首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hen oviduct membranes are shown to catalyze the following enzyme reaction: GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-6)GlcNAc-Asn + UDP-GlcNAc leads to GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)GlcNAc beta 1-4)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-6)GlcNAc-Asn + UDP. The enzyme catalyzing this reaction has been named UDP-GlcNAc:glycopeptide beta 4-N-acetylglucosaminyltransferase III (GlcNAc-transferase III) to distinguish it from two other GlcNAc-transferases (I and II) present in hen oviduct and previously described in several mammalian tissues. GlcNAc-transferases I and II, respectively, attach GlcNAc in beta 1-2 linkage to the Man alpha 1-3 and Man alpha 1-6 arms of Asn-linked oligosaccharide cores. A specific assay for GlcNAc-transferase III was devised by using concanavalin A/Sepharose columns to separate the product of transferase III from other interfering radioactive glycopeptides formed in the reaction. The specific activity of GlcNAc-transferase III in hen oviduct membranes is about 5 nmol/mg of protein/h. Substrate specificity studies have shown that GlcNAc-transferase III requires both terminal beta 1-2-linked GlcNAc residues in its substrate for maximal activity. Removal of the GlcNAc residue on the Man alpha 1-6 arm reduces activity by at least 85% and removal of both GlcNAc residues reduces activity by at least 93%. Two large scale preparations of product were subjected to high resolution proton NMR spectroscopy to establish the incorporation by the enzyme of a GlcNAc in beta 1-4 linkage to the beta-linked Man. This GlcNAc residue is called a "bisecting" GlcNAc and appears to play important control functions in the synthesis of complex N-glycosyl oligosaccharides. Several enzymes in the biosynthetic scheme are unable to act on glycopeptide substrates containing a bisecting GlcNAc residue.  相似文献   

2.
Hen oviduct membranes were shown to contain high activity of a novel enzyme, UDP-GlcNac:GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-R (GlcNAc to Man) beta 4-GlcNAc-transferase VI. The enzyme was shown to transfer GlcNAc in beta 1-4 linkage to the D-mannose residue of GlcNAc beta 1-6 (GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or methyl. Radioactive enzyme products were purified by several chromatographic steps, including high performance liquid chromatography, and structures were determined by proton nmr, fast atom bombardment-mass spectrometry, and methylation analysis to be GlcNAc beta 1-6 ([14C]GlcNAc beta 1-4) (GlcNAc beta 1-2) Man alpha-R. The enzyme is stimulated by Triton X-100 and has optimum activity at a relatively high MnCl2 concentration of about 100 mM; Co2+, Mg2+, and Ca2+ could partially substitute for Mn2+. A tissue survey demonstrated high GlcNAc-transferase VI activity in hen oviduct and lower activity in chicken liver and colon, duck colon, and turkey intestine. No activity was found in mammalian tissues. Hen oviduct membranes cannot act on GlcNAc beta 1-6Man alpha-R but have a beta 4-GlcNAc-transferase activity that converts GlcNAc beta 1-2Man alpha-R to GlcNAc beta 1-4(GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or 1-6Man beta methyl. The latter activity is probably due to GlcNAc-transferase IV which preferentially adds GlcNAc in beta 1-4 linkage to the Man alpha 1-3 arm of the GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn core structure of asparagine-linked glycans. The minimum structural requirement for a substrate of beta 4-GlcNAc-transferase VI is therefore the trisaccharide GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-; this trisaccharide is found on the Man alpha 6 arm of many branched complex asparagine-linked oligosaccharides. The data suggest that GlcNAc-transferase VI acts after the synthesis of the GlcNAc beta 1-2Man alpha 1-3-, GlcNAc beta 1-2Man alpha 1-6-, and GlcNAc beta 1-6 Man alpha 1-6-branches by GlcNAc-transferases I, II, and V, respectively, and is responsible for the synthesis of branched oligosaccharides containing the GlcNAc beta 1-6(GlcNAc beta 1-4)(GlcNAc beta 1-2)Man alpha 1-6Man beta moiety.  相似文献   

3.
At least 6 N-acetylglucosaminyltransferases (GlcNAc-T I, II, III, IV, V and VI) are involved in initiating the synthesis of the various branches found in complex asparagine-linked oligosaccharides (N-glycans), as indicated below: GlcNAc beta 1-6 GlcNAc-T V GlcNAc beta 1-4 GlcNAc-T VI GlcNAc beta 1-2Man alpha 1-6 GlcNAc-T II GlcNAc beta 1-4Man beta 1-4-R GlcNAc T III GlcNAc beta 1-4Man alpha 1-3 GlcNAc-T IV GlcNAc beta 1-2 GlcNAc-T I where R is GlcNAc beta 1-4(+/- Fuc alpha 1-6)GlcNAcAsn-X. HPLC was used to study the substrate specificities of these GlcNAc-T and the sequential pathways involved in the biosynthesis of highly branched N-glycans in hen oviduct (I. Brockhausen, J.P. Carver and H. Schachter (1988) Biochem. Cell Biol. 66, 1134-1151). The following sequential rules have been established: GlcNAc-T I must act before GlcNAc-T II, III and IV; GlcNAc-T II, IV and V cannot act after GlcNAc-T III, i.e., on bisected substrates; GlcNAc-T VI can act on both bisected and non-bisected substrates; both Glc-NAc-T I and II must act before GlcNAc-T V and VI; GlcNAc-T V cannot act after GlcNAc-T VI. GlcNAc-T V is the only enzyme among the 6 transferases cited above which can be essayed in the absence of Mn2+. In studies on the possible functional role of N-glycan branching, we have measured GlcNAc-T III in pre-neoplastic rat liver nodules (S. Narasimhan, H. Schachter and S. Rajalakshmi (1988) J. Biol. Chem. 263, 1273-1281). The nodules were initiated by administration of a single dose of carcinogen 1,2-dimethyl-hydrazine.2 HCl 18 h after partial hepatectomy and promoted by feeding a diet supplemented with 1% orotic acid for 32-40 weeks. The nodules had significant GlcNAc-T III activity (1.2-2.2 nmol/h/mg), whereas the surrounding liver, regenerating liver 24 h after partial hepatectomy and control liver from normal rats had negligible activity (0.02-0.03 nmol/h/mg). These results suggest that GlcNAc-T III is induced at the pre-neoplastic stage in liver carcinogenesis and are consistent with the reported presence of bisecting GlcNAc residues in N-glycans from rat and human hepatoma gamma-glutamyl transpeptidase and their absence in enzyme from normal liver of rats and humans (A. Kobata and K. Yamashita (1984) Pure Appl. Chem. 56, 821-832).  相似文献   

4.
A specific and fast method for the determination of N-acetylglucosaminyltransferase III, IV and V activity in one assay is described. The method is based on the separation by HPLC of the three transferase products formed from the common acceptor oligosaccharide substrate GlcNAc beta 1----2Man alpha 1----3(GlcNAc beta 1----2Man alpha 1---- 6)Man beta 1----4GlcNAc. Assays are not interfered with by substances that result from enzymatic or chemical breakdown of the donor substrate UDP-[14C]GlcNAc. Using this assay system N-acetylglucosaminyltransferase III, IV and V activities were estimated in Novikoff ascites tumour cells, mouse lymphoma BW 5147 cells and hen oviduct.  相似文献   

5.
Malignant transformation of rodent cell lines by polyoma virus and by activated ras genes is associated with increased UDP-GlcNAc:Man alpha-R beta-1,6-N-acetylglucosaminyltransferase V (GlcNAc-transferase V) activity and it product -GlcNAc beta 1-6Man alpha 1-6Man beta 1-branched Asn-linked oligosaccharides. In this report, we have compared beta 1-6GlcNAc branching of core O- and N-linked oligosaccharides in three experimental models of malignancy, namely (a) rat2 fibroblasts and their malignant T24H-ras-transfected counterpart; (b) benign SP1 mammary carcinoma cells and two metastic sublines of SP1; and (c) the metastatic MDAY-D2 lymphoma cell line and its poorly metastatic glycosylation mutant KBL-1. In addition to the previously reported increase in GlcNAc-transferase V activity, UDP-GlcNAc:Gal beta 1-3GalNAc alpha-R (GlcNAc to GalNAc) beta-1,6-N-acetylglucosaminyltransferase (core 2 GlcNAc-transferase, EC 2.4.1.102) activity was found to be elevated by 70% in the malignant rat2 and SP1 cell lines while several other glycosyltransferase activities were not significantly different. The action of core 2 GlcNAc-transferase followed by beta 1-4Gal-transferase provides an N-acetyllactosamine antenna that can be extended with polylactosamine (i.e. repeating Gal beta 1-4GlcNAc beta 1-3) provided UDP-GlcNAc:Gal beta-R beta 1-3GlcNAc-transferase (GlcNAc-transferase) (i)) activity is present. Polylactosamine content in microsomal membrane glycoproteins was quantitated by labeling the GlcNAc termini resulting from the action of Escherichia freundii endo-beta-galactosidase with bovine galactosyltransferase/UDP-[3H] Gal. Glycopeptidase F- sensitive and -insensitive fractions were measured to assess the N- and O-linked components. In the SP1 tumor model, the metastatic sublines showed increased core 2 GlcNAc-transferase and GlcNAc-transferase V activities but no change in GlcNAc-transferase (i) activity, yet polylactosamine was increased in both O- and N-linked oligosaccharides. In rat2 cells, down-regulation of GlcNAc-transferase (i) following transformation was associated with decreased polyactosamine even though core 2 GlcNAc-transferase and GlcNAc-transferase V were elevated in the cells. Finally, a 3-fold decrease in GlcNAc-transferase V in KBL-1, the glycosylation mutant of MDAY-D2 cells, resulted in complete loss of polylactosamine in N-linked but no change in O-linked polylactosamine content. These results suggest that, provided GlcNAc-transferase (i) is not limiting, the beta 1-6-branching enzymes core 2 GlcNAc-transferase and GlcNAc-transferase V regulate the levels of polyactosamine in O- and N-linked oligosaccharides, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Purified rat liver UDP-GlcNAc:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II (Bendiak, B., and Schachter, H. (1987) J. Biol. Chem. 262, 5775-5783) has been characterized kinetically, and its substrate specificity and inhibition characteristics have been determined. Kinetic data indicate an ordered, or largely ordered sequential mechanism, with UDP-GlcNAc binding prior to the acceptor. The minimal acceptor structure required for full activity is: (Formula: see text) The acceptor molecule must have a terminal Man alpha 1-6 residue, and a terminal GlcNAc beta 1-2Man alpha 1-3 branch to display any activity, but does not require the reducing GlcNAc residue, as the enzyme was about 50% as active after reduction of this residue to N-acetylglucosaminitol. Additional residues (Gal beta 1-4 on the GlcNAc beta 1-2Man alpha 1-3 arm, or a bisecting GlcNAc beta 1-4 on the beta-Man residue) abolish catalytic activity. These results suggest a rigid order in the biosynthesis of all N-linked complex oligosaccharides (bisected and nonbisected bi-, tri-, and tetraantennary), since the enzyme must act to completion prior to the action of either UDP-Gal:GlcNAc beta 1-4 galactosyltransferase or N-acetylglucosaminyltransferase III to make such structures. Inhibition studies with nucleotides, sugars, nucleotide-sugars, and their respective analogues revealed that analogues of UDP and UTP, in which the hydrogen at the 5 position of the uracil was substituted with -CH3, bromine, or mercury (as the mercaptide) were good reversible inhibitors of the enzyme, whereas substitution at other sites lessened the inhibitory potency, usually to a large degree.  相似文献   

7.
The activity of N-acetylglucosaminyltransferase III, which adds a "bisecting" GlcNAc in beta 1,4 linkage to the beta-linked Man of the core of Asn-linked oligosaccharides (Narasimhan, S. (1982) J. Biol. Chem. 257, 10235-10242), was determined in hepatic nodules of rats initiated by administration of a single dose of carcinogen 1,2-dimethylhydrazine.2HCl (100 mg/kg, intraperitoneal) 18 h after partial hepatectomy and promoted by feeding a diet supplemented with 1% orotic acid for 32-40 weeks. N-Acetylglucosaminyltransferase III was assayed using glycopeptide GlcNAc beta 1,2Man alpha 1,6(GlcNAc beta 1,2Man alpha 1,3)Man beta 1, 4GlcNAc beta 1,4GlcNAc-Asn as substrate and, as enzyme sources, microsomal membranes of the hepatic nodules, surrounding liver, regenerating liver, and age- and sex-matched control liver. The nodules had significant N-acetylglucosaminyltransferase III activity (0.78-2.18 nmol GlcNAc transferred/h/mg of protein), while the surrounding liver, the regenerating liver (24 h after partial hepatectomy), and the control liver had negligible activity (0.02-0.03 nmol/h/mg of protein). Product isolated from a large scale N-acetylglucosaminyltransferase III incubation with hepatic nodules as enzyme source showed the presence of the bisecting GlcNAc residue by 500 MHz proton NMR spectroscopy. Concomitant with the appearance of N-acetylglucosaminyltransferase III activity in the preneoplastic nodules, the activities of N-acetylglucosaminyltransferase I and II were decreased in these membranes when compared to those from surrounding liver, regenerating liver, and control liver. These results suggest that N-acetylglucosaminyltransferase III is induced at the preneoplastic stage in liver carcinogenesis promoted by orotic acid and are consistent with the reported presence of bisecting GlcNAc residues in the Asn-linked oligosaccharides of rat and human hepatoma gamma-glutamyl transpeptidase and their absence in enzyme from normal liver of rats and humans (Kobata, A., and Yamashita, K. (1984) Pure Appl. Chem. 56, 821-832).  相似文献   

8.
A new beta1,4-N-acetylglucosaminyltransferase (GnT) responsible for the formation of branched N-linked complex-type sugar chains has been purified 64,000-fold in 16% yield from a homogenate of hen oviduct by column chromatography procedures using Q-Sepharose FF, Ni(2+)-chelating Sepharose FF, and UDP-hexanolamine-agarose. This enzyme catalyzes the transfer of GlcNAc from UDP-GlcNAc to tetraantennary oligosaccharide and produces pentaantennary oligosaccharide with the beta1-4-linked GlcNAc residue on the Manalpha1-6 arm. It requires a divalent cation such as Mn(2+) and has an apparent molecular weight of 72,000 under nonreducing conditions. The enzyme does not act on biantennary oligosaccharide (GnT I and II product), and beta1,6-N-acetylglucosaminylation of the Manalpha1-6 arm (GnT V product) is essential for its activity. This clearly distinguishes it from GnT IV, which is known to generate a beta1-4-linked GlcNAc residue only on the Manalpha1-3 arm. Based on these findings, we conclude that this enzyme is UDP-GlcNAc:GlcNAcbeta1-6(GlcNAcbeta1-2)Manalpha1-R [GlcNAc to Man]-beta1,4-N-acetylglucosaminyltransferase VI. This is the only known enzyme that has not been previously purified among GnTs responsible for antenna formation on the cores of N-linked complex-type sugar chains.  相似文献   

9.
Bovine milk UDPgalactose:N-acetylglucosamine beta-4-galactosyltransferase has been used to investigate the effect of a bisecting GlcNAc residue (linked beta 1,4 to the beta-linked mannose of the trimannosyl core of asparagine-linked complex oligosaccharides) on galactosylation of biantennary complex oligosaccharides. Columns of immobilized lectins (concanavalin A, erythroagglutinating phytohemagglutinin, and Ricinus communis agglutinin 120) were used to separate the various products of the reactions. Preferential galactosylation of the GlcNAc beta 1,2Man alpha 1,3 arm occurred both in the absence and in the presence of a bisecting GlcNAc residue; the ratio of the rates of galactosylation of the Man alpha 1,3 arm to the Man alpha 1,6 arm was 6.5 in the absence of a bisecting GlcNAc and 2.8 in its presence. The bisecting GlcNAc residue reduced galactosylation of the Man alpha 1,3 arm by about 78% probably due to steric hindrance of the GlcNAc beta 1,2Man alpha 1,3 beta 1,4 region of the substrate by the bisecting GlcNAc. This steric hindrance prevents the action of four other enzymes involved in assembly of complex asparagine-linked oligosaccharides and indicates the importance of the bisecting GlcNAc residue in the control of glycoprotein biosynthesis. The Man alpha 1,3 arm of biantennary oligosaccharides is believed to be freely accessible to enzyme action whereas the Man alpha 1,6 arm is believed to be folded back toward the core. This may explain the preferential action of Gal-transferase on the Man alpha 1,3 arm of both bisected and nonbisected oligosaccharides.  相似文献   

10.
T Szumilo  G P Kaushal  A D Elbein 《Biochemistry》1987,26(17):5498-5505
The presence of an N-acetylglucosaminyltransferase (GlcNAc-transferase) capable of adding a GlcNAc residue to GlcNAcMan3GlcNAc was demonstrated in mung bean seedlings. This enzyme was purified about 3400-fold by using (diethylaminoethyl)cellulose and phosphocellulose chromatographies and chromatography on Concanavalin A-Sepharose. The transferase was assayed by following the change in the migration of the [3H]mannose-labeled GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc on Bio-Gel P-4, or by incorporation of [3H]GlcNAc from UDP-[3H]GlcNAc into a neutral product, (GlcNAc)2Man3GlcNAc. Thus, the purified enzyme catalyzed the addition of a GlcNAc to that mannose linked in alpha 1,6 linkage to the beta-linked mannose. GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc was an excellent acceptor while Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, Man alpha 1,6(Man alpha 1,3)Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, and Man alpha 1,6(Man apha 1,3)Man alpha 1,6[GlcNAcMan alpha 1,3]Man beta 1,4GlcNAc were not acceptors. Methylation analysis and enzymatic digestions showed that both terminal GlcNAc residues on (GlcNAc)2Man3GlcNAc were attached to the mannoses in beta 1,2 linkages. The GlcNAc transferase had an almost absolute requirement for divalent cation, with Mn2+ being best at 2-3 mM. Mn2+ could not be replaced by Mg2+ or Ca2+, but Cd2+ showed some activity. The enzyme was also markedly stimulated by the presence of detergent and showed optimum activity at 0.15% Triton X-100. The Km for UDP-GlcNAc was found to be 18 microM and that for GlcNAcMan3GlcNAc about 16 microM.  相似文献   

11.
Glycoproteins synthesized by the cellular slime mold Dictyostelium discoideum have been shown to contain asparagine-linked high-mannose oligosaccharides which have an N-acetylglucosamine group in a novel intersecting position (attached beta 1-4 to the mannose linked alpha 1-6 to the core mannose). We have used crude membrane preparations from vegetative D. discoideum (strain M4) to characterize the enzyme activity responsible for catalyzing the transfer of GlcNAc to the intersecting position of high-mannose oligosaccharides. UDP-GlcNAc:oligosaccharide beta-N-acetylglucosaminyltransferase activity in these preparations attaches GlcNAc to the mannose residue-linked alpha 1-6 to the beta-linked core mannose of the following Man9GlcNAc oligosaccharide as shown by the arrow. (formula; see text) It will also attach GlcNAc to the same intersecting position and/or to the bisecting position (beta-linked core mannose) of the following Man5GlcNAc oligosaccharide. (formula; see text) An analysis of the pH profiles, effects of heat denaturation, and substrate inhibitions on the addition of GlcNAc to either the intersecting or bisecting position of this Man5GlcNAc oligosaccharide indicates that a single enzyme activity is responsible for transferring GlcNAc to both positions. Various oligosaccharides were assayed to determine the substrate specificity of the transferase activity. These data indicate that both the mannose-attached alpha 1-3 and the mannose-attached alpha 1-6 to the mannose receiving the GlcNAc play a critical role in substrate suitability; absence of the alpha 1-6 mannose results in at least a 90% decrease in activity, while absence of the alpha 1-3 mannose results in a completely inactive substrate. This suggests that the minimal substrate is the disaccharide Man alpha 1-3Man.  相似文献   

12.
Two new oligosaccharides were isolated from the urine of a patient with GM1 gangliosidosis. Final purification of the oligosaccharides was accomplished by capillary supercritical fluid chromatography. Structural analysis was by chemical analysis, chemical-ionization mass spectrometry and 400-MHz 1H-NMR spectroscopy, leading to two primary structures. The first is derived from a classical triantennary N-acetyllactosamine-type glycan: Gal beta 1-4GlcNAc beta 1-4(Gal beta 1-4GlcNAc beta 1-2)Man alpha 1-3Man beta 1-4GlcNAc. The second is unusual with a terminal disaccharide Gal beta 1-6Gal, which had not yet been described for glycans of the N-acetyllactosamine type: Gal beta 1-6Gal beta 1-4GlcNAc beta 1-2Man alpha 1-6Man beta 1-4GlcNAc.  相似文献   

13.
S Takasaki  A Kobata 《Biochemistry》1986,25(19):5709-5715
Asparagine-linked sugar chains were quantitatively released from fetuin by hydrazinolysis. Structural analysis of the sugar chains by sequential exoglycosidase digestion in combination with methylation analysis and Smith degradation revealed that most of them have typical biantennary (8%) and triantennary (74%) structures containing different amounts of N-acetylneuraminic acid residues. In addition, an unusual tetrasialyl triantennary sugar chain (17%) containing the Gal beta 1----3GlcNAc sequence in the outer chain moiety was detected, and its structure was elucidated as NeuAc alpha 2----3Gal beta 1----3(NeuAc alpha 2----6)-GlcNAc beta 1----4(NeuAc alpha 2----6Gal beta 1----4GlcNAc beta 1----2)Man alpha 1----3(NeuAc alpha 2----3Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6)Man beta 1----4GlcNAc beta 1----4GlcNAc.  相似文献   

14.
N-Acetylglucosaminyltransferase III, IV and V activities were assayed in various rat tissues and hepatomas using the same fluorescence-labeled sugar chain, GlcNAc beta 1-2Man alpha 1-3-(GlcNAc beta 1-2Man alpha 1-6)Man beta 1-4GlcNAc beta 1-4GlcNAc-2-aminopyridine as a substrate. The N-acetylglucosaminyltransferase III activity toward the substrate is the highest in most rat tissues including primary rat hepatoma. A relatively higher activity for GnT-V is found in small intestine, serum and hepatoma as compared to that of GnT-IV. Some kinetic properties of these enzymes in crude extracts were also determined.  相似文献   

15.
gamma-Glutamyltranspeptidase purified from human kidneys contains 4-5 asparagine-linked sugar chains in each molecule. The sugar chains were released from the polypeptide portion of the enzyme by hydrazinolysis as oligosaccharides and separated by paper electrophoresis into one neutral and two acidic fractions. By sequential exoglycosidase digestion and methylation analysis, the neutral fraction, which comprised 69% of total oligosaccharides, was shown to be a mixture of bisected bi- and triantennary complex-type sugar chains with and without a fucose on the proximal N-acetylglucosamine residue and with Gal beta 1----4GlcNAc and/or Gal beta 1----4(Fuc alpha 1----3)GlcNAc groups in their outer chain moieties. The acidic oligosaccharide fractions were mixtures of mono- and disialyl derivatives of bisected triantennary complex-type oligosaccharides with Gal beta 1----4GlcNAc and/or Gal beta 1----4(Fuc alpha 1----3)GlcNAc group in their outer chain moieties. Some of the outer chains of the acidic oligosaccharides were considered to be sialylated X-antigenic structures.  相似文献   

16.
An alpha-mannosidase was purified from the magnum section of Japanese quail oviduct by ammonium sulfate precipitation, DEAE-Sephacel chromatography, Sephacryl S-300 chromatography, mannan-Sepharose 4B chromatography, and hydroxyapatite chromatography. The purified alpha-mannosidase (referred to as neutral alpha-mannosidase) showed a single band on polyacrylamide gel with or without sodium dodecyl sulfate. Its molecular weight was found to be 330,000 by gel chromatography. Neutral alpha-mannosidase hydrolyzed p-nitrophenyl alpha-D-mannopyranoside and the pyridylamino derivative of Man alpha 1-6(Man alpha 1-3)Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc (Km value was 3 mM). Mannosyl alpha 1-2 linkages in the pyridylamino derivative of Man alpha 1-2 Man alpha 1-6(Man alpha 1-2Man alpha 1-3)Man alpha 1-6(Man alpha 1-2Man alpha 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc were hardly hydrolyzed. Its optimum pH was found to be 7.0. The activity of the enzyme was activated by CO2+, and was potently inhibited by Cu2+, Hg2+, swainsonine, and 1-deoxymannojirimycin.  相似文献   

17.
The susceptibility of a variety of oligosaccharides to endo-beta-N-acetylglucosaminidase D was investigated. The oligosaccharides having the structures of Man alpha 1----6 (GlcNAc beta 1----4Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAcOT, derived from complex type triantennary sugar chains, released +/- Fuc alpha 1----6GlcNAcOT upon incubation with the enzyme at almost the same rate as Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcOT. When the reaction products were reduced with NaB3H4 and analyzed by Bio-Gel P-4 column chromatography, a new radioactive peak was detected in both cases. This new radioactive oligosaccharide was confirmed to be Man alpha 1----6(GlcNAc beta 1----4Man alpha 1----3)Man beta 1----4GlcNAcOT in the former case and Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAcOT in the latter. These results indicated that endo-beta-N-acetylglucosaminidase D does not require the presence of a free hydroxyl group at the C-4 position of the alpha-mannosyl residue of the trisaccharide glycon: Man alpha 1----3Man beta 1----4GlcNAc beta 1----.  相似文献   

18.
Glycoproteins isolated from hen oviduct contain highly branched asparagine-linked oligosaccharides (N-glycans). Six N-acetylglucosaminyltransferases (GlcNAc-T I, II, III, IV, V, and VI) are involved in initiating the synthesis of these branches, as indicated below: (formula; see text) where R is GlcNAc beta 1----4(+/-Fuc alpha 1----6)GlcNAcAsn-X. HPLC has been used to study the substrate specificities of these GlcNAc-T and the sequential pathways involved in the biosynthesis of highly branched N-glycans in hen oviduct. Oligosaccharides with free reducing GlcNAc termini were prepared from various glycoproteins by hydrazinolysis-re-N-acetylation and used as GlcNAc-T substrates and HPLC standards. Enzyme assay components were separated on AG1 x 8, followed by HPLC on amine-bonded silica columns eluted with acetonitrile-water mixtures. Absorbance at 195 nm and radioactivity of eluted compounds were monitored. Substrates and products were identified by comparison of their retention times with those of oligosaccharides with known structures. Enzyme assay by HPLC is more rapid and convenient than previous GlcNAc-T assays using lectin columns or electrophoresis. Since some substrates yielded multiple products, these could be used to assay more than one GlcNAc-T in the same incubation. GlcNAc-T VI was shown to act on both bisected and nonbisected GlcNAc-terminating tetraantennary oligosaccharide substrates; GlcNAc-T II, IV, and V acted poorly or not at all on bisected substrates. GlcNAc-T V was the only enzyme among the six transferases studied that could be assayed in the absence of Mn2+.  相似文献   

19.
The substrate specificity of neutral alpha-mannosidase purified from Japanese quail oviduct [Oku, H., Hase, S., & Ikenaka, T. (1991) J. Biochem. 110, 29-34] was analyzed by using 21 oligomannose-type sugar chains. The enzyme activated with Co2+ hydrolyzed the Man alpha 1-3 and Man alpha 1-6 bonds from the non-reducing termini of Man alpha 1-6(Man alpha 1-3)Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc (M5A), but hardly hydrolyzed the Man alpha 1-2 bonds of Man9GlcNAc2. The hydrolysis rate decreased as the reducing end of substrates became more bulky: the hydrolysis rate for the pyridylamino (PA) derivative of M5A as to that of M5A was 0.8; the values for M5A-Asn and Taka-amylase A having a M5A sugar chain being 0.5 and 0.04, respectively. The end product was Man beta 1-4GlcNAc2. For the substrates with the GlcNAc structure at their reducing ends (Man5GlcNAc, Man6GlcNAc and Man9GlcNAc), the hydrolysis rate was remarkably increased: Man5GlcNAc was hydrolyzed 16 times faster than M5A, and Man2GlcNAc 40 times faster than Man9GlcNAc2. The enzyme did not hydrolyze Man alpha 1-2 residue(s) linked to Man alpha 1-3Man beta 1-4GlcNAc. The end products were as follows: [formula; see text] These results suggest that oligomannose-type sugar chains with the GlcNAc structure at their reducing ends seem to be native substrates for neutral alpha-mannosidase and the enzyme seems to hydrolyze endo-beta-N-acetylgucosaminidase digests of oligomannose-type sugar chains in the cytosol.  相似文献   

20.
UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I catalyzes an essential first step in the conversion of high mannose to hybrid and complex N-glycans (Schachter, H. (1986) Biochem. Cell Biol. 64, 163-181; Oppenheimer, C.L., and Hill, R.L. (1981) J. Biol. Chem. 256, 799-804), i.e. the addition of GlcNAc to (Man alpha 1-6(Man alpha 1-3)Man alpha 1-6)(Man alpha 1-3)Man beta 1-4GlcNAc-OR to form (Man alpha 1-6(Man alpha 1-3)Man alpha 1-6)(GlcNAc beta 1-2Man alpha 1- 3)Man beta 1-4GlcNAc-OR. The enzyme has been purified from Triton X-100 extracts of rabbit liver by chromatography on CM-Sephadex, Affi-Gel blue, UDP-hexanolamine-Sepharose, and a novel adsorbent in which UDP-GlcNAc is linked to thiopropyl-Sepharose at the 5-position of uracil. The enzyme exists in crude liver extracts in two molecular weight forms separable on Sephadex G-200. The low molecular weight form was purified 64,000-fold with a specific activity of 19.8 mumol/min/mg. The pure enzyme was free of N-acetylglucosaminyltransferase II-V activities. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single major band of Mr 45,000 and two minor bands of Mr 54,000 and 50,000. All three bands showed retarded elution from an affinity column in which the acceptor substrate for the transferase was covalently linked to Sepharose. Kinetic analysis indicated a largely ordered sequential mechanism with UDP-GlcNAc binding to the enzyme first and UDP leaving last. Studies with synthetic analogues of the substrate Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc showed that an unsubstituted equatorial hydroxyl on carbon 4 of the beta-linked Man residue was essential for enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号