首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developmental regulation of the intrathymic T cell precursor population   总被引:4,自引:0,他引:4  
The maturation potential of CD4-8- thymocytes purified from mice of different developmental ages was examined in vivo after intrathymic injection. As previously reported, 14-day fetal CD4-8- thymocytes produced fewer CD4+ than CD8+ progeny in peripheral lymphoid tissues, resulting in a CD4+:CD8+ ratio of less than or equal to 1.0. In contrast, adult CD4-8- thymocytes generated CD4+ or CD8+ peripheral progeny in the proportions found in the normal adult animal (CD4+:CD8+ = 2 to 3). Here we have shown that CD4-8- precursor cells from the 17-day fetal thymus also produced peripheral lymphocytes with low CD4+:CD8+ ratios. Precursors from full term fetuses produced slightly higher CD4+:CD8+ ratios (1.1-1.6) and precursors from animals three to 4 days post-birth achieved CD4+:CD8+ ratios intermediate between those produced by fetal and adult CD4-8- thymocytes. Parallel changes in the production of alpha beta TCR+ peripheral progeny were observed. Fetal CD4-8- thymocytes generated fewer alpha beta TCR+ progeny than did adult CD4-8- thymocytes. However, peripheral lymphocytes arising from either fetal or adult thymic precursors showed similar proportions of gamma delta TCR+ cells. The same pattern of progeny was observed when fetal CD4-8- thymocytes matured in an adult or in a fetal thymic stromal environment. In contrast to fetal thymic precursors, fetal liver T cell precursors resembled adult CD4-8- thymocytes by all parameters measured. These results suggest that fetal thymic precursors are intrinsically different from both adult CD4-8- thymocytes and fetal liver T cell precursors. Moreover, they lead to the hypothesis that the composition of the peripheral T cell compartment is developmentally regulated by the types of precursors found in the thymus. A model is proposed in which migration of adult-like precursors from the fetal liver to the thymus approximately at birth triggers a transition from the fetal to the adult stages of intrathymic T cell differentiation.  相似文献   

2.
3.
We have used the intra-thymic transfer system to investigate the population dynamics of thymocyte and mature T cell subsets in the absence of continuing precursor input from the bone marrow. We have followed the development and life span of CD4+ and CD8+ thymocyte subsets and mature peripheral T cells from intra-thymically injected adult or fetal CD4-8- thymic precursors. Both precursor types proliferated, differentiated, and exported to peripheral lymphoid tissues alpha beta-TCR+CD4+8- and CD4-8+ progeny which formed a stable, long-lived component of the peripheral T cell pool. The production of phenotypically mature thymocytes and peripheral T cells occurred more rapidly from fetal CD4-8- precursors. CD4+8-:CD4-8+ ratios among peripheral progeny of intra-thymically-injected CD4-8- precursors were initially normal, but they steadily declined among progeny of the fetal precursors. Thus, there appear to be differences in the life span and/or proliferative capacity of mature T cells derived from embryonic vs adult progenitors. In addition to the predominant CD4+8- and CD4-8+ subsets of peripheral T cells, a minor (1 to 20%) population of Thy-1+CD3+4-8- T cells was identified among peripheral progeny of intra-thymically-injected CD4-8- thymocytes, as well as in lymph nodes of unmanipulated animals. A total of 20 to 34% of this subset expressed V beta 8+ TCR and the majority were CD5hi, Pgp-1+, and J11d-. The function and specificity of this newly identified population of thymically derived peripheral T cells remains to be investigated.  相似文献   

4.
The CD4 and CD8 molecules play an important role in the stimulation of T cells and in the process of thymic education. Most mature T cells express the alpha beta TCR and either CD4 or CD8; however, there is a small population of alpha beta+ TCR T cells that lack both CD4 and CD8. Little is known of the biology of the CD4- CD8- (double-negative) alpha beta+ TCR T cells or the nature of the Ag to which they may respond. These cells not only represent a novel population of T cells but also provide useful biologic tools to study the roles that CD4 and CD8 play in T cell activation. In this study we have addressed two questions. Firstly, whether CD4- CD8- alpha beta+ TCR T cells have functionally active TCR and, secondly, whether CD4 or CD8 is required for the activation of T cells by bacterial enterotoxins. Six double-negative alpha beta+ TCR T cell clones, propagated from two healthy donors, were challenged with a panel of nine bacterial enterotoxins. The V alpha and V beta usage of their TCR was determined by polymerase chain reaction. All of the CD4-CD8- clones proliferated in response to at least one of the enterotoxins, in a V beta-specific manner. The proliferative response of the CD4-CD8- alpha beta+ TCR T cell clones was similar in magnitude to that exhibited by CD4+ T cell clones of known V beta expression. These data clearly show that the CD4 and CD8 molecules are not required for the activation of untransformed human T cells by bacterial enterotoxins. Furthermore, these results indicate that CD4-CD8- alpha beta+ TCR T cells, normally present in all individuals, are not functionally silent, because they can be stimulated via their TCR. Their physiologic role, like that of gamma delta T cells, remains to be elucidated.  相似文献   

5.
The predominant T cell subset in the bone marrow of specific pathogen-free C57BL/Ka and BALB/c mice expressed the alpha beta+ TCR CD4- CD8- surface phenotype. Purified C57BL/Ka alpha beta+ TCR CD4- CD8- marrow cells obtained by cell sorting suppressed the MLR of C57BL/Ka responder and BALB/c stimulator spleen cells. Although the percentage of typical T cells in the spleen was markedly reduced in adult nude mice or normal neonatal mice as compared to the normal adult, the percentage of alpha beta+ TCR CD4- CD8- cells in the spleen and marrow was not. The percentage of "self-reactive" V beta 5+ T cells in the BALB/c spleen was markedly reduced as compared to that in the C57BL/Ka spleen. However, the percentages in the bone marrow were similar. The results indicate that the predominant subset of marrow T cells in these pathogen-free mice differ with regard to surface marker phenotype, function, dependence on the adult thymus, and deletion of certain self-reactive V beta receptors as compared to typical spleen T cells. The marrow T cells appear to develop directly from marrow precursors without rearranged beta chain genes during a 48 hour in vitro culture.  相似文献   

6.
We have recently demonstrated that bone marrow-resident cells, which are able to repopulate the thymus of irradiated recipient mice (pre-T cells), can be maintained in vitro for at least 2 weeks in the presence of exogenous IL-3. Because this marrow culture system can be applied to the study of early T cell differentiation, it is important to ascertain the extent to which in vitro culture of the pre-T cells might alter the T cell progeny which can develop from them. In previous work, we showed that the progeny of cultured pre-T cells appeared to develop in a kinetically normal fashion within the thymus of recipients and that the acquisition of key developmental markers (IL-2R and CD3) was identical in the progeny of fresh and cultured pre-T cells. Here, we report the results of experiments carried out to characterize the progeny of cultured pre-T cells which were found in the peripheral lymphoid tissues several weeks following intrathymic transfer to irradiated recipients. We found no remarkable differences between the progeny of cultured or fresh marrow cells with respect to the timing of their appearance in the periphery nor their expression of CD4 or CD8. By studying the patterns of utilization of five different V beta gene products by the T cells derived from fresh or cultured bone marrow, we were able to test the susceptibility of both sets of progeny to both positive and negative selection pressures during their in vivo maturation. These experiments established that the progeny of cultured marrow cells were equally susceptible to TCR repertoire selection, as were the progeny of fresh bone marrow cells, and that the process of in vitro growth did not alter the potential TCR repertoire of the pre-T cells.  相似文献   

7.
The T cell populations present in normal murine bone marrow have not been previously analyzed in detail, mainly because of their relative rarity. In order to permit such analyses, bone marrow T cells were enriched by depleting Mac1-positive cells, which constitute 65 to 90% of bone marrow cells (BMC), and then studied by two-color flow cytometry. Analysis of the remaining cells revealed that the T cell profile of adult murine bone marrow is markedly different from that of other lymphoid organs. A very high proportion of bone marrow CD3+ cells (approximately one-third) are CD4-CD8-. CD3+CD4-CD8- cells are much more concentrated among BMC T cells than among thymocytes or splenic T cells, suggesting that bone marrow may be either a site of extrathymic TCR gene rearrangement, or a major site to which such cells home from the thymus. The expression of NK1.1 was also evaluated on Mac1-depleted BMC populations. Surprisingly, up to 39% of alpha beta TCR+ BMC were found to express NK1.1. Most alpha beta TCR+NK1.1+ BMC also expressed CD4 or CD8. NK1.1+ alpha beta TCR+ cells represented a much greater proportion of BMC T cells than of other lymphoid (splenocyte or thymocyte) T cell populations. Mac1-depleted BMC of nude mice contained very few cells with this phenotype. These results are consistent with the hypothesis that NK1.1+ alpha beta TCR+ cells are generated primarily in the thymus of normal animals and migrate preferentially to bone marrow, where they may function as regulatory elements in hematopoiesis.  相似文献   

8.
Characterization of thymic progenitors in adult mouse bone marrow   总被引:5,自引:0,他引:5  
Thymic cellularity is maintained throughout life by progenitor cells originating in the bone marrow. In this study, we describe adult mouse bone cells that exhibit several features characteristic of prothymocytes. These include 1) rapid thymic engraftment kinetics following i.v. transplantation, 2) dramatic expansion of thymic progeny, and 3) limited production of hemopoietic progeny other than thymocytes. The adult mouse bone marrow population that is depleted of cells expressing any of a panel of lineage-specific Ags, stem cell Ag-1 positive, and not expressing the Thy1.1 Ag (Thy1.1(-)) (Thy1.1(-) progenitors) can repopulate the thymus 9 days more rapidly than can hemopoietic stem cells, a rate of thymic repopulation approaching that observed with transplanted thymocytes. Additionally, Thy1.1(-) progenitors expand prolifically to generate thymocyte progeny comparable in absolute numbers to those observed from parallel hemopoietic stem cell transplants, and provide a source of progenitors that spans multiple waves of thymic seeding. Nevertheless, the Thy1.1(-) population yields relatively few B cells and rare myeloid progeny posttransplant. These observations describe the phenotype of an adult mouse bone marrow population highly enriched for rapidly engrafting, long-term thymocyte progenitors. Furthermore, they note disparity in B and T cell expansion from this lymphoid progenitor population and suggest that it contains the progenitor primarily responsible for seeding the thymus throughout life.  相似文献   

9.
Transplantation of HLA-identical or haploidentical T cell-depleted allogeneic bone marrow (BM) into SCID infants results in thymus-dependent T cell development in the recipients. Immunoscope analysis of the TCR V beta repertoire was performed on 15 SCID patients given BM transplants. Before and within the first 100 days after bone marrow transplantation (BMT), patients' PBMC displayed an oligoclonal or skewed T cell repertoire, low TCR excision circles (TREC) values, and a predominance of CD45RO(+) T cells. In contrast, the presence of high numbers of CD45RA(+) cells in the circulation of SCID patients >100 days post-BMT correlated with active T cell output by the thymus as revealed by high TREC values and a polyclonal T cell repertoire demonstrated by a Gaussian distribution of V beta-specific peaks. Ten years after BMT, we observed a decrease of the normal polyclonal T cell repertoire and an increase of a more skewed T cell repertoire. A decline of TREC levels and a decrease in the number of CD45RA(+) cells beyond 10 years after BMT was concomitant with the detection of oligoclonal CD3(+)CD8(+)CD45RO(+) cells. The switch from a polyclonal to a more skewed repertoire, observed in the CD3(+)CD8(+)CD45RO(+) T cell subset, is a phenomenon that occurs normally with decreased thymic output during aging, but not as rapidly as in this patient population. We conclude that a normal T cell repertoire develops in SCID patients as a result of thymic output and the repertoire remains highly diverse for the first 10 years after BMT. The TCR diversity positively correlates in these patients with TREC levels.  相似文献   

10.
Exclusion and inclusion of alpha and beta T cell receptor alleles.   总被引:20,自引:0,他引:20  
P Borgulya  H Kishi  Y Uematsu  H von Boehmer 《Cell》1992,69(3):529-537
Exclusion and inclusion of T cell receptor (TCR) genes were analyzed in alpha beta TCR transgenic mice. Both transgenes are expressed unusually early on the surface of CD4-8-, HSA+, IL-2R- thymocytes. These progenitor cells give rise to progeny, which at the single-cell level contains endogenous alpha but not beta TCR-RNA as well as protein, in addition to products encoded by the transgenes. Thus, the surface expression of an alpha beta TCR does not prevent further alpha TCR rearrangement in immature thymocytes that still transcribe RAG-1 and RAG-2 genes. Reduced levels of RAG-1 and RAG-2 RNA are detectable only in CD4+8+ TCR high cells, which result from positive selection in the thymus. The results suggest that a developing T cell may try different alpha beta TCRs for binding to thymic MHC ligands, and that recombination at the alpha locus ceases only after positive selection.  相似文献   

11.
12.
Staphylococcal enterotoxins are potent T cell mitogens. Recent studies have shown that the binding of these toxins to class II MHC molecules on accessory cells is essential for the stimulation of T cells which bear specific V beta segment of TCR. In the present study we show that i.v. administration of staphylococcal enterotoxin B (SEB) results in an enlargement of spleen and lymph nodes but causes thymus atrophy. Elimination of CD4+CD8+ cells predominantly accounted for the shrinkage of thymus, and the lowest level of this cell population was reached 4 days after SEB injection. Furthermore, this decrease in CD4+CD8+ cells was accompanied by a relative increase in the percentages of CD4+CD8-, CD4-CD8+ and CD4-CD8- cells, whereas their absolute numbers actually reduced on day 4. The thymus shrinkage involved apoptosis which was characterized by DNA fragmentation and morphologic changes. The depletion of Thy-1 high, TCR-alpha beta low and TCR-alpha beta intermediate cells also occurred with a kinetic correlated to the reduction of CD4+CD8+ cells. Our results further showed that the percentages of V beta 8+ cells reduced 12 h post SEB injection, increased after 2 days, and decreased again thereafter. SEB thus causes both apoptotic and stimulative effects in the thymus. Apparently, the tremendous loss of double-positive cells (greater than 90% in cell number on day 4) is not simply due to the reduction of V beta 8+ cells, the possible modulatory effect of other factors or hormones which may play a role in the cell death is discussed.  相似文献   

13.
14.
Severe combined immunodeficiency (SCID) mice can be transplanted successfully with human fetal liver and thymus (SCID-hu mice). Precursor cells derived from the fetal liver differentiate in the thymus and migrate into the blood as mature T cells. In the present paper, the peripheral T cell compartment of such mice was studied. Peripheral WBC were activated by PHA and cultured in the presence of irradiated human feeder cells. The resultant cell population consisted exclusively of human CD1- CD2+ CD3+ CD7+ T lymphocytes; up to 4% of the T cells expressed the TCR gamma delta, whereas 95 to 100% were TCR alpha beta +. The CD4bright (42 to 66%) and CD8bright (30 to 54%) populations coexpressed variable but low levels of CD8 and CD4, respectively. The T cell cultures from the SCID-hu mice did not display reactivity towards the autologous human EBV-transformed B cell lines (B-LCL). On the other hand, these human T cells proliferated and were cytotoxic against allogeneic human B-LCL. T cell clones were established from cultured SCID-hu T cells. All T cell clones were TCR alpha beta + CD3+ CD2+; 61% of the clones were CD4+ CD8-, 27% were CD8+ CD4-, 11% were CD8+ CD4lo, and 2% were CD4+ CD8lo. None of these clones recognized the autologous B-LCL established from the fetal human donor. Fourteen of 100 T cell clones had specific alloreactivity, as tested on a panel of five B-LCL. Of these 14, two CD8+ CD4lo and two CD8+ CD4- clones were cytotoxic and did not proliferate in response to specific stimulator cells. Furthermore, two CD4+ CD8lo and eight CD4+ CD8- clones proliferated specifically in response to alloantigens. In conclusion, the peripheral human T cells of SCID-hu animals are functional and their TCR repertoire is polyclonal, alloreactive, and devoid of self-reactive cells. Therefore, the SCID-hu mouse can be a suitable model for the study of alloreactivity and allotolerance in vivo, as well as for the study of negative selection in the human thymus.  相似文献   

15.
16.
Although NK cells in the mouse are thought to develop in the bone marrow, a small population of NK cells in the thymus has been shown to derive from a GATA3-dependent pathway. Characteristically, thymic NK cells express CD127 and few Ly49 molecules and lack CD11b. Because these NK cells develop in the thymus, the question of their relationship to the T cell lineage has been raised. Using several different mouse models, we find that unlike T cells, thymic NK cells are not the progeny of Rorc-expressing progenitors and do not express Rag2 or rearrange the TCRγ locus. We further demonstrate that thymic NK cells develop independently of the Notch signaling pathway, supporting the idea that thymic NK cells represent bona fide NK cells that can develop independently of all T cell precursors.  相似文献   

17.
To determine whether T cell receptor genes follow the same principle of allelic exclusion as B lymphocytes, we have analyzed the rearrangements and expression of TCR alpha and beta genes in the progeny of the CD3+, CD4-/CD8- M14T line. Here, we show that this line can undergo secondary rearrangements that replace the pre-existing V alpha-J alpha rearrangements by joining an upstream V alpha gene to a downstream J alpha segment. Both the productively and nonproductively rearranged alleles in the M14T line can undergo secondary rearrangements while its TCR beta genes are stable. These secondary recombinations are usually productive, and new forms of TCR alpha polypeptides are expressed in these cells in association with the original C beta chain. Developmental control of this V alpha-J alpha replacement phenomenon could play a pivotal role in the thymic selection of the T cell repertoire.  相似文献   

18.
The existence of CD3/TCR-bearing lymphocytes in athymic and thymectomized chimeric mice implies that T cell maturation can occur in the absence of a thymus. Considering the possibility that the epidermis may be one of the organs providing T cell educating stimuli, we attempted to characterize the Thy-1+ epidermal lymphocyte population of athymic mice. Immunohistologic studies of epidermal sheets revealed (1) that Thy-1+ epidermal cells of C57BL/6 nu/nu mice are CD5-, CD4-, and predominantly CD8-, and (2) that a minor subset of these cells displays anti-CD3 epsilon reactivity. Although these CD3+ epidermal cells could hardly be detected at 6 wk of age, they comprised approximately 2% of all Thy-1+ epidermal cells in 12-mo-old athymic mice. Most of these CD3+ cells expressed TCR-gamma/delta, but TCR-alpha/beta+ cells were also present. TCR-gamma/delta+ epidermal T cells of athymic mice preferentially expressed TCR V gamma 2, V gamma 4, and V gamma 5 specificities rather than TCR V gamma 3 as found on DETC of euthymic mice. Using mitogenic stimuli, we have succeeded in establishing cell lines and clones from BALB/c nu/nu and C57BL/6 nu/nu epidermis. Their marker profile corresponds to that seen on resident CD3+ epidermal cells, as well as on a very small subset of CD3+ splenic and lymph node lymphocytes of athymic mice. The ontogenetic relationship, if any, between the epidermal and lymphoid CD3+, CD5-, CD4-, CD8- cells, has yet to be clarified. Cell lines/clones representative of resident CD3+ epidermal cells of nu/nu mice should provide a useful tool in the elucidation of homing patterns and functional properties of extrathymically matured T cells.  相似文献   

19.
Regulation of extrathymic T cell development and turnover by oncostatin M   总被引:3,自引:0,他引:3  
Chronic exposure to oncostatin M (OM) has been shown to stimulate extrathymic T cell development. The present work shows that in OM transgenic mice, 1) massive extrathymic T cell development takes place exclusively the lymph nodes (LNs) and not in the bone marrow, liver, intestines, or spleen; and 2) LNs are the sole site where the size of the mature CD4+ and CD8+ T cell pool is increased (6- to 7-fold). Moreover, when injected into OM transgenic mice, both transgenic and nontransgenic CD4+ and CD8+ T cells preferentially migrated to the LNs rather than the spleen. Studies of athymic recipients of fetal liver grafts showed that lymphopoietic pathway modulated by OM was truly thymus independent, and that nontransgenic progenitors could generate extrathymic CD4+CD8+ cells as well as mature T cells under the paracrine influence of OM. The progeny of the thymic-independent differentiation pathway regulated by OM was polyclonal in terms of Vbeta usage, exhibited a phenotype associated with previous TCR ligation, and displayed a rapid turnover rate (5-bromo-2'-deoxyuridine pulse-chase assays). This work suggests that chronic exposure to OM 1) discloses a unique ability of LNs to sustain extrathymic T cell development, and 2) increases the number and/or function of LN niches able to support seeding of recirculating mature T cells. Regulation of the lymphopoietic pathway discovered in OM transgenic mice could be of therapeutic interest for individuals with thymic hypoplasia or deficient peripheral T cell niches.  相似文献   

20.
We examined the expression of the H4 T cell activation marker in thymic T cell subpopulations and found that TCR-alpha beta+ CD4+ thymic T cells are segregated into three subpopulations based upon H4 levels. Thymic T cells with either no or low H4 expression differentiate via the mainstream differentiation pathway in the thymus. H4int thymic T cells, which express a skewed V beta repertoire of V beta 2, -7, and -8 in their TCRs, show the phenotype of NKT cells: CD44high, Ly6Chigh, NK1.1+, and TCR-alpha beta low. H4high thymic T cells also show a skewed V beta repertoire, V beta 2, -7, and -8, and predominantly express an invariant V alpha 14-J alpha 281+ alpha-chain in their TCRs but constitute a distinct population in that they are CD44int, Ly6C-, NK1.1-, and TCR-alpha beta high. Thus, invariant V alpha 14+ thymic T cells consist of ordinary NKT cells and a new type of T cell population. V beta 7+ and V beta 8.1+ invariant V alpha 14+ thymic T cells are present in DBA/2 mice, which carry mammary tumor virus-7-encoded superantigens, in comparable levels to those in BALB/c mice. Furthermore, V beta 7+ invariant V alpha 14+ thymic T cells in DBA/2 mice are in the immunologically responsive state, and Yersinia pseudotuberculosis-derived mitogen-induced V beta 7+ invariant V alpha 14+ thymic T cell blasts from DBA/2 and BALB/c mice exhibited equally enhanced responses upon restimulation with Y. pseudotuberculosis-derived mitogen. Thus, invariant V alpha 14+ thymic T cells that escape negative selection in DBA/2 mice contain T cells as functionally mature as those in BALB/c mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号