首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Characterization and kinetics of 45 kDa chitosanase from Bacillus sp. P16   总被引:1,自引:0,他引:1  
An extracellular 45 kDa endochitosanase was purified and characterized from the culture supernatant of Bacillus sp. P16. The purified enzyme showed an optimum pH of 5.5 and optimum temperature of 60 degrees C, and was stable between pH 4.5-10.0 and under 50 degrees C. The Km and Vmax were measured with a chitosan of a D.A. of 20.2% as 0.52 mg/ml and 7.71 x 10(-6) mol/sec/mg protein, respectively. The enzyme did not degrade chitin, cellulose, or starch. The chitosanase digested partially N-acetylated chitosans, with maximum activity for 15-30% and lesser activity for 0-15% acetylated chitosan. The chitosanase rapidly reduced the viscosity of chitosan solutions at a very early stage of reaction, suggesting the endotype of cleavage in polymeric chitosan chains. The chitosanase hydrolyzed (GlcN)7 in an endo-splitting manner producing a mixture of (GlcN)(2-5). Time course studies showed a decrease in the rate of substrate degradation from (GlcN)7 to (GlcN)6 to (GlcN)5, as indicated by the apparent first order rate constants, k1 values, of 4.98 x 10(-4), 2.3 x 10(-4), and 9.3 x 10(-6) sec(-1), respectively. The enzyme hardly catalyzed degradation of chitooligomers smaller than the pentamer.  相似文献   

2.
A thermostable chitosanase, purified 156-fold to homogeneity in an overall yield of 12.4%, has a molecular weight of about 29,000 +/- 2,000, and is composed of monomer. The enzyme degraded soluble chitosan, colloidal chitosan, and glycol chitosan, but did not degrade chitin or other beta-linked polymers. The enzyme activity was increased about 2.5-fold by the addition of 10 mM Co2+ and 1.4-fold by Mn2+. However, Cu2+ ion strongly inhibited the enzyme. Optimum temperature and pH were 60 degrees C and 6.5, respectively. The enzyme was stable after heat treatment at 80 degrees C for 30 min or 70 degrees C for 60 min and fairly stable in protein denaturants as well. Chitosan was hydrolyzed to (GlcN)4 as a major product, by incubation with the purified enzyme. The effects of ammonium sulfate and organic solvents on the action pattern of the thermostable chitosanase were investigated. The amounts of (GlcN)3-(GlcN)6 were increased about 30% (w/w) in DAC 99 soluble chitosan containing 10% ammonium sulfate, and (GlcN)1 was not produced. The monophasic reaction system consisted of DAC 72 soluble chitosan in 10% EtOH also showed no formation of (GlcN)1, however, the yield of (GlcN)3 approximately (GlcN)6 was lower than DAC 99 soluble chitosan-10% ammonium sulfate. The optimal concentration of ammonium sulfate to be added was 20%. At this concentration, the amount of hexamer was increased by over 12% compared to the water-salt free system.  相似文献   

3.
An extracellular 45 kDa endochitosanase was purified and characterized from the culture supernatant of Bacillus sp. P16. The purified enzyme showed an optimum pH of 5.5 and optimum temperature of 60°C, and was stable between pH 4.5-10.0 and under 50°C. The K m and V max were measured with a chitosan of a D.A. of 20.2% as 0.52 mg/ml and 7.71×10?6 mol/sec/mg protein, respectively. The enzyme did not degrade chitin, cellulose, or starch. The chitosanase digested partially N-acetylated chitosans, with maximum activity for 15-30% and lesser activity for 0-15% acetylated chitosan. The chitosanase rapidly reduced the viscosity of chitosan solutions at a very early stage of reaction, suggesting the endotype of cleavage in polymeric chitosan chains. The chitosanase hydrolyzed (GlcN)7 in an endo-splitting manner producing a mixture of (GlcN)2-5. Time course studies showed a decrease in the rate of substrate degradation from (GlcN)7 to (GlcN)6 to (GlcN)5, as indicated by the apparent first order rate constants, k 1 values, of 4.98×10?4, 2.3×10?4, and 9.3×10?6 sec?1, respectively. The enzyme hardly catalyzed degradation of chitooligomers smaller than the pentamer.  相似文献   

4.
Usukizyme, a commercial enzyme preparation from Trichoderma viride, showed multiple chitin- degrading activities. One of these was purified to homogeneity by sequential DEAE Sepharose CL-6B, Q-Sepharose FF, and Sephacryl S-100 HR column chromatographies. The purified enzyme showed optimum activity at pH 3.5 and 50 degrees -55 degrees C and was stable in the pH range of 3.5-6.0 and up to 45 degrees C. It showed higher activity toward chitosan-7B, a 62% deacetylated chitosan, as opposed to highly deacetylated chitosan substrates. Products of degradation of a 1% (w/v) solution of partially deacetylated chitin (PC-100) were purified on CM-Sephadex C-25 and analyzed by HPLC, exo-glycosidase digestion, and nitrous acid deamination. The enzyme was unable to split the GlcN-GlcN linkages in the substrate. It produced mainly (GlcNAc)(2) and (GlcNAc)(3) along with mixed oligosaccharides. When subjected to nitrous acid degradation, some of the mixed oligosaccharides produced mainly 2-deoxyglucitol, implying the presence of GlcN at the reducing end of the oligosaccharides.  相似文献   

5.
Chitosan-degrading activity was detected in the culture fluid of Aspergillus oryzae, A. sojae, and A. flavus among various fungal strains belonging to the genus Aspergillus. One of the strong producers, A. oryzae IAM2660 had a higher level of chitosanolytic activity when N-acetylglucosamine (GlcNAc) was used as a carbon source. Two chitosanolytic enzymes, 40 kDa and 135 kDa in molecular masses, were purified from the culture fluid of A. oryzae IAM2660. Viscosimetric assay and an analysis of reaction products by thin-layer chromatography clearly indicated the endo- and exo-type cleavage manner for the 40-kDa and 135-kDa enzymes, respectively. The 40-kDa enzyme, designated chitosanase, catalyzed a hydrolysis of glucosamine (GlcN) oligomers larger than pentamer, glycol chitosan, and chitosan with a low degree of acetylation (0-30%). The 135-kDa exo-beta-D-glucosaminidase,enzyme,named released a single GlcN residue from the GlcN oligomers and chitosan, but did not release GlcNAc residues from either GlcNAc oligomer or colloidal chitin.  相似文献   

6.
Chitosan-degrading activities induced by glucosamine (GlcN) or N-acetylglucosamine (GlcNAc) were found in a culture filtrate of Trichoderma reesei PC-3-7. One of the chitosan-degrading enzymes was purified to homogeneity by precipitation with ammonium sulfate followed by anion-exchange and hydrophobic-interaction chromatographies. The enzyme was monomeric, and its molecular mass was 93 kDa. The optimum pH and temperature of the enzyme were 4.0 and 50 degrees C, respectively. The activity was stable in the pH range 6.0 to 9.0 and at a temperature below 50 degrees C. Reaction product analysis from the viscosimetric assay and thin-layer chromatography and H nuclear magnetic resonance spectroscopy clearly indicated that the enzyme was an exo-type chitosanase, exo-beta-d-glucosaminidase, that releases GlcN from the nonreducing end of the chitosan chain. H nuclear magnetic resonance spectroscopy also showed that the exo-beta-d-glucosaminidase produced a beta-form of GlcN, demonstrating that the enzyme is a retaining glycanase. Time-dependent liberation of the reducing sugar from partially acetylated chitosan with exo-beta-d-glucosaminidase and the partially purified exo-beta-d-N-acetylglucosaminidase from T. reesei PC-3-7 suggested that the exo-beta-d-glucosaminidase cleaves the glycosidic link of either GlcN-beta(1-->4)-GlcN or GlcN-beta(1-->4)-GlcNAc.  相似文献   

7.
A thermostable chitosanase, purified 156-fold to homogeneity in an overall yield of 12.4%, has a molecular weight of about 29,000±2,000, and is composed of monomer. The enzyme degraded soluble chitosan, colloidal chitosan, and glycol chitosan, but did not degrade chitin or other β-linked polymers. The enzyme activity was increased about 2.5-fold by the addition of 10 mM Co2+ and 1.4-fold by Mn2+. However, Cu2+ ion strongly inhibited the enzyme. Optimum temperature and pH were 60°C and 6.5, respectively. The enzyme was stable after heat treatment at 80°C for 30 min or 70°C for 60 min and fairly stable in protein denaturants as well. Chitosan was hydrolyzed to (GlcN)4 as a major product, by incubation with the purified enzyme. The effects of ammonium sulfate and organic solvents on the action pattern of the thermostable chitosanase were investigated. The amounts of (GlcN)3-(GlcN)6 were increased about 30% (w/w) in DAC 99 soluble chitosan containing 10% ammonium sulfate, and (GlcN)1 was not produced. The monophasic reaction system consisted of DAC 72 soluble chitosan in 10% EtOH also showed no formation of (GlcN)1, however, the yield of (GlcN)3 ~ (GlcN)6 was lower than DAC 99 soluble chitosan-10% ammonium sulfate. The optimal concentration of ammonium sulfate to be added was 20%. At this concentration, the amount of hexamer was increased by over 12% compared to the water-salt free system.  相似文献   

8.
Chitosanase II was purified from the culture filtrate of Aspergillus fumigatus ATCC13073. The purified enzyme had a molecular mass of 23.5 kDa. The N-terminal amino acid sequence of chitosanase II was identical to those of other Aspergillus chitosanases belonging to glycoside hydrolase family 75. The optimum pH and temperature were pH 6.0 and 40 °C. Chitosanase II hydrolyzed 70% deacetylated chitosan faster than fully deacetylated chitosan. Analysis of the degradation products generated from partially N-acetylated chitosan showed that chitosanase II split GlcN-GlcN and GlcNAc-GlcN bonds but not GlcNAc-GlcNAc or GlcN-GlcNAc, suggesting that it is a subclass I chitosanase. It degraded (GlcN)(6) to produce (GlcN)(3) as main product and small amounts of (GlcN)(2) and (GlcN)(4). Reaction rate analyses of mono-N-acetylated chitohexaose suggested that the (+3) site of chitosanase II recognizes the GlcNAc residue rather than the GlcN residue of its substrate.  相似文献   

9.
UDP-N-acetylglucosamine:alpha-6-d-mannoside beta-1, 6-N-acetylglucosaminyltransferase V (GlcNAcT-V) has been purified from cell extracts of the human hepatoma cell line, Hep3B, with 8.7% recovery. The purified enzymes had molecular masses of about 67 and 65 kDa on denaturated and natural conditions, respectively. The values of pI was 5.9. The GlcNAcT-V, when resolved by SDS-PAGE, was positive for Schiff staining, suggesting that the enzyme is glycoprotein. When GlcN,GlcN-biant-PA and UDP-GlcNAc were used as substrates, the enzyme displayed a temperature optimum of around 50 degrees C and optimum an pH of 6.5. The enzyme was stable in response to incubation from pH 4.5 to pH 10.5 at 4 degrees C for 24 h. The presence of UDP-GlcNAc and GlcN,GlcN-bi-PA protected the enzyme from heat inactivation, the extent depending upon the substrate concentration. The activity of the enzyme was stimulated by Mn2+ ion; however, it was inhibited by Fe3+. The enzyme activity was inhibited by another series of NDP-sugars including ADP-, CDP-, GDP-, and TDP-GlcNAc. Studies on the activity of the enzyme toward a variety of pyridylaminated sugars showed that the enzyme is most active toward biantennary (GlcN,GlcN-bi-PA) sugars. The enzymes had apparent Km values of 1.28 and 5.8 mM for GlcN,GlcN-bi-PA and UDP-GlcNAc, respectively. In order to isolate the GlcNAcT-V gene, PCR primers of GNN-1 and GNN-8 were designed and the amplified PCR product carrying the gene was cloned and sequenced. Nucleotide sequence analysis showed a 2220-bp open reading frame encoding a 740-amino-acid protein. This was almost same as the previously reported human sequences, except for some sequence differences in three amino acids. The three amino acid changes were as follows: 375V --> L, 555T --> R, and 592A --> G. These studies represent the detailed characterization of a purified GlcNAcT-V from human hepatoma cell Hep3B.  相似文献   

10.
Beta-N-acetyl-D-glucosaminidase was purified from viscera of green crab (Scylla serrata) by extraction with 0.01 M Tris-HCl buffer (pH 7.5) containing 0.2 M NaCl, ammonium sulfate fractionation, and then chromatography on Sephadex G-100 and DEAE-cellulose (DE-32). The purified enzyme showed a single band on polyacrylamide gel electrophoresis, and the specific activity was determined to be 7990 U/mg. The molecular weight of the whole enzyme was determined to be 132.0 kD, and the enzyme is composed of two identical subunits with molecular mass of 65.8 kD. The optimum pH and optimum temperature of the enzyme for the hydrolysis of p-nitrophenyl-N-acetyl-beta-D-glucosaminide (pNP-NAG) were found to be at pH 5.6 and at 50 degrees C, respectively. The study of its stability showed that the enzyme is stable in the pH range from 4.6 to 8.6 and at temperatures below 45 degrees C. The kinetic behavior of the enzyme in the hydrolysis of pNP-NAG followed Michaelis-Menten kinetics with Km of 0.424 +/- 0.012 mM and Vmax of 17.65 +/- 0.32 micromol/min at pH 5.8 and 37 degrees C, and the activation energy was determined to be 61.32 kJ/mol. The effects of some metal ions on the enzyme were surveyed, and the results show that Na+ and K+ have no effects on the enzyme activity; Mg2+ and Ca2+ slightly activate the enzyme, while Ba2+, Zn2+, Mn2+, Hg2+, Pb2+, Cu2+, and Al3+ inhibit the enzyme to different extents.  相似文献   

11.
Endo-β-1,4-glucanase encoded byBacillus subtilis JA18 was expressed inEscherichia coli. The recombinant enzyme was purified and characterized. The purified enzyme showed a single band of 50 kDa by SDS-PAGE. The optimum pH and temperature for this endo-β-1,4-glucanase was pH 5.8 and 60 °C. The endo-β-1,4-glucanase was highly stable in a wide pH range, from 4.0 to 12.0. Furthermore, it remained stable up to 60 °C. The endo-β-1,4-glucanase was completely inhibited by 2 mM Zn2+, Cu2+, Fe3+, Ag+, whereas it is activated in the presence of Co2+. In addition, the enzyme activity was inhibited by 1 mM Mn2+ but stimulated by 10 mM Mn2+. At 1% concentration, SDS completely inhibited the enzyme. The enzyme hydrolysed carboxymethylcellulose, lichenan but no activity was detected with regard to avicel, xylan, chitosan and laminarin. For carboxymethylcellulose, the enzyme had a Km of 14.7 mg/ml.  相似文献   

12.
疏绵状嗜热丝孢菌热稳定几丁质酶的纯化及其性质研究   总被引:6,自引:1,他引:6  
采用硫酸铵沉淀、DEAE SepharoseFastFlow阴离子层析、Phenyl Sepharose疏水层析等步骤获得了凝胶电泳均一的疏绵状嗜热丝孢菌 (Thermomyceslanuginosus)几丁质酶。经SDS PAGE和凝胶过滤层析测得纯酶蛋白的分子量在 4 8~ 4 9 .8kD之间。该酶反应的最适温度和最适pH分别为 5 5℃和 4 5 ,在pH4 5条件下 ,该酶在 5 0℃以下稳定 ;6 5℃的半衰期为 2 5min ;70℃保温 2 0min后 ,仍保留 2 4 %的酶活性。其N 端氨基酸序列为AQGYLSVQYFVNWAI。金属离子对几丁质酶的活性影响较大 ,Ca2 、Na 、K 、Ba2 对酶有激活作用 ;Ag 、Fe2 、Cu2 、Hg2 对酶有显著的抑制作用 ;以胶体几丁质为底物的Km 和Vmax值分别为 9 .5 6mg mL和 2 2 . 12 μmol min。抗菌活性显示 ,该酶对供试病原菌有不同程度的抑制作用。  相似文献   

13.
A new enzyme capable of hydrolyzing chitobiose, which is an induced enzyme, was purified to apparent homogeneity from the culture filtrate of Nocardia orientalis IFO 12806. Biospecific affinity chromatography on chitotriitol-Sepharose CL-4B was effective for purification of this enzyme. It is clearly demonstrated that the enzyme is an exo-hydrolase, removing single glucosamine residues from the nonreducing terminal of a sequence of beta-(1----4)-linked glucosamine chain, such as chitosan and chitooligosaccharides, and therefore characterized as an exo-beta-D-glucosaminidase. The enzyme was found to show maximum activity on chitotetraose, chitopentaose, and their corresponding alcohols and a slight decrease in rate on longer chain lengths of substrates. A significant decrease in rate was observed using p-nitrophenyl beta-D-glucosaminide and chitobiitol as substrates. In the hydrolysis of partially acetylated chitosans, the enzyme appeared to be effective in cleaving glucosamine from the GlcN beta 1----4GlcNAc beta 1----sequence as well as the GlcN beta 1----4GlcN beta 1----sequence. These observations suggest that the second residue from the terminal plays an important role in enzyme activity, but the enzyme permits the replacement of glucosamine at the second residue by N-acetylglucosamine.  相似文献   

14.
Mannitol 2-dehydrogenase (MDH) catalyzes the pyridine nucleotide dependent reduction of fructose to mannitol. Lactobacillus intermedius (NRRL B-3693), a heterofermentative lactic acid bacterium (LAB), was found to be an excellent producer of mannitol. The MDH from this bacterium was purified from the cell extract to homogeneity by DEAE Bio-Gel column chromatography, gel filtration on Bio-Gel A-0.5m gel, octyl-Sepharose hydrophobic interaction chromatography, and Bio-Gel Hydroxyapatite HTP column chromatography. The purified enzyme (specific activity, 331 U/mg protein) was a heterotetrameric protein with a native molecular weight (MW) of about 170 000 and subunit MWs of 43 000 and 34 500. The isoelectric point of the enzyme was at pH 4.7. Both subunits had the same N-terminal amino acid sequence. The optimum temperature for the reductive action of the purified MDH was at 35 degrees C with 44% activity at 50 degrees C and only 15% activity at 60 degrees C. The enzyme was optimally active at pH 5.5 with 50% activity at pH 6.5 and only 35% activity at pH 5.0 for reduction of fructose. The optimum pH for the oxidation of mannitol to fructose was 7.0. The purified enzyme was quite stable at pH 4.5-8.0 and temperature up to 35 degrees C. The K(m) and V(max) values of the enzyme for the reduction of fructose to mannitol were 20 mM and 396 micromol/min/mg protein, respectively. It did not have any reductive activity on glucose, xylose, and arabinose. The activity of the enzyme on fructose was 4.27 times greater with NADPH than NADH as cofactor. This is the first highly NADPH-dependent MDH (EC 1.1.1.138) from a LAB. Comparative properties of the enzyme with other microbial MDHs are presented.  相似文献   

15.
H Trindade  A Karmali  M S Pais 《Biochimie》1988,70(12):1759-1764
Catalase (E.C 1.11.1.6) was purified from leaves of Zandedeschia aethiopica to apparent homogeneity by a one-step hydrophobic interaction chromatography on a phenyl Sepharose CL-4B column. The purified enzyme preparation was obtained with a final recovery of enzyme activity of about 61% and a specific activity of 146 U/mg protein. The purified enzyme ran as a single protein band when analyzed both by native PAGE and SDS-PAGE corresponding to an Mr of 220,000 Da, which consists of 4 subunits with identical Mr of 54,000 Da. The pI of purified enzyme was found to be 5.2 by isoelectric focusing on ultrathin polyacrylamide gels. The purified catalase has an optimum temperature of activity at 40 degrees C, whereas it is stable between 0 degrees and 50 degrees C. As regards pH, the enzyme has an optimum activity at pH 7.0 and it is stable in the range pH 6-8. The absorption spectrum of the purified enzyme exhibited 2 peaks at 280 nm and 405 nm.  相似文献   

16.
Intracellular thermostable amylases from a thermophilic Baccilus sp. AK-2 have been isolated and purified. The crude enzyme, having pH optimum at 6.5. and temperature optimum at 68 degrees C was purified by DEAE-cellulose column chromatography. Three separable enzyme fractions having starch hydrolyzing property were eluted by lowering the pH from 8.5 to 7.0. Electrophoretic mobility of these fractions showed a single band. Calcium ion up to a concentration of 20 mM had an activating effect on the three fractions. The optimum temperature for the three fractions (FI, FII and FIII) was 65 degrees C and the pH optimum for each was 6.0, 6.5 and 6.0, respectively. The -SH group in the amylase molecule was essential for enzyme activity. Except for Ca2+, Mg2+, Sr2+ and Mn2+ all other metal ions studied inhibited both alpha and beta-amylase activities. EDTA showed dose dependent non-competitive inhibition. Product formation studies proved FI and FIII to be of the alpha-amylase type and FII of the beta-amylase type. The Km for the substrate (starch) in the presence or absence of EDTA was 0.8 X 10(-3) and 1.13 X 10(-3) g/ml for alpha-amylase and beta-amylase, respectively.  相似文献   

17.
A beta-galactosidase isoenzyme, beta-Gall, from Bifidobacterium infantis HL96, was expressed in Escherichia coli and purified to homogeneity. The molecular mass of the beta-Gall subunit was estimated to be 115 kDa by SDS-PAGE. The enzyme appeared to be a tetramer, with a molecular weight of about 470 kDa by native PAGE. The optimum temperature and pH for o-nitrophenyl-beta-D-galactopyranoside (ONPG) and lactose were 60 degrees C, pH 7.5, and 50 degrees C, pH 7.5, respectively. The enzyme was stable over a pH range of 5.0-8.5, and remained active for more than 80 min at pH 7.0, 50 degrees C. The enzyme activity was significantly increased by reducing agents. Maximum activity required the presence of both Na+ and K+, at a concentration of 10 mM. The enzyme was strongly inhibited by p-chloromercuribenzoic acid, divalent metal cations, and Cr3+, and to a lesser extent by EDTA and urea. The hydrolytic activity using lactose as a substrate was significantly inhibited by galactose. The Km, and Vmax values for ONPG and lactose were 2.6 mM, 262 U/mg, and 73.8 mM, 1.28 U/mg, respectively. beta-Gall possesses strong transgalactosylation activity. The production rate of galactooligosaccharides from 20% lactose at 30 and 60 degrees C was 120 mg/ml, and this rate increased to 190 mg/ml when 30% lactose was used.  相似文献   

18.
Bacillus megaterium P1, a bacterial strain capable of hydrolyzing chitosan, was isolated from soil samples. Chitosan-degrading activity was induced by chitosan but not by its constituent d-glucosamine. Extracellular secretion of chitosanase reached levels corresponding to 1 U/ml under optimal conditions. Three chitosan-degrading proteins (chitosanases A, B, and C) were purified to homogeneity. Chitosanase A (43 kilodaltons) was highly specific for chitosan and represented the major chitosan-hydrolyzing species. Chitosanases B (39.5 kilodaltons) and C (22 kilodaltons) corresponded to minor activities and possessed comparable specific activities toward chitosan, chitin, and cellulose. Chitosanase A was active from pH 4.5 to 6.5 and was stable on the basis of activity up to 45 degrees C. The optimum temperature for enzymatic chitosan hydrolysis was 50 degrees C. Kinetic studies on chitosanase A suggest that the enzyme is substrate inhibited. The apparent K(m) and V(max) determined at 22 degrees C and pH 5.6 were 0.8 mg/ml and 280 U/mg, respectively. End products of chitosan hydrolysis by each of the three chitosanases were identified as glucosamine oligomers, similar to those obtained for previously reported chitosanase digestions.  相似文献   

19.
Flavokinase (ATP:riboflavin 5'-phosphotransferase, EC 2.7.1.26) has been purified to apparent homogeneity from rat liver by affinity chromatography using flavinyl agarose beads (agarose-OCH2CONH(CH2)2NHCO(CH2)/N10-7,8-dimethylisoalloxazine). The specific activity of the pure enzyme is 9,900 units (nmol of FMN formed/h at 37 degrees C)/mg of protein, and reflects a one-step, 7000-fold purification. Flavokinase thus obtained, unlike previous preparations from mammalian sources, is free from contaminating phosphatase and FAD synthase. The purified enzyme rapidly loses activity upon storage but is stabilized by riboflavin and thiol-protecting reagents. The apparent molecular weight, estimated by gel filtration on Sephadex G-100 and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is 28,000 +/- 1,000. Flavokinase phosphorylates and/or is inhibited by a large number of riboflavin analogs; however, the physiologically important 8 alpha-(amino acid)riboflavins are poorly accommodated. The strongly preferred phosphate donors are ATP and dATP. Both Zn2+ and Mg2+, as well as several other divalent cations, activate flavokinase, but Zn2+ yields greatest activity (1.8 times that with Mg2+). The pH optimum for activity with either Zn2+ or Mg2+ is approximately 9.3; at pH 7.0, the activity is 40% of that at the pH optimum.  相似文献   

20.
Treatment of rabbit spermatozoa with 50mM-MgCl2 removes the plasma and the outer acrosomal membranes. Subsequent treatment with the detergents Hyamine 2389 and Triton X-100 solubilizes spermatozoal neuraminidase bound to the inner acrosomal membrane. The enzyme was further purified by DEAE-cellulose, Sephadex G-150 and Bio-Gel P-300 column chromato. The enzyme showed a single major band, with the possibility of some minor contaminants, on disc-gel electrophoresis. It had a specific activity of 0.37 micronmal of sialic acid released/min per mg with purified boar Cowper's-gland mucin as the substrate. The enzyme had marked specificity for 2 leads to 6'-linked sialic acid in glycoproteins. The Km of spermatozoal neuraminidase was 1.72 X 10(-6)M with Cowper's-gland mucin, 1.17 X 10(-5)M with fetuin and 8.8 X 10(-4)M with sialyl-lactose as a substrates. The Vmax. was 0.112 micronmol/min per mg with the Cowper's-gland mucin, 0.071 micronmol/min per mg with fetuin and 0.033 micronmol/min per mg with sialyl-lactose as substrate. The enzyme hydrolysed sheep submaxillary-gland mucin as readily as the Cowper's-gland mucin. The optimum of enzyme activity was at pH 5.0 on the Cowper's-gland mucin and at pH4.3 on sialyl-lactose. The enzyme activity was unaffected by 20mM-Na+ and-K+, but was inhibited by 20mM-Ca2+,-Mn2+,-Co2+ and -Cu2+. The enzyme was unstable in dilute solutions, but could be stored indefinitely freeze-dried at --20 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号