首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomic force microscopy of microfibrils in primary cell walls   总被引:6,自引:0,他引:6  
Davies LM  Harris PJ 《Planta》2003,217(2):283-289
Examination of angiosperm primary cell walls by transmission electron microscopy shows that they contain microfibrils that probably consist of cellulose microfibrils surrounded by associated non-cellulosic polysaccharides. Previous studies using solid-state (13)C NMR spectroscopy have shown that the cellulose is all crystalline with crystallites of cross-sectional dimensions of 2-3 nm. However, it is not known if each microfibril contains only one, or more than one crystallite because there is no agreement about the dimensions of the microfibrils. Partially hydrated primary cell walls isolated from onion ( Allium cepa L.) and Arabidopsis thaliana (L.) Heynh. were examined by atomic force microscopy and the microfibril diameters determined. The cell walls of both species contained tightly interwoven microfibrils of uniform diameter: 4.4+/-0.13 nm in the onion and 5.8+/-0.17 nm in A. thaliana. The effect was also examined of extracting the A. thaliana cell walls to remove pectic polysaccharides. The microfibrils in the extracted cell walls of A. thaliana were significantly narrower (3.2+/-0.13 nm) than those in untreated walls. The results are consistent with the microfibrils containing only one cellulose crystallite.  相似文献   

2.
The cell-wall polysaccharides of Arabidopsis thaliana leaves have been isolated, purified, and characterized. The primary cell walls of all higher plants that have been studied contain cellulose, the three pectic polysaccharides homogalacturonan, rhamnogalacturonan I and rhamnogalacturonan II, the two hemicelluloses xyloglucan and glucuronoarabinoxylan, and structural glycoproteins. The cell walls of Arabidopsis leaves contain each of these components and no others that we could detect, and these cell walls are remarkable in that they are particularly rich in phosphate buffer-soluble polysaccharides (34% of the wall). The pectic polysaccharides of the purified cell walls consist of rhamnogalacturonan I (11%), rhamnogalacturonon II (8%), and homogalacturonan (23%). Xyloglucan (XG) accounts for 20% of the wall, and the oligosaccharide fragments generated from XG by endoglucanase consist of the typical subunits of other higher plant XGs. Glucuronoarabinoxylan (4%), cellulose (14%) and protein (14%) account for the remainder of the wall. Except for the phosphate buffer-soluble pectic polysaccharides, the polysaccharides of Arabidopsis leaf cell walls occur in proportions similar to those of other plants. The structure of the Arabidopsis cell-wall polysaccharides are typical of those of many other plants.  相似文献   

3.
In the Arabidopsis mutant irx3, truncation of the AtCesA7 gene encoding a xylem-specific cellulose synthase results in reduced cellulose synthesis in the affected xylem cells and collapse of mature xylem vessels. Here we describe spectroscopic experiments to determine whether any cellulose, normal or abnormal, remained in the walls of these cells and whether there were consequent effects on other cell-wall polysaccharides. Xylem cell walls from irx3 and its wild-type were prepared by anatomically specific isolation and were examined by solid-state NMR spectroscopy and FTIR microscopy. The affected cell walls of irx3 contained low levels of crystalline cellulose, probably associated with primary cell walls. There was no evidence that crystalline cellulose was replaced by less ordered glucans. From the molecular mobility of xylans and lignin it was deduced that these non-cellulosic polymers were cross-linked together in both irx3 and the wild-type. The disorder previously observed in the spatial pattern of non-cellulosic polymer deposition in the secondary walls of irx3 xylem could not be explained by any alteration in the structure or cross-linking of these polymers and may be attributed directly to the absence of cellulose microfibrils which, in the wild-type, scaffold the organisation of the other polymers into a coherent secondary cell wall.  相似文献   

4.
Zhu Y  Pettolino F  Mau SL  Bacic A 《Phytochemistry》2005,66(9):1067-1076
Panax notoginseng is a commonly used medicinal plant in south-western China. Recent studies indicate that wall polysaccharides are responsible for some of the immunostimulatory activity. Fractionation of the P. notoginseng root powder alcohol insoluble residue (AIR) and its compositional analysis enabled us to deduce the polysaccharide and protein composition of the root cell walls. P. notoginseng walls are composed primarily of polysaccharide (approximately 97% w/w) and some protein. The polysaccharides include pectic polysaccharides (neutral Type I 4-galactan (21%), arabinan (5%), acidic rhamnogalacturonan I (RG I, 2%) and homogalacturonan (HGA, 24%), non-cellulosic polysaccharides (heteroxylan, 3%), xyloglucan (XG, 3%) and heteromannan (1%)) and cellulose (24%). The root AIR also contains Type II AG/AGPs (5% w/w) typically associated with the plasma membrane and extracellular matrix. Thus, P. notoginseng roots contain polysaccharides typical of Type I primary cell walls but are distinguished by their very high levels of Type I 4-galactans and low levels of XGs. The major amino acids in the AIR were Leu (14 mol%), Asx (16 mol%), Glx (10 mol%), Ala (9 mol%), Thr (9 mol%) and Val (9 mol%).  相似文献   

5.
Cellulose and xyloglucan (XG) assemble to form the cellulose/XG network, which is considered to be the dominant load-bearing structure in the growing cell walls of non-graminaceous land plants. We have extended the most commonly accepted model for the macromolecular organization of XG in this network, based on the structural and quantitative analysis of three distinct XG fractions that can be differentially extracted from the cell walls isolated from etiolated pea stems. Approximately 8% of the dry weight of these cell walls consists of XG that can be solubilized by treatment of the walls with a XG-specific endoglucanase (XEG). This material corresponds to an enzyme-susceptible XG domain, proposed to form the cross-links between cellulose microfibrils. Another 10% of the cell wall consists of XG that can be solubilized by concentrated KOH after XEG treatment. This material constitutes another XG domain, proposed to be closely associated with the surface of the cellulose microfibrils. An additional 3% of the cell wall consists of XG that can be solubilized only when the XEG- and KOH-treated cell walls are treated with cellulase. This material constitutes a third XG domain, proposed to be entrapped within or between cellulose microfibrils. Analysis of the three fractions indicates that metabolism is essentially limited to the enzyme-susceptible domain. These results support the hypothesis that enzyme-catalyzed modification of XG cross-links in the cellulose/XG network is required for the growth and development of the primary plant cell wall, and demonstrate that the structural consequences of these metabolic events can be analyzed in detail.  相似文献   

6.
Solid-state CP/MAS 13C NMR spectroscopy was used to determine the effects of three different sequential extraction procedures, used to remove non-cellulosic polysaccharides, on the molecular ordering of cellulose in a cell-wall preparation containing mostly primary cell walls obtained from the leaves of the model dicotyledon, Arabidopsis thaliana. The extractions were 50 mM trans-1,2-diaminocyclohexane N,N,N',N'-tetraacetic acid (CDTA) and 50 mM sodium carbonate (giving Residue 1); 50 mM CDTA, 50 mM sodium carbonate and 1 M KOH (giving Residue 2); and 50 mM CDTA, 50 mM sodium carbonate and 4 M KOH (giving Residue 3). The molecular ordering of cellulose in Residue 1 was similar to that in unextracted walls: the cellulose was almost all crystalline, with 43% of molecules contained in crystallite interiors and similar proportions of the triclinic (I(alpha)) and monoclinic (I(beta)) crystal forms. Residue 2 was partly decrystallized and the remaining crystallites were mostly in the I(beta) form. Residue 3 was a mixture of cellulose II, cellulose I and amorphous cellulose. The presence of signals at 100.0 and 102.3 ppm in the spectra of Residues 1 and 2, but not of unextracted cell walls, suggested that the extractions giving these residues caused some of the non-cellulosic polysaccharides, possibly xyloglucans and galactoglucomannans, to become relatively well ordered, for example through interactions with cellulose crystallite surfaces.  相似文献   

7.
A comparison was made of the cell wall compositions of stem internode tissues from two members of the Chenopodiaceae. Cell walls from Anabasis syriaca (a desert xerophyte) contained non-cellulosic polysaccharides rich in arabinose, xylose and galacturonic acid. The non-cellulosic polysaccharides from cell walls of Spinacia oleracea (a mesophyte) were rich in glucose. Anabasis syriaca cell walls contained relatively more cellulose and lignin than those of Spinacia oleracea.  相似文献   

8.
9.
The polysaccharide compositions of unlignified primary cell walls from two species of palms were examined. Cell-wall preparations were isolated from the stem apex, including the pre-emergent leaflets and rachides, of Phoenix canariensis (Canary Island date palm), and from leaflets and rachides dissected from pre-emergent leaves in the stem apex of Rhopalostylis sapida (Nikau palm). The non-cellulosic polysaccharides in the cell-wall preparations from both species had similar monosaccharide compositions, with arabinose and galactose being the predominant neutral monosaccharides, together with large amounts of galacturonic acid. These monosaccharide compositions indicated the presence of large proportions of pectic polysaccharides, including homogalacturonans. This was confirmed by linkage analyses of the cell-wall preparations which showed the presence of large proportions of pectic arabinans, together with pectic galactans and/or Type I arabinogalactans. Evidence for rhamnogalacturonan I and small amounts of rhamnogalacturonan II was also obtained. In addition to pectic polysaccharides, the cell-wall preparations contained smaller amounts of xyloglucans and even smaller amounts of heteroxylans, probably glucuronoarabinoxylans, and glucomannans and/or galactoglucomannans; (1→3,1→4)-β-D-glucans were not present. Although palms (Arecaceae) are commelinoid monocotyledons, the polysaccharide compositions of their primary cell walls resemble those of non-commelinoid monocotyledons and dicotyledons. These compositions contrast with those of primary cell walls of other commelinoid families which have glucuronoarabinoxylans rather than pectic polysaccharides as the major non-cellulosic polysaccharides. The results are discussed in relation to the possible evolution of the composition of primary cell walls of monocotyledons.  相似文献   

10.
Cross-links between cellulose microfibrils and xyloglucan (XG) molecules play a major role in defining the structural properties of plant cell walls and the regulation of growth and development of dicotyledonous plants. How these cross-links are established and how they are regulated has yet to be determined. In a previous study, preliminary data were presented which suggested that the different sidechains of XG may play a role in controlling cellulose microfibril-XG interactions. In this study, this question is addressed directly by analyzing to what extent the different sidechains of pea cell wall XG and nasturtium seed storage XG affect their binding to cellulose microfibrils. Of particular importance to this study are the chemical data indicating that pea XG possesses a trisaccharide sidechain, which is not found in nasturtium XG. To this end, conformational dynamic simulations have been used to predict whether oligosaccharides representative of pea and nasturtium XG can adopt a hypothesized cellulose-binding conformation and which of these XGs exhibits a preferential ability to bind cellulose. Extensive analysis of the conformational forms populated during 300 K and high-temperature Monte Carlo simulations established that a planar, sterically accessible, glucan backbone is essential for optimal cellulose-binding. For the trisaccharide sidechain-containing oligosaccharide as found in pea XG, sidechain orientation appeared to regulate the gradual acquisition of this hypothesized cellulose binding conformation. Thus, conformational forms were identified that included the twisted backbone (non-planar) putative solution form of XG, forms in which the trisaccharide sidechain orientation enables increased backbone planarity and steric accessibility, and finally a planar, sterically accessible, backbone. By applying these conformational requirements for cellulose binding, it has been determined that pea XG possesses a two- to threefold occurrence of the cellulose binding conformation than nasturtium XG. Based on this finding, it was predicted that pea XG would bind to cellulose at a higher rate than nasturtium XG. In vitro binding assays showed that pea XG-avicel binding does indeed occur at a twofold higher rate than nasturtium XG-avicel binding. The enhanced ability of pea cell wall XG over nasturtium seed storage XG to associate with cellulose is consistent with a structural role of the former during epicotyl growth where efficient association with cellulose is a requirement. In contrast, the relatively low ability of nasturtium XG to bind cellulose is consistent with the need to enhance the accessibility of this polymer to glycanases during germination. These findings suggest potential roles for XG sidechain substitution, enabling XG to function in a variety of different biological contexts.  相似文献   

11.
A central problem in plant biology is how cell expansion is coordinated with wall synthesis. We have studied growth and wall deposition in epidermal cells of dark-grown Arabidopsis hypocotyls. Cells elongated in a biphasic pattern, slowly first and rapidly thereafter. The growth acceleration was initiated at the hypocotyl base and propagated acropetally. Using transmission and scanning electron microscopy, we analyzed walls in slowly and rapidly growing cells in 4-d-old dark-grown seedlings. We observed thick walls in slowly growing cells and thin walls in rapidly growing cells, which indicates that the rate of cell wall synthesis was not coupled to the cell elongation rate. The thick walls showed a polylamellated architecture, whereas polysaccharides in thin walls were axially oriented. Interestingly, innermost cellulose microfibrils were transversely oriented in both slowly and rapidly growing cells. This suggested that transversely deposited microfibrils reoriented in deeper layers of the expanding wall. No growth acceleration, only slow growth, was observed in the cellulose synthase mutant cesA6(prc1-1) or in seedlings, which had been treated with the cellulose synthesis inhibitor isoxaben. In these seedlings, innermost microfibrils were transversely oriented and not randomized as has been reported for other cellulose-deficient mutants or following treatment with dichlorobenzonitrile. Interestingly, isoxaben treatment after the initiation of the growth acceleration in the hypocotyl did not affect subsequent cell elongation. Together, these results show that rapid cell elongation, which involves extensive remodeling of the cell wall polymer network, depends on normal cellulose deposition during the slow growth phase.  相似文献   

12.
Infrared absorption spectra of film specimens of the epidermaland parenchyma cell walls of the third internode of pea stem,before and after protease treatment and after treatment forremoval of lipid materials, pectic substances and hemicellulose,were recorded, and characteristic bands in the spectrum of thewall were assigned. Polarization spectrum measurements of thewall provided evidence indicating that the non-cellulosic polysaccharidematrix as well as cellulose microfibrils has an oriented structurein the wall which changes during extension growth as well asupon mechanical extension of the walls. (Received March 9, 1978; )  相似文献   

13.
We have localized two cell-wall-matrix polysaccharides, the main pectic polysaccharide, rhamnogalacturonan I (RG-I), and the hemicellulose, xyloglucan (XG), in root-tip and leaf tissues of red clover (Trifolium pratense L.) using immunoelectron microscopy. Our micrographs show that in both leaf and root tissues RG-I is restricted to the middle lamella, with 80–90% of the label associated with the expanded regions of the middle lamella at the corner junctions between cells. Xyloglucan, however, is nearly exclusively located in the cellulose-microfibril-containing region of the cell wall. Thus, these cell-wall-matrix polysaccharides are present in distinct and complementary regions of the cell wall. Our results further show that during cell expansion both RG-I and XG are present within Golgi cisternae and vesicles, thus confirming that the Golgi apparatus is the main site of synthesis of the non-cellulosic cell-wall polysaccharides. No label is seen over the endoplasmic reticulum, indicating that synthesis of these complex polysaccharides is restricted to the Golgi. The distribution of RG-I and XG in root-tip cells undergoing cell division was also examined, and it was found that while XG is present in the Golgi stacks and cell plate during cytokinesis, RG-I is virtually absent from the forming cell plate.Abbreviations ER endoplasmic reticulum - RG-I rhamnogalacturonan I - XG xyloglucan  相似文献   

14.
The primary walls of celery ( Apium graveolens L.) parenchyma cells were isolated and their polysaccharide components characterized by glycosyl linkage analysis, cross-polarization magic-angle spinning solid-state 13C nuclear magnetic resonance (CP/MAS 13C NMR) and X-ray diffraction. Glycosyl linkage analysis showed that the cell walls consisted of mainly cellulose (43 mol%) and pectic polysaccharides (51 mol%), comprising rhamnogalacturonan (28 mol%), arabinan (12 mol%) and galactan (11 mol%). The amounts of xyloglucan (2 mol%) and xylan (2 mol%) detected in the cell walls were strikingly low. The small amount of xyloglucan present means that it cannot coat the cellulose microfibrils. Solid-state 13C NMR signals were consistent with the constituents identified by glycosyl linkage analysis and allowed the walls to be divided into three domains, based on the rigidity of the polymers. Cellulose (rigid) and rhamnogalacturonan (semi-mobile) polymers responded to the CP/MAS 13C NMR pulse sequence and were distinguished by differences in proton spin relaxation time constants. The arabinans, the most mobile polymers, responded to single-pulse excitation (SPE), but not CP/MAS 13C NMR. From solid-state 13C NMR of the cell walls the diameter of the crystalline cellulose microfibrils was determined to be approximately 3 nm while X-ray diffraction of the cell walls gave a value for the diameter of approximately 2 nm.  相似文献   

15.
Smith BG  Harris PJ 《Phytochemistry》2001,56(5):513-519
The ester-linkage of ferulic acid (mainly E) to polysaccharides in primary cell walls of pineapple fruit (Ananas comosus) (Bromeliaceae) was investigated by treating a cell-wall preparation with 'Driselase' which contains a mixture of endo- and exo-glycanases, but no hydroxycinnamoyl esterase activity. The most abundant feruloyl oligosaccharide released was O-[5-O-(E-feruloyl)-alpha-L-arabinofuranosyl](1-->3)-O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose (FAXX). This indicated that the ferulic acid is ester-linked to glucuronoarabinoxylans in the same way as in the primary walls of grasses and cereals (Poaceae). Glucuronoarabinoxylans are the major non-cellulosic polysaccharides in the pineapple cell walls.  相似文献   

16.
Polymer mobility in cell walls of cucumber hypocotyls   总被引:3,自引:0,他引:3  
Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.  相似文献   

17.
Formation of macromolecular lignin in ginkgo cell walls. In the lignifying process of xylem cell walls, macromolecular lignin is formed by polymerization of monolignols on the pectic substances, hemicellulose and cellulose microfibrils that have deposited prior to the start of lignification. Observation of lignifying secondary cell walls of ginkgo tracheids by field emission scanning electron microscopy suggested that lignin-hemicellulose complexes are formed as tubular bead-like modules surrounding the cellulose microfibrils (CMFs), and that the complexes finally fill up the space between CMFs. The size of one tubular bead-like module in the middle layer of the secondary wall (S2) was tentatively estimated to be about 16+/-2 nm in length, about 25+/-1 nm in outer diameter, with a wall thickness of 4+/-2 nm; the size of the modules in the outer layer of the secondary wall (S1) was larger and they were thicker-walled than that in the middle layer (S2). Aggregates of large globular modules were observed in the cell corner and compound middle lamella. It was suggested that the structure of non-cellulosic polysaccharides and mode of their association with CMFs may be important factors controlling the module formation and lignin concentration in the different morphological regions of the cell wall.  相似文献   

18.
Xylem development and cell wall changes of soybean seedlings grown in space   总被引:2,自引:0,他引:2  
BACKGROUND AND AIMS: Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. METHODS: Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. KEY RESULTS: Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. CONCLUSIONS: The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth.  相似文献   

19.
The molecular ordering of cellulose, including its crystallinity,in the unlignified primary cell walls of three monocotyledons(Italian ryegrass, pineapple, and onion) and one dicotyledon(cabbage) was characterized by solid-state 13C NMR spectroscopy.These species were chosen because their primary cell walls havedifferent non-cellulosic polysaccharides and this may affectthe molecular ordering of cellulose. Values of the proton rotating-framerelaxation [T1p(H)] and spin-spin relaxation [T2(H)] time constantsshowed that the cellulose in the cell walls of all four specieswas in a crystalline rather than an amorphous state. Furthermore,a resolution enhancement procedure showed that the triclinic(I) and the monoclinic (I) crystal forms of cellulosewere present in similar proportions in these cell walls. However,the calculated cross-sectional dimensions of the cellulose crystallitesvaried among the cell walls (in the range 2–3 nm): thelargest were in the Italian ryegrass, the smallest were in theonion and cabbage, and those of intermediate size were in thepineapple. The crystallite dimensions may thus be affected bythe non-cellulosic polysaccha-ride compositions of the cellwalls. 4Present address: Food Science Postgraduate Programme, Departmentof Chemistry, The University of Auckland, Private Bag 92019,Auckland, New Zealand.  相似文献   

20.
Dynamic function and regulation of apoplast in the plant body   总被引:1,自引:0,他引:1  
Apoplast is the internal environment of plant. Our body posses the internal environment that consists of blood, lympha, and tissue fluid. Plant cells are also cultivated and surrounded by a liquid medium in the apoplast. As well as various important functions of the internal environment in our body, apoplast function is also prerequisite for the plant life. There are so far seven distinct functions of apoplast. (1) Growth regulation with apoplastic enzymes by altering cell-wall properties through degradation, synthesis, orientation and cross-linking of supra-molecules of cell walls, such as cellulose, non-cellulosic polysaccharides, proteins, and lignin; (2) Skeleton sustained by cellulose microfibrils, lignin and various types of structural proteins with distinctively high content of hydroxyproline, proline or glycine; (3) Skin to defend symplast from desiccation, pathogens' attack and harmful environmental factors, such as ozone and sulfur dioxide; (4) Transportation route for not only well-known molecules of water, inorganic ions, and sugar, but also plant hormones, oligosaccharides and proteins; (5) Homeostasis of the internal environment by controlling ionic balance, pH and water content; (6) Adhesion of cell to cell; (7) Gas exchange space of leaf for photosynthesis. The present article reviews the recent advances in studies of several aspects of the dynamic function and regulation of apoplast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号