首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The ideal free distribution assumes that animals select habitats that are beneficial to their fitness. When the needs of dependent offspring differ from those of the parent, ideal habitat selection patterns could vary with the presence or absence of offspring. We test whether habitat selection depends on reproductive state due to top‐down or bottom‐up influences on the fitness of woodland caribou (Rangifer tarandus caribou), a threatened, wide‐ranging herbivore. We combined established methods of fitting resource and step selection functions derived from locations of collared animals in Ontario with newer techniques, including identifying calf status from video collar footage and seasonal habitat selection analysis through latent selection difference functions. We found that females with calves avoided predation risk and proximity to roads more strongly than females without calves within their seasonal ranges. At the local scale, females with calves avoided predation more strongly than females without calves. Females with calves increased predation avoidance but not selection for food availability upon calving, whereas females without calves increased selection for food availability across the same season. These behavioral responses suggest that habitat selection by woodland caribou is influenced by reproductive state, such that females with calves at heel use habitat selection to offset the increased vulnerability of their offspring to predation risk.  相似文献   

2.
At a time of the year when female golden perch Macquaria ambigua are not normally reproductively active, they were either fed daily to satiety (Fed), starved for 150 days (S150), or starved for 150 days then fed to satiety for 30 or 60 days (S150/F30 or S150/F60). Fish showed rapid growth and increased food conversion efficiency upon re-feeding relative to Fed animals. The hepatosomatic indices were not significantly different between Fed, S150/F30 and S150/F60 groups, but were significantly reduced in S150 animals. The gonadosomatic indices ( I G) for both Fed and S150 animals were not significantly different. However, the I G values for S150/F30 and S150/F60 animals of 6·74±1·22 and 7·84±1·12 were significantly elevated relative to Fed animals and approach those described for wild mature M. ambigua . Oocyte development in Fed and S150 animals did not proceed past the cortical alveoli or perinucleolar stages, respectively, but oocytes in both S150/F30 and S150/F60 animals had undergone vitellogenesis and were close to being mature. The concentration of oestradiol and testosterone in the plasma of S150/F30 and S150/F60 animals increased in accordance with the proposed role of these hormones in teleost reproductive cycles. The reproductive response of M. ambigua to starvation and re-feeding is well suited to reproductive success in temperate Australian rivers where food availability is unpredictable.  相似文献   

3.
While intra‐population variability in resource use is ubiquitous, little is known of how this measure of niche diversity varies in space and its role in population dynamics. Here we examined how heterogeneous breeding environments can structure intra‐population niche variation in both resource use and reproductive output. We investigated intra‐population niche variation in the Arctic tundra ecosystem, studying peregrine falcon (Falco peregrinus tundrius, White) breeding within a terrestrial‐marine gradient near Rankin Inlet, Nunavut, Canada. Using stable isotope analysis, we found that intra‐population niches varied at the individual level; we examined within‐nest and among‐nest variation, though only the latter varied along the terrestrial‐marine gradient (i.e., increased among‐nest variability among birds nesting within the marine environment, indicating higher degree of specialization). Terrestrial prey species (small herbivores and insectivores) were consumed by virtually all falcons. Falcons nesting within the marine environment made use of marine prey (sea birds), but depended heavily on terrestrial prey (up to 90% of the diet). Using 28‐years of peregrine falcon nesting data, we found a positive relationship between the proportion of terrestrial habitat surrounding nest sites and annual nestling production, but no relationship with the likelihood of successfully rearing at least one nestling reaching 25 days old. Annually, successful inland breeders raised 0.47 more young on average compared to offshore breeders, which yields potential fitness consequences for this long‐living species. The analyses of niche and reproductive success suggest a potential breeding cost for accessing distant terrestrial prey, perhaps due to additional traveling costs, for those individuals with marine nest site locations. Our study indicates how landscape heterogeneity can generate proximate (niche variation) and ultimate (reproduction) consequences on a population of generalist predator. We also show that within‐individual and among‐individual variation are not mutually exclusive, but can simultaneously arise and structure intra‐population niche variation.  相似文献   

4.
Aim To compare the ability of island biogeography theory, niche theory and species–energy theory to explain patterns of species richness and density for breeding bird communities across islands with contrasting characteristics. Location Thirty forested islands in two freshwater lakes in the boreal forest zone of northern Sweden (65°55′ N to 66°09′ N; 17°43′ E to 17°55′ E). Methods We performed bird censuses on 30 lake islands that have each previously been well characterized in terms of size, isolation, habitat heterogeneity (plant diversity and forest age), net primary productivity (NPP), and invertebrate prey abundance. To test the relative abilities of island biogeography theory, niche theory and species–energy theory to describe bird community patterns, we used both traditional statistical approaches (linear and multiple regressions) and structural equation modelling (SEM; in which both direct and indirect influences can be quantified). Results Using regression‐based approaches, area and bird abundance were the two most important predictors of bird species richness. However, when the data were analysed by SEM, area was not found to exert a direct effect on bird species richness. Instead, terrestrial prey abundance was the strongest predictor of bird abundance, and bird abundance in combination with NPP was the best predictor of bird species richness. Area was only of indirect importance through its positive effect on terrestrial prey abundance, but habitat heterogeneity and spatial subsidies (emerging aquatic insects) also showed important indirect influences. Thus, our results provided the strongest support for species–energy theory. Main conclusions Our results suggest that, by using statistical approaches that allow for analyses of both direct and indirect influences, a seemingly direct influence of area on species richness can be explained by greater energy availability on larger islands. As such, animal community patterns that seem to be in line with island biogeography theory may be primarily driven by energy availability. Our results also point to the need to consider several aspects of habitat quality (e.g. heterogeneity, NPP, prey availability and spatial subsidies) for successful management of breeding bird diversity at local spatial scales and in fragmented or insular habitats.  相似文献   

5.
Aim Habitat selection studies have mainly focused on behavioural choices of individuals or on the habitat‐related regional distribution of a population, with little integration of the two approaches. This is despite the fact that traditional biogeography theory sees the geographical distribution of a species as the collective outcome of the adaptive habitat choices of individuals. Here, we integrate individual habitat choices with regional distribution through a bottom‐up Geographical Information System (GIS)‐based approach, by using a 9‐year data set on a large avian predator, the eagle owl (Bubo bubo L.). We further examine the potential population level and biodiversity consequences of this approach. Location The study was conducted in the Trento Region (central‐eastern Italian Alps) and in six other areas of the nearby Lombardia Region in the central Alps. Methods We used stepwise logistic regression to build a habitat suitability model discriminating between eagle owl territories and an equal number of random locations. The model was applied to the whole Trento region by means of a GIS so as to predict suitable habitat patches. The predicted regional distribution (presence–absence in 10‐km grid quadrats) was then compared with the observed one. Furthermore, we compared estimates of biodiversity in quadrats with and without eagle owls, so as to test whether the presence of this top predator may signal macro‐areas of high biodiversity. Results The logistic habitat suitability model showed that, compared with a random distribution, eagle owls selected low‐elevation breeding sites with high availability of prey‐rich habitats in their surroundings. Breeding performance increased with the availability of prey‐rich habitats, confirming the adaptiveness of the detected habitat choices. We applied the habitat suitability model to the 6200 km2 study region by means of a GIS and found a close fit between the observed and predicted regional distribution. Furthermore, population abundance was positively related to the availability of habitat defined as suitable by the above analyses. Finally, high biodiversity levels were associated with owl presence and with the amount of suitable owl habitat, demonstrating that modelling habitat suitability of a properly chosen indicator species may provide key conservation information at the wider ecosystem level. Main conclusions Our bottom‐up modelling approach may increase the conservation‐value of habitat selection models, by (1) predicting local and regional distribution, (2) estimating regional population size, (3) stimulating further hypothesis testing, (4) forecasting the population effects of future habitat loss and degradation and (5) aiding in the identification and prioritization of high‐biodiversity areas.  相似文献   

6.
7.
In many seabird studies, single annual proxies of prey abundance have been used to explain variability in breeding performance, but much more important is probably the timing of prey availability relative to the breeding season when energy demand is at a maximum. Until now, intraseasonal variation in prey availability has been difficult to quantify in seabirds. Using a state‐of‐the‐art ocean drift model of larval cod Gadus morhua, an important constituent of the diet of common guillemots Uria aalge in the southwestern Barents Sea, we were able to show clear, short‐term correlations between food availability and measurements of the stress hormone corticosterone (CORT) in parental guillemots over a 3‐year period (2009–2011). The model allowed the extraction of abundance and size of cod larvae with very high spatial (4 km) and temporal resolutions (1 day) and showed that cod larvae from adjacent northern spawning grounds in Norway were always available near the guillemot breeding colony while those from more distant southerly spawning grounds were less frequent, but larger. The latter arrived in waves whose magnitude and timing, and thus overlap with the guillemot breeding season, varied between years. CORT levels in adult guillemots were lower in birds caught after a week with high frequencies of southern cod larvae. This pattern was restricted to the two years (2009 and 2010) in which southern larvae arrived before the end of the guillemot breeding season. Any such pattern was masked in 2011 by already exceptionally high numbers of cod larvae in the region throughout chick‐rearing period. The findings suggest that CORT levels in breeding birds increase when the arrival of southern sizable larvae does not match the period of peak energy requirements during breeding.  相似文献   

8.
Haloxylon ammodendron and Haloxylon persicum (as sister taxa) are dominant shrubs in the Gurbantunggut Desert. The former grows in inter-dune lowlands while the latter in sand dunes. However, little information is available regarding the possible role of soil microorganisms in the habitat heterogeneity in the two Haloxylon species from a nutrient perspective. Rhizosphere is the interface of plant–microbe–soil interactions and fertile islands usually occur around the roots of desert shrubs. Given this, we applied quantitative real-time PCR combined with MiSeq amplicon sequencing to compare their rhizosphere effects on microbial abundance and community structures at three soil depths (0–20, 20–40, and 40–60 cm). The rhizosphere effects on microbial activity (respiration) and soil properties had also been estimated. The rhizospheres of both shrubs exerted significant positive effects on microbial activity and abundance (e.g., eukarya, bacteria, and nitrogen-fixing microbes). The rhizosphere effect of H. ammodendron on microbial activity and abundance of bacteria and nitrogen-fixing microbes was greater than that of H. persicum. However, the fertile island effect of H. ammodendron was weaker than that of H. persicum. Moreover, there existed distinct differences in microbial community structure between the two rhizosphere soils. Soil available nitrogen, especially nitrate nitrogen, was shown to be a driver of microbial community differentiation among rhizosphere and non-rhizosphere soils in the desert. In general, the rhizosphere of H. ammodendron recruited more copiotrophs (e.g., Firmicutes, Bacteroidetes, and Proteobacteria), nitrogen-fixing microbes and ammonia-oxidizing bacteria, and with stronger microbial activities. This helps it maintain a competitive advantage in relatively nutrient-rich lowlands. Haloxylon persicum relied more on fungi, actinomycetes, archaea (including ammonia-oxidizing archaea), and eukarya, with higher nutrient use efficiency, which help it adapt to the harsher dune crests. This study provides insights into the microbial mechanisms of habitat heterogeneity in two Haloxylon species in the poor desert soil.  相似文献   

9.
10.
11.
Food webs are strongly size‐structured so will be vulnerable to changes in environmental factors that affect large predators. However, mechanistic understanding of environmental controls of top predator size is poorly developed. We used streams to investigate how predator body size is altered by three fundamental climate change stressors: reductions in habitat size, increases in disturbance and warmer temperatures. Using new survey data from 74 streams, we showed that habitat size and disturbance were the most important stressors influencing predator body size. A synergistic interaction between that habitat size and disturbance due to flooding meant the sizes of predatory fishes peaked in large, benign habitats and their body size decreased as habitats became either smaller or harsher. These patterns were supported by experiments indicating that habitat‐size reductions and increased flood disturbance decreased both the abundance and biomass of large predators. This research indicates that interacting climate change stressors can influence predator body size, resulting in smaller predators than would be predicted from examining an environmental factor in isolation. Thus, climate‐induced changes to key interacting environmental factors are likely to have synergistic impacts on predator body size which, because of their influence on the strength of biological interactions, will have far‐reaching effects on food‐web responses to global environmental change.  相似文献   

12.
1.  Life-history theory predicts that organisms will provide an optimal level of parental investment for offspring survival balanced against the effects on their own survival and future reproductive potential.
2.  Optimal resource allocation models also predict an increase in reproductive output with age as expected future reproductive effort decreases. To date, maternal investment in sharks has received limited attention.
3.  We found that neonatal dusky sharks ( Carcharhinus obscurus ) are not independent from maternal resource allocation at the point of parturition but instead are provisioned with energy reserves in the form of an enlarged liver that constitutes approximately 20% of total body mass.
4.  Analysis of long-term archived data sets showed that a large proportion of this enlarged liver is utilized during the first weeks or months of life suggesting that the reported weight loss of newborn sharks signifies a natural orientation process and is not necessarily related to prey abundance and/or indicative of high mortality rates.
5.  Interrogation of near-term pup mass in two carcharhinids, the dusky and spinner shark ( Carcharhinus brevipinna ), further revealed an increase in reproductive output with maternal size, with evidence for a moderate decline in the largest mothers.
6.  For the dusky shark, there was a trade-off between increasing litter size and near-term pup mass in support of optimal offspring size theory.
7.  For both the dusky and spinner shark, there was a linear increase in near-term pup mass with month, which may indicate variable parturition strategies and/or that carcharhinids are able to adjust the length of the gestation period.
8.  The identification of optimal size-specific reproductive output has direct implications for improving the reproductive potential of exploited shark populations and for structuring future management strategies.  相似文献   

13.
14.
Environmental factors can shape reproductive investment strategies and influence the variance in male mating success. Environmental effects on extrapair paternity have traditionally been ascribed to aspects of the social environment, such as breeding density and synchrony. However, social factors are often confounded with habitat quality and are challenging to disentangle. We used both natural variation in habitat quality and a food supplementation experiment to separate the effects of food availability—one key aspect of habitat quality—on extrapair paternity (EPP) and reproductive success in the black-throated blue warbler, Setophaga caerulescens. High natural food availability was associated with higher within-pair paternity (WPP) and fledging two broods late in the breeding season, but lower EPP. Food-supplemented males had higher WPP leading to higher reproductive success relative to controls, and when in low-quality habitat, food-supplemented males were more likely to fledge two broods but less likely to gain EPP. Our results demonstrate that food availability affects trade-offs in reproductive activities. When food constraints are reduced, males invest in WPP at the expense of EPP. These findings imply that environmental change could alter how individuals allocate their resources and affect the selective environment that drives variation in male mating success.  相似文献   

15.
16.
Food acquisition is an important modulator of animal behavior and habitat selection that can affect fitness. Optimal foraging theory predicts that predators should select habitat patches to maximize their foraging success and net energy gain, likely achieved by targeting areas with high prey availability. However, it is debated whether prey availability drives fine‐scale habitat selection for predators. We assessed whether an ambush predator, the timber rattlesnake (Crotalus horridus), exhibits optimal foraging site selection based on the spatial distribution and availability of prey. We used passive infrared camera trap detections of potential small mammal prey (Peromyscus spp., Tamias striatus, and Sciurus spp.) to generate variables of prey availability across the study area and used whether a snake was observed in a foraging location or not to model optimal foraging in timber rattlesnakes. Our models of small mammal spatial distributions broadly predicted that prey availability was greatest in mature deciduous forests, but T. striatus and Sciurus spp. exhibited greater spatial heterogeneity compared with Peromyscus spp. We found the spatial distribution of cumulative small mammal encounters (i.e., overall prey availability), rather than the distribution of any one species, to be highly predictive of snake foraging. Timber rattlesnakes appear to forage where the probability of encountering prey is greatest. Our study provides evidence for fine‐scale optimal foraging in a low‐energy, ambush predator and offers new insights into drivers of snake foraging and habitat selection.  相似文献   

17.
The loss and fragmentation of natural habitats by human activities are pervasive phenomena in terrestrial ecosystems across the Earth and the main driving forces behind current biodiversity loss. Animal-mediated pollination is a key process for the sexual reproduction of most extant flowering plants, and the one most consistently studied in the context of habitat fragmentation. By means of a meta-analysis we quantitatively reviewed the results from independent fragmentation studies throughout the last two decades, with the aim of testing whether pollination and reproduction of plant species may be differentially susceptible to habitat fragmentation depending on certain reproductive traits that typify the relationship with and the degree of dependence on their pollinators. We found an overall large and negative effect of fragmentation on pollination and on plant reproduction. The compatibility system of plants, which reflects the degree of dependence on pollinator mutualism, was the only reproductive trait that explained the differences among the species' effect sizes. Furthermore, a highly significant correlation between the effect sizes of fragmentation on pollination and reproductive success suggests that the most proximate cause of reproductive impairment in fragmented habitats may be pollination limitation. We discuss the conservation implications of these findings and give some suggestions for future research into this area.  相似文献   

18.
Distinguishing the roles that different factors, such as sampling effects and habitat heterogeneity, play in generating species‐area curves continues to be difficult in many communities. A recent response to this challenge is the proposal of a ‘zoom’ protocol in which species richness and habitat heterogeneity are sampled in successively larger units (transects or quadrats). The utility of this approach requires that there be justifiable, predictable and unambiguous relationships between richness and heterogeneity. Results of computer simulations that I have done to test the predicted relationships demonstrate, however, that the predicted patterns were not always observed and, on occasion, more complex relationships were observed in their place. While the development of such protocols may increase our understanding of species‐area curves, they are unlikely ever to pronounce unambiguously on their causes.  相似文献   

19.
Many farmland bird species have declined markedly in Europe in recent decades because of changes in agricultural practice. The specific causes vary and are poorly known for many species. The Little Owl, which feeds extensively on large invertebrates and is strongly associated with the agricultural landscape, has declined over most of northwestern Europe, including Denmark. We investigated the likely reasons for the population decline in Denmark by identifying patterns of local extinction (scale, 5 × 5 km2) and estimating demographic parameters affecting local survival, focusing on changes over time and their relationship to habitat characteristics. The distribution of the Little Owl in Denmark contracted considerably between 1972–74 and 1993–96. The extent of contraction varied across the country, and the only habitat correlate was that local disappearance was associated with smaller amounts of agricultural land. Analyses of ring recovery data suggested a constant annual adult survival rate of 61% from 1920 to 2002, which is similar to estimates from countries with stable populations. First‐year annual survival rates were much lower than values previously reported. From the 1970s into the 21st century, the mean number of fledglings declined from around 3 to < 2 young per territory, but the decline in clutch size was considerably less. Reproductive parameters were higher closer to habitat types known to be important foraging habitats for Little Owls, and were also positively correlated with the amount of seasonally changing land cover (mostly farmland) within a 1‐km radius around nests as well as temperatures before and during the breeding season. Experimental food supplementation to breeding pairs increased the proportion of eggs that resulted in fledged young from 27 to 79%, supporting the hypothesis that the main proximate reason underlying the ongoing population decline is reduced productivity induced by energetic constraints after egg‐laying. Conservation efforts should target enhancement of food availability during the breeding season. Other farmland species dependent on large invertebrates are likely to share the problems that Little Owls face in modern agricultural landscapes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号