共查询到20条相似文献,搜索用时 15 毫秒
1.
S Beeckmans 《Methods (San Diego, Calif.)》1999,19(2):278-305
Proteins and enzymes are now generally thought to be organized within the cell to form clusters in a dynamic and versatile way, and heterologous protein-protein interactions are believed to be involved in virtually all cellular events. Therefore we need appropriate tools to detect and study such interactions. Chromatographic techniques prove to be well suited for this kind of investigation. Real complexes formed between proteins can be studied by classic gel filtration. When enzymes are studied, active enzyme gel chromatography is a useful alternative. A variant of classic gel filtration is gel filtration equilibrium analysis, which is similar to equilibrium dialysis. When the association formed is only dynamic and equilibrates very rapidly, either the Hummel-Dryer method of equilibrium gel filtration or large-zone equilibrium filtration sometimes allows the interactions to be analyzed, both qualitatively and quantitatively. Very often, however, interactions between enzymes and proteins can only be evidenced in vitro in media that mimic the intracellular situation. Immobilized proteins are excellent tools for this type of research. Several examples are indeed known where the immobilization of an enzyme on a solid support does not affect its real properties, but rather changes its environment in such a way that the diffusion becomes limiting. Affinity chromatography using immobilized proteins allows the analysis of heterologous protein-protein interactions, both qualitatively and quantitatively. A useful alternative appears to be affinity electrophoresis. The latter technique, however, is exclusively qualitative. All these techniques are described and illustrated with examples taken from the literature. 相似文献
2.
Elucidating kinetic processes of protein–protein interactions (PPI) helps to understand how basic building blocks affect overall behavior of living systems. In this study, we used structure‐based properties to build predictive models for kinetic constants of PPI. A highly diverse PPI dataset, protein–protein kinetic interaction data and structures (PPKIDS), was built. PPKIDS contains 62 PPI with complex structures and kinetic constants measured experimentally. The influence of structural properties on kinetics of PPI was studied using 35 structure‐based features, describing different aspects of complex structures. Linear models for the prediction of kinetic constants were built by fitting with selected subsets of structure‐based features. The models gave correlation coefficients of 0.801, 0.732, and 0.770 for koff, kon, and Kd, respectively, in leave‐one‐out cross validations. The predictive models reported here use only protein complex structures as input and can be generally applied in PPI studies as well as systems biology modeling. Our study confirmed that different properties play different roles in the kinetic process of PPI. For example, kon was affected by overall structural features of complexes, such as the composition of secondary structures, the change of translational and rotational entropy, and the electrostatic interaction; while koff was determined by interfacial properties, such as number of contacted atom pairs per 100 Å2. This information provides useful hints for PPI design. Proteins 2010;79:720–734. © 2010 Wiley‐Liss, Inc. 相似文献
3.
D R Appling 《Methods (San Diego, Calif.)》1999,19(2):338-349
This article describes genetic approaches to the study of heterologous protein-protein interactions, focusing on the yeast Saccharomyces cerevisiae as a useful eukaryotic model system. Several methods are described that can be used to search for new interactions, including extragenic suppression, multicopy suppression, synthetic lethality, and transdominant inhibition. Strategies for screening, genetic characterization, and clone identification are described, along with recent examples from the literature. In addition, genetic methods are discussed that can be used to further characterize a newly discovered protein-protein interaction. These include the creation of mutant libraries of a given protein by chemical mutagenesis or polymerase chain reaction, the production of dominant-negative mutants, and strategies for introducing these mutant alleles back into yeast for analysis. Although these genetic methods are quite powerful, they are often just a starting point for further biochemical or cell biological experiments. 相似文献
4.
Catherine L Bair Amos Oppenheim Andrei Trostel Gali Prag Sankar Adhya 《Molecular microbiology》2008,67(4):719-728
Analysing protein-protein interactions is critical in proteomics and drug discovery. The usage of 2-Hybrid (2lambda) systems is limited to an in vivo environment. We describe a bacteriophage 2-Hybrid system for studying protein interactions in vitro. Bait and prey are displayed as fusions to the surface of phage lambda that are marked with different selectable drug-resistant markers. An interaction of phages in vitro through displayed proteins allows bacterial infection by two phages resulting in double drug-resistant bacterial colonies at very low multiplicity of infections. We demonstrate interaction of the protein sorting signal Ubiquitin with the Vps9-CUE, a Ubiquitin binding domain, and by the interaction of (Gly-Glu)(4) and (Gly-Arg)(4) peptides. Interruptions of the phage interactions by non-fused (free) bait or prey molecules show how robust and unique our approach is. We also demonstrate the use of Ubiquitin and CUE display phages to find binding partners in a lambda-display library. The unique usefulness to 2lambda is also described. 相似文献
5.
The rates of H-D exchange for imino and amino protons in adenosine, calf thymus DNA, poly (dA-dT), poly(dG-dC), and poly (dG-me5dC) were determined using stopped flow kinetic methods in the presence of various concentrations of Tris, imidazole, Mg2+, and spermine in citrate buffer (pH 7, 25 degrees C). CD spectroscopic studies showed that all polynucleotides always remain in the B-form under these conditions. An increase in the concentration of Tris and imidazole from 5 mu M to 20 mM caused an increase in the rates of exchange of both fast-exchanging imino and slow-exchanging amino protons. The limiting rates of exchange at infinite concentrations of catalysts were found to be different for fast (31-57 sec-1) and slow (1-2 sec-1) exchanging protons. These results indicate that imino and amino protons of B-DNA exchange asymmetrically from two different open states as observed for Z-DNA. An increase in the concentration of spermine from a ratio of 1:50 to 1:2 of positive charge/phosphate decreased the rate of exchange of imino protons of calf-thymus DNA, poly(dG-dC), and poly(dG-me5dC), but increased the rate of exchange of the imino protons of poly(dA-dT) without affecting the exchange rate of the amino protons of any of the polynucleotides. These results are interpreted in terms of possible spermine-induced change of conformations of oligonucleotides of specific sequence that has been suggested by theoretical model building studies. 相似文献
6.
Mass spectrometry for the study of protein-protein interactions 总被引:8,自引:0,他引:8
The identification of subpicomolar amounts of protein by mass spectrometry (MS) coupled with two-dimensional methods to separate complex protein mixtures is fueling the field of proteomics, and making feasible the notion of cataloging and comparing all of the expressed proteins in a biological sample. Functional proteomics is a complementary effort aimed at the characterization of functional features of proteins, such as their interactions with other proteins. Proteins comprise modular domains, many of which are noncatalytic modules that direct protein-protein interactions. Capturing proteins of interest and their interacting proteins by using high-affinity antibodies presents a simple method to prepare relatively simple protein mixtures easily resolved in one-dimensional formats. Individual or mixtures of proteins identified as stained bands in polyacrylamide gels are subjected to in situ digestion with the protease trypsin, and the extracted peptide fragments are analyzed by MS. The quality, quantity, and complexity of the tryptic digest, the species origin of the proteins, and the quality of the corresponding databases of genomic and protein information greatly influence the subsequent MS analysis in terms of degree of difficulty and methodological approach required to make an unambiguous protein identification. In this article we report the isolation of associated proteins from a complex cell-derived lysate by using an epitope-directed antibody. The protein pICLn engineered to carry an epitope tag was purified from cultured human embryonic kidney cells, and found to associate with a variety of proteins including the spliceosomal proteins smE and smG. By application of this general approach, the systematic identification of protein complexes and assignment of protein function are possible. 相似文献
7.
Morrison JL Breitling R Higham DJ Gilbert DR 《Bioinformatics (Oxford, England)》2006,22(16):2012-2019
MOTIVATION: Protein-protein interaction networks are one of the major post-genomic data sources available to molecular biologists. They provide a comprehensive view of the global interaction structure of an organism's proteome, as well as detailed information on specific interactions. Here we suggest a physical model of protein interactions that can be used to extract additional information at an intermediate level: It enables us to identify proteins which share biological interaction motifs, and also to identify potentially missing or spurious interactions. RESULTS: Our new graph model explains observed interactions between proteins by an underlying interaction of complementary binding domains (lock-and-key model). This leads to a novel graph-theoretical algorithm to identify bipartite subgraphs within protein-protein interaction networks where the underlying data are taken from yeast two-hybrid experimental results. By testing on synthetic data, we demonstrate that under certain modelling assumptions, the algorithm will return correct domain information about each protein in the network. Tests on data from various model organisms show that the local and global patterns predicted by the model are indeed found in experimental data. Using functional and protein structure annotations, we show that bipartite subnetworks can be identified that correspond to biologically relevant interaction motifs. Some of these are novel and we discuss an example involving SH3 domains from the Saccharomyces cerevisiae interactome. AVAILABILITY: The algorithm (in Matlab format) is available (see http://www.maths.strath.ac.uk/~aas96106/lock_key.html). 相似文献
8.
A structural perspective on protein-protein interactions 总被引:1,自引:0,他引:1
Russell RB Alber F Aloy P Davis FP Korkin D Pichaud M Topf M Sali A 《Current opinion in structural biology》2004,14(3):313-324
9.
10.
A kinetic study of nucleotide interactions with pyruvate kinase 总被引:4,自引:0,他引:4
11.
The interaction of biologicalmacromolecules, whether protein-DNA, antibody-antigen, hormone-receptor, etc., illustrates the complexity and diversity of molecular recognition. The importance of such interactions in the immune response, signal transduction cascades, and gene expression cannot be overstated. It is of great interest to determine the nature of the forces that stabilize the interaction. The thermodynamics of association are characterized by the stoichiometry of the interaction (n), the association constant (K(a)), the free energy (DeltaG(b)), enthalpy (DeltaH(b)), entropy (DeltaS(b)), and heat capacity of binding (DeltaC(p)). In combination with structural information, the energetics of binding can provide a complete dissection of the interaction and aid in identifying the most important regions of the interface and the energetic contributions. Various indirect methods (ELISA, RIA, surface plasmon resonance, etc.) are routinely used to characterize biologically important interactions. Here we describe the use of isothermal titration calorimetry (ITC) in the study of protein-protein interactions. ITC is the most quantitative means available for measuring the thermodynamic properties of a protein-protein interaction. ITC measures the binding equilibrium directly by determining the heat evolved on association of a ligand with its binding partner. In a single experiment, the values of the binding constant (K(a)), the stoichiometry (n), and the enthalpy of binding (DeltaH(b)) are determined. The free energy and entropy of binding are determined from the association constant. The temperature dependence of the DeltaH(b) parameter, measured by performing the titration at varying temperatures, describes the DeltaC(p) term. As a practical application of the method, we describe the use of ITC to study the interaction between cytochrome c and two monoclonal antibodies. 相似文献
12.
A network of protein-protein interactions in yeast 总被引:29,自引:0,他引:29
A global analysis of 2,709 published interactions between proteins of the yeast Saccharomyces cerevisiae has been performed, enabling the establishment of a single large network of 2,358 interactions among 1,548 proteins. Proteins of known function and cellular location tend to cluster together, with 63% of the interactions occurring between proteins with a common functional assignment and 76% occurring between proteins found in the same subcellular compartment. Possible functions can be assigned to a protein based on the known functions of its interacting partners. This approach correctly predicts a functional category for 72% of the 1,393 characterized proteins with at least one partner of known function, and has been applied to predict functions for 364 previously uncharacterized proteins. 相似文献
13.
14.
A free energy decomposition scheme has been developed and tested on antibody-antigen and protease-inhibitor binding for which accurate experimental structures were available for both free and bound proteins. Using the x-ray coordinates of the free and bound proteins, the absolute binding free energy was computed assuming additivity of three well-defined, physical processes: desolvation of the x-ray structures, isomerization of the x-ray conformation to a nearby local minimum in the gas-phase, and subsequent noncovalent complex formation in the gas phase. This free energy scheme, together with the Generalized Born model for computing the electrostatic solvation free energy, yielded binding free energies in remarkable agreement with experimental data. Two assumptions commonly used in theoretical treatments; viz., the rigid-binding approximation (which assumes no conformational change upon complexation) and the neglect of vdW interactions, were found to yield large errors in the binding free energy. Protein-protein vdW and electrostatic interactions between complementary surfaces over a relatively large area (1400--1700 A(2)) were found to drive antibody-antigen and protease-inhibitor binding. 相似文献
15.
Diversity of protein-protein interactions 总被引:4,自引:0,他引:4
In this review, we discuss the structural and functional diversity of protein-protein interactions (PPIs) based primarily on protein families for which three-dimensional structural data are available. PPIs play diverse roles in biology and differ based on the composition, affinity and whether the association is permanent or transient. In vivo, the protomer's localization, concentration and local environment can affect the interaction between protomers and are vital to control the composition and oligomeric state of protein complexes. Since a change in quaternary state is often coupled with biological function or activity, transient PPIs are important biological regulators. Structural characteristics of different types of PPIs are discussed and related to their physiological function, specificity and evolution. 相似文献
16.
Teichmann SA 《Bioinformatics (Oxford, England)》2002,18(Z2):S249
In the postgenomic era, one of the most interesting and important challenges is to understand protein interactions on a large scale. The physical interactions between protein domains are fundamental to the workings of a cell: in multi-domain polypeptide chains, in multi-subunit proteins and in transient complexes between proteins that also exist independently. Thus experimental investigation of protein-protein interactions has been extensive, including recent large-scale screens using mass spectrometry. The role of computational research on protein-protein interactions encompasses not only prediction, but also understanding the nature of the interactions and their three-dimensional structures. I will discuss properties such as sequence conservation and co-regulation of genes and proteins involved in different types of physical interactions. Given that all proteins consist of their evolutionary units, the domains, all interactions occur between these domains. The interactions between domains belonging to different protein families will be the second topic of my talk. 相似文献
17.
Protein-protein interactions are involved in many biological processes ranging from DNA replication, to signal transduction, to metabolism control, to viral assembly. The understanding of those interactions would allow the effective design of new drugs and further manipulation of those interactions. Several useful analytical methods are available for the study of protein-protein binding, and among them, electrophoresis is commonly used. We describe two types of electrophoresis: gel electrophoresis and capillary electrophoresis. Gel electrophoresis is a well-established method used to study protein-protein interactions and includes overlay gel electrophoresis, charge shift method, band shift assay, countermigration electrophoresis, affinophoresis, affinity electrophoresis, rocket immunoelectrophoresis, and crossed immunoelectrophoresis. These techniques are briefly described along with their advantages and limitations. Capillary electrophoresis, on the other hand, is a relatively new method and affinity capillary electrophoresis has demonstrated its value in the measurement of binding constants, the estimation of kinetic rate constants, and the determination of stoichiometry of biomolecular interactions. It offers short analysis time, requires minute amounts of protein samples, usually involves no radiolabeled compounds, and, most importantly, is carried out in solution. We summarize the principles of affinity capillary electrophoresis for studying protein-protein interactions along with current limitations and describe in depth its application to the determination of stoichiometries of tight and weak binding protein-protein interactions. The protocol presented in the experimental section details the use of affinity capillary electrophoresis for the determination of stoichiometry of protein complexes. 相似文献
18.
A hybrid approach to extract protein-protein interactions 总被引:1,自引:0,他引:1
19.
Use of protein-protein interactions in affinity chromatography. 总被引:2,自引:0,他引:2
Biospecific recognition between proteins is a phenomenon that can be exploited for designing affinity-chromatographic purification systems for proteins. In principle, the approach is straightforward, and there are usually many alternative ways, since a protein can be always found which binds specifically enough to the desired protein. Routine immunoaffinity chromatography utilizes the recognition of antigenic epitopes by antibodies. However, forces involved in protein-protein interactions as well the forces keeping the three-dimensional structures of proteins intact are complicated, and proteins are easily unfolded by various factors with unpredictable results. Because of this and because of the generally high association strength between proteins, the correct adjustment of binding forces between an immobilized protein and the protein to be purified as well as the release of bound proteins in biologically active form from affinity complexes are the main problem. Affinity systems involving interactions like enzyme-enzyme, subunit-oligomer, protein-antibody, protein-chaperone and the specific features involved in each case are presented as examples. This article also aims to sketch prospects for further development of the use of protein-protein interactions for the purification of proteins. 相似文献
20.
Quantitative determinations of the dissociation constants of biomolecular interactions, in particular protein-protein interactions, are essential for a detailed understanding of the molecular basis of their specificities. Fluorescence spectroscopy is particularly well suited for such studies. This article highlights the theoretical and practical aspects of fluorescence polarization and its application to the study of protein-protein interactions. Consideration is given to the nature of the different types of fluorescence probes available and the probe characteristics appropriate for the system under investigation. Several examples from the literature are discussed that illustrate different practical aspects of the technique applied to diverse systems. 相似文献