首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Para-substituted benzylamines are poor reactivity probes for structure-reactivity studies with TTQ-dependent aromatic amine dehydrogenase (AADH). In this study, we combine kinetic isotope effects (KIEs) with structure-reactivity studies to show that para-substituted benzylamines are good reactivity probes of TTQ mechanism with the isolated TTQ-containing subunit of AADH. Contrary to the TTQ-containing subunit of methylamine dehydrogenase (MADH), which is catalytically inactive, the small subunit of AADH catalyzes the oxidative deamination of a variety of amine substrates. Observed rate constants are second order with respect to substrate and inhibitor (phenylhydrazine) concentration. Kinetic studies with para-substituted benzylamines and their dideuterated counterparts reveal KIEs (>6) larger than those observed with native AADH (KIEs approximately unity). This is attributed to formation of the benzylamine-derived iminoquinone requiring structural rearrangement of the benzyl side chain in the active site of the native enzyme. This structural reorganization requires motions from the side chains of adjacent residues (which are absent in the isolated small subunit). The position of Phealpha97 in particular is responsible for the conformational gating (and hence deflated KIEs) observed with para-substituted benzylamines in the native enzyme. Hammett plots for the small subunit exhibit a strong correlation of structure-reactivity data with electronic substituent effects for para-substituted benzylamines and phenethylamines, unlike native AADH for which a poor correlation is observed. TTQ reduction in the isolated subunit is enhanced by electron withdrawing substituents, contrary to structure-reactivity studies reported for synthetic TTQ model compounds in which rate constants are enhanced by electron donating substituents. We infer that para-substituted benzylamines are good reactivity probes of TTQ mechanism with the isolated small subunit. This is attributed to the absence of structural rearrangement prior to H-transfer that limits the rate of TTQ reduction by para-substituted benzylamines in native enzyme.  相似文献   

2.
Zhu Z  Sun D  Davidson VL 《Biochemistry》2000,39(37):11184-11186
Methylamine dehydrogenase (MADH) is a tryptophan tryptophylquinone (TTQ) dependent enzyme that catalyzes the oxidative deamination of primary amines. Amino acid residues of both the TTQ-bearing beta subunit and the noncatalytic alpha subunit line a substrate channel that leads from the protein surface to the enzyme active site. Phe55 of the alpha subunit is located at the opening of the active site. Conversion of alphaPhe55 to alanine dramatically alters the substrate preference of MADH. The K(m) for methylamine increases from 9 microM to 15 mM. The preferred substrates are now primary amines with chain lengths of at least seven carbons. The K(m) for 1, 10-diaminodecane is 11 microM, compared to 1.2 mM for wild-type MADH. Despite the large variation in K(m) values, k(cat) values are relatively unaffected by the mutation. Molecular modeling of substrates into the crystal structure of the enzyme active site and substrate channel provides an explanation for the dramatic changes in substrate specificity caused by this mutation of a single amino acid residue.  相似文献   

3.
C-H bond breakage by tryptophan tryptophylquinone (TTQ)-dependent methylamine dehydrogenase (MADH) occurs by vibrationally assisted tunneling (Basran, J., Sutcliffe, M. J., and Scrutton, N. S. (1999) Biochemistry 38, 3218--3222). We show here a similar mechanism in TTQ-dependent aromatic amine dehydrogenase (AADH). The rate of TTQ reduction by dopamine in AADH has a large, temperature independent kinetic isotope effect (KIE = 12.9 +/- 0.2), which is highly suggestive of vibrationally assisted tunneling. H-transfer is compromised with benzylamine as substrate and the KIE is deflated (4.8 +/- 0.2). The KIE is temperature-independent, but reaction rates are strongly dependent on temperature. With tryptamine as substrate reaction rates can be determined only at low temperature as C-H bond cleavage is rapid, and an exceptionally large KIE (54.7 +/- 1.0) is observed. Studies with deuterated tryptamine suggest vibrationally assisted tunneling is the mechanism of deuterium and, by inference, hydrogen transfer. Bond cleavage by MADH using a slow substrate (ethanolamine) occurs with an inflated KIE (14.7 +/- 0.2 at 25 degrees C). The KIE is temperature-dependent, consistent with differential tunneling of protium and deuterium. Our observations illustrate the different modes of H-transfer in MADH and AADH with fast and slow substrates and highlight the importance of barrier shape in determining reaction rate.  相似文献   

4.
The quinoprotein aromatic amine dehydrogenase (AADH) uses a covalently bound tryptophan tryptophylquinone (TTQ) cofactor to oxidatively deaminate primary aromatic amines. Recent crystal structures have provided insight into the reductive half-reaction. In contrast, no atomic details are available for the oxidative half-reaction. The TTQ O7 hydroxyl group is protonated during reduction, but it is unclear how this proton can be removed during the oxidative half-reaction. Furthermore, compared with the electron transfer from the N-quinol form, electron transfer from the non-physiological O-quinol form to azurin is significantly slower. Here we report crystal structures of the O-quinol, N-quinol, and N-semiquinone forms of AADH. A comparison of oxidized and substrate reduced AADH species reveals changes in the TTQ-containing subunit, extending from residues in the immediate vicinity of the N-quinol to the putative azurin docking site, suggesting a mechanism whereby TTQ redox state influences interprotein electron transfer. In contrast, chemical reduction of the TTQ center has no significant effect on protein conformation. Furthermore, structural reorganization upon substrate reduction places a water molecule near TTQ O7 where it can act as proton acceptor. The structure of the N-semiquinone, however, is essentially similar to oxidized AADH. Surprisingly, in the presence of substrate a covalent N-semiquinone substrate adduct is observed. To our knowledge this is the first detailed insight into a complex, branching mechanism of quinone oxidation where significant structural reorganization upon reduction of the quinone center directly influences formation of the electron transfer complex and nature of the electron transfer process.  相似文献   

5.
Site-directed mutagenesis was used to alter active-site residues of methylamine dehydrogenase (MADH) from Paracoccus denitrificans. Four residues of the beta subunit of MADH which are in close proximity to the tryptophan tryptophylquinone (TTQ) prosthetic group were modified. The crystal structure of MADH reveals that each of these residues participates in hydrogen bonding interactions with other active-site residues, TTQ or water. Relatively conservative mutations which removed the potentially reactive oxygens on the side chains of Thr122, Tyr119, Asp76 and Asp32 each resulted in greatly reduced or undetectable levels of MADH production. The reduction of MADH levels was determined by assays of activity and Western blots of crude extracts with antisera specific for the MADH beta subunit. No activity or cross-reactive protein was detected in extracts of cells expressing D76N, T122A and T122C MADH mutants. Very low levels of active MADH were produced by cells expressing D32N, Y119F, Y119E and Y119K MADH mutants. The Y119F and D32N mutants were purified from cell extracts and found to be significantly less stable than wild-type MADH. Only the T122S MADH mutant was produced at near wild-type levels. Possible roles for these amino acid residues in stabilizing unusual structural features of the MADH beta subunit, protein folding and TTQ biosynthesis are discussed.  相似文献   

6.
The crystal structure of an electron transfer complex of aromatic amine dehydrogenase (AADH) and azurin is presented. Electrons are transferred from the tryptophan tryptophylquinone (TTQ) cofactor of AADH to the type I copper of the cupredoxin azurin. This structure is compared with the complex of the TTQ-containing methylamine dehydrogenase (MADH) and the cupredoxin amicyanin. Despite significant similarities between the two quinoproteins and the two cupredoxins, each is specific for its respective partner and the ionic strength dependence and magnitude of the binding constant for each complex are quite different. The AADH-azurin interface is largely hydrophobic, covering approximately 500 A(2) of surface on each molecule, with one direct hydrogen bond linking them. The closest distance from TTQ to copper is 12.6 A compared with a distance of 9.3 A in the MADH-amicyanin complex. When the MADH-amicyanin complex is aligned with the AADH-azurin complex, the amicyanin lies on top of the azurin but is oriented quite differently. Although the copper atoms differ in position by approximately 4.7 A, the amicyanin bound to MADH appears to be rotated approximately 90 degrees from its aligned position with azurin. Comparison of the structures of the two complexes identifies features of the interface that dictate the specificity of the protein-protein interaction and determine the rate of interprotein electron transfer.  相似文献   

7.
The resonance Raman (RR) spectrum of oxidized methylamine dehydrogenase (MADHOX) exhibits a set of C-H, C-C, C = C, and C = O vibrational modes between 900 and 1700 cm-1 that are characteristic of the quinone moiety of the tryptophan tryptophlyquinone (TTQ) cofactor. The close similarity of the RR spectra for MADHs from Paracoccus denitrificans (Pd), Thiobacillus versutus (Tv), and bacterium W3A1 proves that the same cofactor is present in all three proteins. The MADHs from Pd and Tv have a v(C = O) mode at approximately 1625 cm-1 that shifts approximately 20 cm-1 upon 18O substitution of one of the carbonyl oxygens and is assigned to the in-phase symmetric stretch of the two C = O groups. The semiquinone form of Pd MADH has its own characteristic RR spectrum with altered peak frequencies and intensities as well as a decrease in the total number of peaks. The hydroxide and ammonia adducts of MADHOX produce RR spectra similar to that of the semiquinone. The spectral changes in all three cases are interpreted as being due to reduced conjugation of the cofactor. The ammonia adduct is formulated as a carbinolamine, a likely intermediate in the enzymatic mechanism. In contrast, formation of the electron-transfer complex between amicyanin and MADHOX has no effect on the vibrational frequencies (and, hence, structure) of either the MADH quinone or the amicyanin blue copper site. The behavior of the TTQ cofactors of Pd and Tv MADHs are very similar to one another and somewhat different from W3A1 MADH, particularly with regard to adduct formation and ability to undergo isotope exchange with solvent. These differences are ascribed to the cofactor environments within the proteins rather than to the structure of the cofactor itself.  相似文献   

8.
Methylamine dehydrogenase (MADH) possesses an alpha(2)beta(2) subunit structure with each smaller beta subunit possessing a tryptophan tryptophylquinone (TTQ) prosthetic group. Phe(55) of the alpha subunit is located where the substrate channel from the enzyme surface opens into the active site. Site-directed mutagenesis studies have revealed several roles for this residue in catalysis and electron transfer (ET) by MADH. Site-directed mutagenesis of either alpha Phe(55) or beta Ile(107) (a residue in the beta subunit which interacts with alpha Phe(55)) converts MADH into enzymes with specificities for long-chain amines, amylamine or propylamine. Mutation of alpha Phe(55) also affects monovalent cation binding to the active site. alpha F55A MADH exhibits an increased K(d) for cation-dependent spectral changes and a decreased K(d) for cation-dependent stimulation of the rate of gated ET from N-quinol MADH to amicyanin. These results demonstrate that alpha Phe(55) is able to directly participate in a wide range of biochemical processes not typically observed for a phenylalanine residue.  相似文献   

9.
Aromatic amine dehydrogenase was purified and characterized from Alcaligenes xylosoxidans IFO13495 grown on beta-phenylethylamine. The molecular mass of the enzyme was 95.5 kDa. The enzyme consisted of heterotetrameric subunits (alpha2beta2) with two different molecular masses of 42.3 kDa and 15.2 kDa. The N-terminal amino acid sequences of the alpha-subunit (42.3-kDa subunit) and the beta-subunit (15.2-kDa subunit) were DLPIEELXGGTRLPP and APAAGNKXPQMDDTA respectively. The enzyme had a quinone cofactor in the beta-subunit and showed a typical absorption spectrum of tryptophan tryptophylquinone-containing quinoprotein showing maxima at 435 nm in the oxidized form and 330 nm in the reduced form. The pH optima of the enzyme activity for histamine, tyramine, and beta-phenylethylamine were the same at 8.0. The enzyme retained full activity after incubation at 70 degrees C for 40 min. It readily oxidized various aromatic amines as well as some aliphatic amines. The Michaelis constants for phenazine methosulfate, beta-phenylethylamine, tyramine, and histamine were 48.1, 1.8, 6.9, and 171 microM respectively. The enzyme activity was strongly inhibited by carbonyl reagents. The enzyme could be stored without appreciable loss of enzyme activity at 4 degrees C for one month at least in phosphate buffer (pH 7.0).  相似文献   

10.
Sun D  Chen ZW  Mathews FS  Davidson VL 《Biochemistry》2002,41(47):13926-13933
Methylamine dehydrogenase (MADH) possesses an alpha(2)beta(2) structure with each smaller beta subunit possessing a tryptophan tryptophylquinone (TTQ) prosthetic group. Phe55 of the alpha subunit is located where the substrate channel from the enzyme surface opens into the active site. Site-directed mutagenesis of alphaPhe55 has revealed roles for this residue in determining substrate specificity and binding monovalent cations at the active site. It is now shown that the alphaF55A mutation also increases the rate of the true electron transfer (ET) reaction from O-quinol MADH to amicyanin. The reorganization energy associated with the ET reaction is decreased from 2.3 to 1.8 eV. The electronic coupling associated with the ET reaction is decreased from 12 to 3 cm(-1). The crystal structure of alphaF55A MADH in complex with its electron acceptors, amicyanin and cytochrome c-551i, has been determined. Little difference in the overall structure is seen, relative to the native complex; however, there are significant changes in the solvent content of the active site and substrate channel. The crystal structure of alphaF55A MADH has also been determined with phenylhydrazine covalently bound to TTQ in the active site. Phenylhydrazine binding significantly perturbs the orientation of the TTQ rings relative to each other. The ET results are discussed in the context of the new and old crystal structures of the native and mutant enzymes.  相似文献   

11.
EPR studies of the methylamine dehydrogenase (MADH)–amicyanin and MADH–amicyanin–cytochrome c551i crystalline complexes have been performed on randomly oriented microcrystals before and after exposure to the substrate, methylamine, as a function of pH. The results show that EPR signals from the redox centers present in the various proteins can be observed simultaneously. These results complement and extend earlier studies of the complexes under similar conditions that utilized single-crystal polarized absorption microspectrophotometry. The binary complex shows a blue copper axial signal, characteristic of oxidized amicyanin. After reaction of substrate with the MADH coenzyme tryptophan tryptophylquinone (TTQ), the binary complex exhibits an equilibrium mixture of oxidized copper/reduced TTQ and reduced copper/TTQ· radical, whose ratio is dependent on the pH. In the oxidized ternary complex, the same copper axial signal is observed superimposed on the low-spin ferric heme features characteristic of oxidized cytochrome c551i. After addition of substrate to the ternary complex, a decrease of the copper signal is observed, concomitant with the appearance of the radical signal derived from the semiquinone form of TTQ. The equilibrium distribution of electrons between TTQ and copper as a function of pH is similar to that observed for the binary complex. This result was essential to establish that the copper center retains its function within the crystalline ternary complex. At high pH, with time the low-spin heme EPR features disappear and the spectrum indicates that full reduction of the complex by substrate has occurred.  相似文献   

12.
Cofactors made from constitutive amino acids in proteins are now known to be relatively common. A number of these involve the generation of quinone cofactors, such as topaquinone in the copper-containing amine oxidases, and lysine tyrosylquinone in lysyl oxidase. The biogenesis of the quinone cofactor tryptophan tryptophylquinone (TTQ) in methylamine dehydrogenase (MADH) involves the post-translational modification of two constitutive Trp residues (Trp(beta)(57) and Trp(beta)(108) in Paracoccus denitrificans MADH). The modifications for generating TTQ are the addition of two oxygens to the indole ring of Trp(beta)(57) and the formation of a covalent cross-link between Cepsilon3 of Trp(beta)(57) and Cdelta1 of Trp(beta)(108). The order in which these events occur is unknown. To investigate the role Trp(beta)(108) may play in this process, this residue was mutated to both a His (betaW108H) and a Cys (betaW108C) residue. For each mutant, the majority of the protein that was isolated was inactive and exhibited weaker subunit-subunit interactions than native MADH. Analysis by mass spectrometry suggested that the inactive protein was a biosynthetic intermediate with only one oxygen atom incorporated into Trp(beta)(57) and no cross-link with residue beta108. However, in each mutant preparation, a small percentage of the mutant enzyme was active and appears to possess a functional tryptophylquinone cofactor. In the case of betaW108C, this cofactor may be identical to cysteine tryptophylquinone, recently described in the bacterial quinohemoprotein amine dehydrogenase. In betaW108H, the active cofactor is presumably a histidine tryptophylquinone, which has not been previously described, and represents the synthesis of a novel quinone protein cofactor.  相似文献   

13.
Li X  Fu R  Liu A  Davidson VL 《Biochemistry》2008,47(9):2908-2912
Methylamine dehydrogenase (MADH) contains the protein-derived cofactor tryptophan tryptophylquinone (TTQ) which is generated by the posttranslational modification of two endogenous tryptophan residues. The modifications are incorporation of two oxygens into one tryptophan side chain and the covalent cross-linking of that side chain to a second tryptophan residue. This process requires at least one accessory gene, mauG. Inactivation of mauG in vivo results in production of an inactive 119 kDa tetrameric alpha 2beta 2 protein precursor of MADH with incompletely synthesized TTQ. This precursor can be converted to active MADH with mature TTQ in vitro by reaction with MauG, a 42 kDa diheme enzyme. Steady-state kinetic analysis of the MauG-dependent conversion of the precursor to mature MADH with completely synthesized TTQ yielded values of k cat of 0.20 +/- 0.01 s (-1) and K m of 6.6 +/- 0.6 microM for the biosynthetic precursor protein in an in vitro assay. In the absence of an electron donor to initiate the reaction it was possible to isolate the MauG-biosynthetic precursor (enzyme-substrate) complex in solution using high-resolution size-exclusion chromatography. This stable complex is noncovalent and could be separated into its component proteins by anion-exchange chromatography. In contrast to the enzyme-substrate complex, a mixture of MauG and its reaction product, mature MADH, did not elute as a complex during size-exclusion chromatography. The differential binding of MauG to its protein substrate and protein product of the reaction indicates that significant conformational changes in one or both of the proteins occur during catalysis which significantly affects the protein-protein interactions.  相似文献   

14.
The biosynthesis of methylamine dehydrogenase (MADH) requires formation of six intrasubunit disulfide bonds, incorporation of two oxygens into residue betaTrp57 and covalent cross-linking of betaTrp57 to betaTrp108 to form the protein-derived cofactor tryptophan tryptophylquinone (TTQ). Residues betaAsp76 and betaAsp32 are located in close proximity to the quinone oxygens of TTQ in the enzyme active site. These residues are structurally conserved in quinohemoprotein amine dehydrogenase, which possesses a cysteine tryptophylquinone cofactor. Relatively conservative betaD76N and betaD32N mutations resulted in very low levels of MADH expression. Analysis of the isolated proteins by mass spectrometry revealed that each mutation affected TTQ biogenesis. betaD76N MADH possessed the six disulfides but had no oxygen incorporated into betaTrp57 and was completely inactive. The betaD32N MADH preparation contained a major species with six disulfides but no oxygen incorporated into betaTrp57 and a minor species with both oxygens incorporated, which was active. The steady-state kinetic parameters for the betaD32N mutant were significantly altered by the mutation and exhibited a 1000-fold increase in the Km value for methylamine. These results have allowed us to more clearly define the sequence of events that lead to TTQ biogenesis and to define novel roles for aspartate residues in the biogenesis of a protein-derived cofactor.  相似文献   

15.
The heterologous expression of tryptophan trytophylquinone (TTQ)-dependent aromatic amine dehydrogenase (AADH) has been achieved in Paracoccus denitrificans. The aauBEDA genes and orf-2 from the aromatic amine utilization (aau) gene cluster of Alcaligenes faecalis were placed under the regulatory control of the mauF promoter from P. denitrificans and introduced into P. denitrificans using a broad-host-range vector. The physical, spectroscopic and kinetic properties of the recombinant AADH were indistinguishable from those of the native enzyme isolated from A. faecalis. TTQ biogenesis in recombinant AADH is functional despite the lack of analogues in the cloned aau gene cluster for mauF, mauG, mauL, mauM and mauN that are found in the methylamine utilization (mau) gene cluster of a number of methylotrophic organisms. Steady-state reaction profiles for recombinant AADH as a function of substrate concentration differed between 'fast' (tryptamine) and 'slow' (benzylamine) substrates, owing to a lack of inhibition by benzylamine at high substrate concentrations. A deflated and temperature-dependent kinetic isotope effect indicated that C-H/C-D bond breakage is only partially rate-limiting in steady-state reactions with benzylamine. Stopped-flow studies of the reductive half-reaction of recombinant AADH with benzylamine demonstrated that the KIE is elevated over the value observed in steady-state turnover and is independent of temperature, consistent with (a) previously reported studies with native AADH and (b) breakage of the substrate C-H bond by quantum mechanical tunnelling. The limiting rate constant (k(lim)) for TTQ reduction is controlled by a single ionization with pK(a) value of 6.0, with maximum activity realized in the alkaline region. Two kinetically influential ionizations were identified in plots of k(lim)/K(d) of pK(a) values 7.1 and 9.3, again with the maximum value realized in the alkaline region. The potential origin of these kinetically influential ionizations is discussed.  相似文献   

16.
Paracoccus denitrificans methylamine dehydrogenase (MADH) is an enzyme containing a quinone cofactor tryptophan tryptophylquinone (TTQ) derived from two tryptophan residues (betaTrp(57) and betaTrp(108)) within the polypeptide chain. During cofactor formation, the two tryptophan residues become covalently linked, and two carbonyl oxygens are added to the indole ring of betaTrp(57). Expression of active MADH from P. denitrificans requires four other genes in addition to those that encode the polypeptides of the MADH alpha(2)beta(2) heterotetramer. One of these, mauG, has been shown to be involved in TTQ biogenesis. It contains two covalently attached c-type hemes but exhibits unusual properties compared to c-type cytochromes and diheme cytochrome c peroxidases, to which it has some sequence similarity. To test the role that MauG may play in TTQ maturation, the predicted proximal histidine to each heme (His(35) and His(205)) has each been mutated to valine, and wild-type MADH was expressed in the background of these two mauG mutants. The resultant MADH has been characterized by mass spectrometry and electrophoretic and kinetic analyses. The majority species is a TTQ biogenesis intermediate containing a monohydroxylated betaTrp(57), suggesting that this is the natural substrate for MauG. Previous work has shown that MADH mutated at the betaTrp(108) position (the non-oxygenated TTQ partner) is predominantly also this intermediate, and work on these mutants is extended and compared to the MADH expressed in the background of the histidine to valine mauG mutations. In this study, it is unequivocally demonstrated that MauG is required to initiate the formation of the TTQ cross-link, the conversion of a single hydroxyl located on betaTrp(57) to a carbonyl, and the incorporation of the second oxygen into the TTQ ring to complete TTQ biogenesis. The properties of MauG, which are atypical of c-type cytochromes, are discussed in the context of these final stages of TTQ biogenesis.  相似文献   

17.
K Takagi  M Torimura  K Kawaguchi  K Kano  T Ikeda 《Biochemistry》1999,38(21):6935-6942
A new quinohemoprotein amine dehydrogenase from Paracoccus denitrificans IFO 12442 was isolated and characterized in views of biochemistry and electrochemistry. This enzyme exists in periplasm and catalyzes the oxidative deamination of primary aliphatic and aromatic amines. n-Butylamine or benzylamine as a carbon and energy source strongly induces the expression of the enzyme. Carbonyl reagents inhibit the enzyme activity irreversibly. This enzyme is a heterodimer constituted of alpha and beta subunits with the molecular mass of 59.5 and 36.5 kDa, respectively. UV-vis and EPR spectroscopy, and the quinone-dependent redox cycling and heme-dependent peroxidative stains of SDS-PAGE bands revealed that the alpha subunit contains one quinonoid cofactor and one heme c per molecule, while the beta subunit has no prosthetic group. The redox potential of the heme c moiety was determined to be 0.192 V vs NHE at pH 7.0 by a mediator-assisted continuous-flow column electrolytic spectroelectrochemical technique. The analysis of the substrate titration curve allowed the evaluation of the redox potential of the quinone/semiquinone and semiquinone/quinol redox couples as 0.19 and 0.11 V, respectively.  相似文献   

18.
Sun D  Davidson VL 《FEBS letters》2002,517(1-3):172-174
Cyclopropylamine is a mechanism-based inhibitor of the quinoprotein methylamine dehydrogenase (MADH) from Paracoccus denitrificans. The resulting inactivation is accompanied by the formation of a covalent cross-link between the alpha and beta subunits of MADH. The results of site-directed mutagenesis studies indicate that Phe55 on the alpha subunit is required for this process. No cross-linking is seen with alphaF55A or alphaF55I MADH mutants. In contrast, with alphaF55E MADH cross-linking of subunits is observed. These results suggest a novel mechanistic role for a phenylalanine residue and the possible importance of protein dynamics in this enzyme mechanism.  相似文献   

19.
The biosynthesis of methylamine dehydrogenase (MADH) from Paracoccus denitrificans requires four genes in addition to those that encode the two structural protein subunits, mauB and mauA. The accessory gene products appear to be required for proper export of the protein to the periplasm, synthesis of the tryptophan tryptophylquinone (TTQ) prosthetic group, and formation of several structural disulfide bonds. To accomplish the heterologous expression of correctly assembled MADH, eight genes from the methylamine utilization gene cluster of P. denitrificans, mauFBEDACJG, were placed under the regulatory control of the coxII promoter of Rhodobacter sphaeroides and introduced into R. sphaeroides by using a broad-host-range vector. The heterologous expression of MADH was constitutive with respect to carbon source, whereas the native mau promoter allows induction only when cells are grown in the presence of methylamine as a sole carbon source and is repressed by other carbon sources. The recombinant MADH was localized exclusively in the periplasm, and its physical, spectroscopic, kinetic and redox properties were indistinguishable from those of the enzyme isolated from P. denitrificans. These results indicate that mauM and mauN are not required for MADH or TTQ biosynthesis and that mauFBEDACJG are sufficient for TTQ biosynthesis, since R. sphaeroides cannot synthesize TTQ. A similar construct introduced into Escherichia coli did not produce detectable MADH activity or accumulation of the mauB and mauA gene products but did lead to synthesizes of amicyanin, the mauC gene product. This finding suggests that active recombinant MADH is not expressed in E. coli because one of the accessory gene products is not functionally expressed. This study illustrates the potential utility of R. sphaeroides and the coxII promoter for heterologous expression of complex enzymes such as MADH which cannot be expressed in E. coli. These results also provide the foundation for future studies on the molecular mechanisms of MADH and TTQ biosynthesis, as well as a system for performing site-directed mutagenesis of the MADH gene and other mau genes.  相似文献   

20.
Interprotein electron transfer (ET) occurs between the tryptophan tryptophylquinone (TTQ) prosthetic group of aromatic amine dehydrogenase (AADH) and copper of azurin. The ET reactions from two chemically distinct reduced forms of TTQ were studied: an O-quinol form that was generated by reduction by dithionite, and an N-quinol form that was generated by reduction by substrate. It was previously shown that on reduction by substrate, an amino group displaces a carbonyl oxygen on TTQ, and that this significantly alters the rate of its oxidation by azurin (Hyun, Y-L., and Davidson V. L. (1995) Biochemistry 34, 12249-12254). To determine the basis for this change in reactivity, comparative kinetic and thermodynamic analyses of the ET reactions from the O-quinol and N-quinol forms of TTQ in AADH to the copper of azurin were performed. The reaction of the O-quinol exhibited values of electronic coupling (H(AB)) of 0.13 cm(-1) and reorganizational energy (lambda) of 1.6 eV, and predicted an ET distance of approximately 15 A. These results are consistent with the ET event being the rate-determining step for the redox reaction. Analysis of the reaction of the N-quinol by Marcus theory yielded an H(AB) which exceeded the nonadiabatic limit and predicted a negative ET distance. These results are diagnostic of a gated ET reaction. Solvent deuterium kinetic isotope effects of 1.5 and 3.2 were obtained, respectively, for the ET reactions from O-quinol and N-quinol AADH indicating that transfer of an exchangeable proton was involved in the rate-limiting reaction step which gates ET from the N-quinol, but not the O-quinol. These results are compared with those for the ET reactions from another TTQ enzyme, methylamine dehydrogenase, to amicyanin. The mechanism by which the ET reaction of the N-quinol is gated is also related to mechanisms of other gated interprotein ET reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号