expression are ameliorated by CF and PGJ2. To test the hypothesis that Hcy competes with otherligands for binding to PPAR and -, we prepared cardiac nuclearextracts. Extracts were loaded onto an Hcy-cellulose affinity column.Bound proteins were eluted with CF and PGJ2. To determineconformational changes in PPAR upon binding to Hcy, we measured PPARfluorescence at 334 nm. Dose-dependent increase in PPAR fluorescencedemonstrated a primary binding affinity of 0.32 ± 0.06 µM. There wasdose-dependent quenching of PPAR fluorescence byfluorescamine-homocysteine (F-Hcy). PPAR- fluorescence quenching wasabrogated by the addition of CF but not by PGJ2. PPAR-fluorescence quenching was abrogated by the addition ofPGJ2 but not by CF. These results suggest that Hcy competeswith CF and PGJ2 for binding to PPAR- and -,respectively, indicating a role of PPAR in amelioration of Hcy-mediatedEE dysfunction.

  相似文献   

8.
Toxin- (T)from the Brazilian scorpion Tityusserrulatus venom caused a concentration- andtime-dependent increase in the release of norepinephrine andepinephrine from bovine adrenal medullary chromaffin cells. T was~200-fold more potent than veratridine judged fromEC50 values, although the maximalsecretory efficacy of veratridine was 10-fold greater than that of T(1.2 vs. 12 µg/ml of catecholamine release). The combination of both toxins produced a synergistic effect that was particularly drastic at 5 mM extracellular Ca2+concentration([Ca2+]o),when 30 µM veratridine plus 0.45 µM T were used. T (0.45 µM) doubled the basal uptake of45Ca2+,whereas veratridine (100 µM) tripled it. Again, a drastic synergism in enhancing Ca2+ entry was seenwhen T and veratridine were combined; this was particularlypronounced at 5 mM[Ca2+]o.Veratridine induced oscillations of cytosolicCa2+ concentration([Ca2+]i)in single fura 2-loaded cells without elevation of basal levels. Incontrast, T elevated basal[Ca2+]ilevels, causing only small oscillations. When added together, T andveratridine elevated the basal levels of[Ca2+]iwithout causing large oscillations. T shifted the current-voltage (I-V) curve forNa+ channel current to the left.The combination of T with veratridine increased the shift of theI-V curve to the left, resulting in agreater recruitment of Na+channels at more hyperpolarizing potentials. This led to enhanced andmore rapid accumulation of Na+ inthe cell, causing cell depolarization, the opening of voltage-dependent Ca2+ channels, andCa2+ entry and secretion.

  相似文献   

9.
Subunits (, ß, ) and mixtures of subunits ( ß, , ß , ß ) were isolated without denaturationfrom a chloroform extract of chloroplast coupling factor 1 (CF1)from maize (Zea mays var. Ushiku 5-4) and from spinach by fastprotein liquid chromatography (FPLC), on an anion-exchange columnof Mono-Q in the presence of n-octylglucoside (OG) and on achromatofocusing column of Mono-P. The ß -subunitcomplex (CF1 ß ) was the minimum unit required forATPase activity, as was confirmed by the reconstituted complexof ß and subunits. An subunit isolated from maizeinhibited the ATPase activity of CF1 ß from bothmaize and spinach. CF1 ß was found to contain anOG-dependent Mg2+-ATPase. The ATPase activity of CF1 ß required divalent cations, such as Mg2+ or Mn2+, for its expressionin the presence of OG; its optimum pH was 8.0 and it was markedlyinhibited by NaN3. The enzyme hydrolyzed ATP in prefernece toGTP but not CTP, UTP, ADP, AMP or pNPP. Lineweaver-Burk plotsof its activity were curvilinear in the range of 0.6–0.7mM ATP.Mg2+. 1Present address: Department of Biology, School of Education,Waseda University, Shinjuku-ku, Tokyo, 160 Japan. (Received February 15, 1989; Accepted April 20, 1989)  相似文献   

10.
Natural selection influences synonymous mutations and synonymouscodon usage in many eukaryotes to improve the efficiency oftranslation in highly expressed genes. Recent studies of genecomposition in eukaryotes have shown that codon usage also variesindependently of expression levels, both among genes and atthe intragenic level. Here, we investigate rates of evolution(Ks) and intensity of selection (s) on synonymous mutationsin two groups of genes that differ greatly in the length oftheir exons, but with equivalent levels of gene expression andrates of crossing-over in Drosophila melanogaster. We estimates using patterns of divergence and polymorphism in 50 Drosophilagenes (100 kb of coding sequence) to take into account possiblevariation in mutation trends across the genome, among genesor among codons. We show that genes with long exons exhibithigher Ks and reduced s compared to genes with short exons.We also show that Ks and s vary significantly across long exons,with higher Ks and reduced s in the central region comparedto flanking regions of the same exons, hence indicating thatthe difference between genes with short and long exons can bemostly attributed to the central region of these long exons.Although amino acid composition can also play a significantrole when estimating Ks and s, our analyses show that the differencesin Ks and s between genes with short and long exons and acrosslong exons cannot be explained by differences in protein composition.All these results are consistent with the Interference Selection(IS) model that proposes that the Hill-Robertson (HR) effectcaused by many weakly selected mutations has detectable evolutionaryconsequences at the intragenic level in genomes with recombination.Under the IS model, exon size and exon-intron structure influencethe effectiveness of selection, with long exons showing reducedeffectiveness of selection when compared to small exons andthe central region of long exons showing reduced intensity ofselection compared to flanking coding regions. Finally, ourresults further stress the need to consider selection on synonymousmutations and its variation—among and across genes andexons—in studies of protein evolution.  相似文献   

11.
During amphibian gastrulation, migrating subsurface germ layersmay flow past one another like immiscible viscous liquids inresponse to tissue surface tension forces. We describe heretwo physical tests for liquid-tissue morphogenesis in culturedaggregates of subsurface ectoderm (E), mesoderm (M) and endoderm(N) excised from mid-yolk-plug Rana pipiens gastrulae. (i) Liquidsare coherent substances in which subunits can slip past oneanother to relax internal shear stresses. We find, in cross-sectionsof cell aggregates fixed during compression, that cells withinflattened aggregates are intially deformed, but do, as predicted,gradually reassume their original, undistorted shapes, (ii)Surface tensions ('s) govern ordinary liquid-droplet spreading;e.g., if equal-sized droplets A and B fuse in medium O, B spreadsaround A when AO BO. When pairs of subsurface aggregates arecultured together, N surrounds M and E, and M surrounds E. Tosee if EO > MO > NO. we flatten aggregates with quartzfibers calibrated to measure the force of compression. As predicted,under the same flattening force, E aggregates are rounder thanM aggregates, which are rounder than N aggregates. Furthermore,a second surface tension relationship can account for the autonomousinvolution of M between E and N; and these surface tension relationshipscan also explain the inversion of E, M and N by coated ectodermto produce normal gastrular germ-layer arrangements. We concludethat, combined with active cell shape changes in solid-likesurface cell layers and also with autonomous elongation of dorsallip mesoderm, tissue surface tension control of liquid-tissueflow in subsurface germ layers is a key morphogenetic mechanismin amphibian gastrulation which might be regulated by changesin intercellular adhesiveness.  相似文献   

12.
This study examined the ability of protein kinase C (PKC) toinduce heterologous desensitization by targeting specific G proteinsand limiting their ability to transduce signals in smooth muscle.Activation of PKC by pretreatment of intestinal smooth muscle cellswith phorbol 12-myristate 13-acetate, cholecystokinin octapeptide, orthe phosphatase 1 and phosphatase 2A inhibitor, calyculin A,selectively phosphorylated Gi-1 and Gi-2,but not Gi-3 or Go, and blockedinhibition of adenylyl cyclase mediated by somatostatin receptorscoupled to Gi-1 and opioid receptors coupled toGi-2, but not by muscarinic M2 and adenosineA1 receptors coupled to Gi-3. Phosphorylationof Gi-1 and Gi-2 and blockade of cyclaseinhibition were reversed by calphostin C and bisindolylmaleimide, andadditively by selective inhibitors of PKC and PKC. Blockade ofinhibition was prevented by downregulation of PKC. Phosphorylation ofG-subunits by PKC also affected responses mediated by-subunits. Pretreatment of muscle cells withcANP-(4-23), a selective agonist of the natriureticpeptide clearance receptor, NPR-C, which activates phospholipase C(PLC)-3 via the -subunits of Gi-1 andGi-2, inhibited the PLC- response to somatostatin and[D-Pen2,5]enkephalin. The inhibition waspartly reversed by calphostin C. Short-term activation of PKC had noeffect on receptor binding or effector enzyme (adenylyl cyclase orPLC-) activity. We conclude that selective phosphorylation ofGi-1 and Gi-2 by PKC partly accounts forheterologous desensitization of responses mediated by the - and-subunits of both G proteins. The desensitization reflects adecrease in reassociation and thus availability of heterotrimeric G proteins.

  相似文献   

13.
Various Cucurbita seed globulins showed patterns similar toone another on SDS-gel electrophoresis, and ß bandsfor unreduced globulins and , ', and ' bands for reduced ones.On gel electrophoresis in 6 M urea, reduced globulin gave twoacidic and two basic bands. These corresponded to and ' chainsand 1 and 2 chains, respectively, identified by two-dimensionalurea-SDS gel electrophoresis. The compositions of the and ßsubunits were proposed. (Received September 8, 1977; )  相似文献   

14.
To understand theeffects of cytokines on epithelial cells in asthma, we haveinvestigated the effects of interleukin (IL)-4, IL-13, and interferon(IFN)- on barrier function and wound healing in Calu-3 human lungepithelial cells. IL-4 and IL-13 treatment of Calu-3 cells grown onTranswell filters resulted in a 70-75% decrease in barrierfunction as assessed by electrophysiological and[14C]mannitol flux measurements. In contrast, IFN-enhanced barrier function threefold using these same parameters. Cellstreated concurrently with IFN- and IL-4 or IL-13 showed an initialdecline in barrier function that was reversed within 2 days, resulting in barrier levels comparable to control cells. Analysis of the tightjunction-associated proteins ZO-1 and occludin showed that IL-4 andIL-13 significantly reduced ZO-1 expression and modestly decreasedoccludin expression compared with controls. IFN-, quite unexpectedlygiven its enhancing effect on barrier function, reduced expression ofZO-1 and occludin to almost undetectable levels compared with controls.In wound-healing assays of cells grown on collagen I, IL-4 and IL-13decreased migration, whereas IFN- treatment enhanced migration,compared with control cells. Addition of IFN-, in combination withIL-4 or IL-13, restored migration of cells to control levels. Migrationdifferences observed between the various cytokine treatments wascorrelated with expression of the collagen I-binding21-integrin at the leading edge of cellsat the wound front; 21-integrinexpression was decreased in IFN--treated cells compared withcontrols, whereas it was highest in IL-4- and IL-13-treated cells.These results demonstrate that IL-4 and IL-13 diminish the capacity ofCalu-3 cells to maintain barrier function and repair wounds, whereasIFN- promotes epithelial restitution by enhancing barrier functionand wound healing.

  相似文献   

15.
Protons regulateelectrogenic sodium absorption in a variety of epithelia, including thecortical collecting duct, frog skin, and urinary bladder. Recently,three subunits (, , ) coding for the epithelial sodium channel(ENaC) were cloned. However, it is not known whether pH regulatesNa+ channels directly byinteracting with one of the three ENaC subunits or indirectly byinteracting with a regulatory protein. As a first step to identifyingthe molecular mechanisms of proton-mediated regulation of apicalmembrane Na+ permeability inepithelia, we examined the effect of pH on the biophysical propertiesof ENaC. To this end, we expressed various combinations of -, -,and -subunits of ENaC in Xenopusoocytes and studied ENaC currents by the two-electrode voltage-clampand patch-clamp techniques. In addition, the effect of pH on the-ENaC subunit was examined in planar lipid bilayers. We report that ,,-ENaC currents were regulated by changes in intracellular pH(pHi) but not by changes inextracellular pH (pHo).Acidification reduced and alkalization increased channel activity by avoltage-independent mechanism. Moreover, a reduction ofpHi reduced single-channel openprobability, reduced single-channel open time, and increased single-channel closed time without altering single-channel conductance. Acidification of the cytoplasmic solution also inhibited ,-ENaC, ,-ENaC, and -ENaC currents. We conclude thatpHi but notpHo regulates ENaC and that the-ENaC subunit is regulated directly bypHi.  相似文献   

16.
Biophysical characterization of zebrafish connexin35 hemichannels   总被引:1,自引:0,他引:1  
A subset of connexins can form unopposed hemichannels in expression systems, providing an opportunity for comparison of hemichannel gating properties with those of intact gap junction channels. Zebrafish connexin35 (Cx35) is a member of the Cx35/Cx36 subgroup of connexins highly expressed in the retina and brain. In the present study, we have shown that Cx35 expression in Xenopus oocytes and N2A cells produced large outward whole cell currents on cell depolarization. Using whole cell, cell-attached, and excised patch configurations, we obtained multichannel and single-channel current recordings attributable to the Cx35 hemichannels (Ihc) that were activated and increased by stepwise depolarization of membrane potential (Vm) and deactivated by hyperpolarization. The currents were not detected in untransfected N2A cells or in control oocytes injected with antisense Cx38. However, water-injected oocytes that were not treated with antisense showed activities attributable to Cx38 hemichannels that were easily distinguishable from Cx35 hemichannels by a significantly larger unitary conductance (hc: 250–320 pS). The hc of Cx35 hemichannels exhibited a pronounced Vm dependence; i.e., hc increased/decreased with relative hyperpolarization/depolarization (hc was 72 pS at Vm = –100 mV and 35 pS at Vm = 100 mV). Extrapolation to Vm = 0 mV predicted a hc of 48 pS, suggesting a unitary conductance of intact Cx35 gap junction channels of 24 pS. Channel gating was also Vm dependent: open time declined with negative Vm and increased with positive Vm. The ability to break down the complex gating of intact intercellular channels into component hemichannels in vitro will help to evaluate putative physiological roles for hemichannels in vivo. connexin; gating; retina  相似文献   

17.
Upregulation of inducible nitric oxide synthase (iNOS) is key to oxidant-induced disruption of intestinal (Caco-2) monolayer barrier, and EGF protects against this disruption by stabilizing the cytoskeleton. PLC- appears to be essential for monolayer integrity. We thus hypothesized that PLC- activation is essential in EGF protection against iNOS upregulation and the consequent cytoskeletal oxidation and disarray and monolayer disruption. Intestinal cells were transfected to stably overexpress PLC- or to inhibit its activation and were then pretreated with EGF ± oxidant (H2O2). Wild-type (WT) intestinal cells were treated similarly. Relative to WT monolayers exposed to oxidant, pretreatment with EGF protected monolayers by: increasing native PLC- activity; decreasing six iNOS-related variables (iNOS activity/protein, NO levels, oxidative stress, actin oxidation/nitration); increasing stable F-actin; maintaining actin stability; and enhancing barrier integrity. Relative to WT cells exposed to oxidant, transfected monolayers overexpressing PLC- (+2.3-fold) were protected, as indicated by decreases in all measures of iNOS-driven pathway and enhanced actin and barrier integrity. Overexpression-induced inhibition of iNOS was potentiated by low doses of EGF. Stable inhibition of PLC- prevented all measures of EGF protection against iNOS upregulation. We conclude that 1) EGF protects against oxidative stress disruption of intestinal barrier by stabilizing F-Actin, largely through the activation of PLC- and downregulation of iNOS pathway; 2) activation of PLC- is by itself essential for cellular protection against oxidative stress of iNOS; and 3) the ability to suppress iNOS-driven reactions and cytoskeletal oxidation and disassembly is a novel mechanism not previously attributed to the PLC family of isoforms. actin cytoskeleton; gut barrier; growth factors; oxidative stress; nitration and carbonylation; reactive nitrogen metabolites; phospholipase C isoform; inflammatory bowel disease; Caco-2 cells  相似文献   

18.
We studied the functions of -subunits of Gi/o protein using the Xenopus oocyte expression system. Isoproterenol (ISO) elicited cAMP production and slowly activating Cl currents in oocytes expressing 2-adrenoceptor and the protein kinase A-dependent Cl channel encoded by the cystic fibrosis transmembrane conductance regulator (CFTR) gene. 5-Hydroxytryptamine (5-HT), [D-Ala2, D-Leu5]-enkephalin (DADLE), and baclofen enhanced ISO-induced cAMP levels and CFTR currents in oocytes expressing 2-adrenoceptor-CFTR and 5-HT1A receptor (5-HT1AR), -opioid receptor, or GABAB receptor, respectively. 5-HT also enhanced pituitary adenylate cyclase activating peptide (PACAP) 38-induced cAMP levels and CFTR currents in oocytes expressing PACAP receptor, CFTR and 5-HT1AR. The 5-HT-induced enhancement of Gs-coupled receptor-mediated currents was abrogated by pretreatment with pertussis toxin (PTX) and coexpression of G transducin (Gt). The 5-HT-induced enhancement was further augmented by coexpression of the G-activated form of adenylate cyclase (AC) type II but not AC type III. Thus -subunits of Gi/o protein contribute to the enhancement of Gs-coupled receptor-mediated responses. 5-HT and DADLE did not elicit any currents in oocytes expressing 5-HT1AR or -opioid receptor alone. They elicited Ca2+-activated Cl currents in oocytes coexpressing these receptors with the G-activated form of phospholipase C (PLC)-2 but not with PLC-1. These currents were inhibited by pretreatment with PTX and coexpression of Gt, suggesting that -subunits of Gi/o protein activate PLC-2 and then cause intracellular Ca2+ mobilization. Our results indicate that -subunits of Gi/o protein participate in diverse intracellular signals, enhancement of Gs-coupled receptor-mediated responses, and intracellular Ca2+ mobilization. G protein-coupled receptor; cystic fibrosis transmembrane conductance regulator gene; cross talk; electrophysiology  相似文献   

19.
Yamanaka  Tohr 《Chemical senses》1996,21(4):405-409
Bitter, sour and sweet responses of amino acids were relatedto their solubilities Sw, which are virtually equal to the reciprocalsof activity coefficients at infinite dilution in water w, andalso related to their excess partial molar entropies of transferTStE. Chem. Senses 21: 405–409, 1996. Present address: 5-32-12 Tamanawa, Kamakura-shi, 247 Japan  相似文献   

20.
Isolated tea chloroplasts utilized linoleic acid, linolenicacid and their 13-hydroperoxides as substrates for volatileC6-aldehyde formation. Optimal pH values for oxygen uptake,hydroperoxide lyase and the overall reaction from C18-fattyacids to C6-aldehydes were 6.3, 7.0 and 6.3, respectively. Methyllinoleate, linoleyl alcohol and -linolenic acid were poor substratesfor the overall reaction, but linoleic and linolenic acids weregood substrates. The 13-hydroperoxides of the above fatty acidsand alcohol also showed substrate specificity similar to thatof fatty acids. Oxygen uptakes (relative Vmax) with methyl linoleate,linoleyl alcohol, linolenic acid, -linolenic acid and arachidonicacid were comparable to or higher than that with linoleic acid.In winter leaves, the activity for C6-aldehyde formation fromC18-fatty acids was raduced to almost zero. This was due tothe reduction in oxygenation. The findings presented here provideevidence for the involvement of lipoxygenase and hydroperoxidelyase in C6-aldehyde formation in isolated chloroplasts. (Received July 11, 1981; Accepted November 5, 1981)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号