首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对印度酸桔(Citrus reticulata) 飞龙枳(Poncirus trifoliata)属间体细胞杂种的3棵8年生植株及其融合亲本的胞质基因组进行了CAPS(Cleaved Amplified Polymorphic Sequences)和RFLP分析。用5对叶绿体和5对线粒体通用引物对(universal primer pairs)对杂种及亲本的总DNA进行PCR扩增,都没有检测到多态性,但扩增产物分别用11种限制性内切酶酶切后,发现3个有多态性的叶绿体CAPS标记和1个线粒体CAPS标记。结果表明杂种的叶绿体都来源于飞龙枳,而线粒体都来源于印度酸桔。为了证实CAPS分析结果的可靠性,用5种限制性内切酶对总DNA进行单酶切,分别与1个叶绿体探针和5个线粒体探针杂交,结果与CAPS分析一致。初步证实该组合体细胞杂种的胞质遗传组成为“印度酸桔的线粒体 飞龙枳的叶绿体”。结果表明细胞融合确实能导致细胞核、线粒体和叶绿体的重新组合,为柑桔体细胞杂种中线粒体偏向来源于悬浮亲本而叶绿体偏向来源于叶肉亲本的胞质分配现象提供了新的证据,并为通过体细胞融合技术定向转移柑桔胞质基因的品种改良思路提供了重要理论依据。  相似文献   

2.
852368矮牵牛种间体细胞杂种叶绿体分离的分析〔会,英洲Kool,A.J.…了Plant Tis-sue Culture一1982,5 Meet一653~654[译自DBA,1984,3(16),54一07685) 将矮牵牛(Peru。‘a parodli)的叶肉原生质体与野生型矮牵牛(尸etunl’ah少brida)、矮牵牛(Perun‘a parviflora)的一种核白花突变体或矮牵牛(Petunia inflata)的一种细胞质白化苗突变体的悬浮培养细胞分离爵原生质体融合,产生体细胞杂种,从矮牵牛尸.parodl‘和尸.par。‘fl。。。的体细胞杂种的叶绿体DNA(CpDNA)用限制性内切酶Bgn酶切,酶切谱仅呈现出尸.Parod“叶绿体DNA的电泳图…  相似文献   

3.
高等植物叶绿体和线粒体免疫亲近性的研究   总被引:1,自引:0,他引:1  
以火箭免疫电泳分析表明:大豆叶绿体抗体与大豆线粒体有免疫交叉反应,同时大豆线粒体抗体与大豆叶绿体也有免疫交叉反应,但是大豆线粒体的抗体与鼠肝线粒体之间无免疫交叉反应。这说明高等植物线粒体对叶绿体比之对动物线粒体在免疫特性上有更大的亲近性;亦即高等植物线粒体和高等植物的叶绿体有更大的同源性。经火箭免疫电泳,交叉免疫电泳和线状免疫电泳进一步分析表明:菠菜偶联因子抗体和大豆线粒体,大豆叶绿体间,大豆线粒  相似文献   

4.
高等植物叶绿体和线粒体免疫亲近性的研究   总被引:1,自引:0,他引:1  
以火箭免疫电泳分析表明:大豆叶绿体抗体与大豆线粒体有免疫交叉反应,同时大豆线粒体抗体与大豆叶绿体也有免疫交叉反应,但是大豆线粒体的抗体与鼠肝线粒体之间无免疫交叉反应。这说明高等植物线粒体对叶绿体比之对动物线粒体在免疫特性上有更大的亲近性,亦即高等植物线粒体和高等植物的叶绿体有更大的同源性。经火箭免疫电泳、交叉免疫电泳和线状免疫电泳进一步分析表明:菠菜偶联因子抗体(AbCF_1)和大豆线粒体、大豆叶绿体间,大豆线粒体抗体与CF_1和大豆叶绿体之间,以及大豆叶绿体的抗体(AbC)与CF_1和大豆线粒体间有免疫交叉反应,说明两种换能器之间有免疫亲近性,并分别与CF_1存在免疫亲近性。这揭示两种换能器免疫亲近性的表现是由于存在共同物质基础所致,这内在共同物质基础是偶联因子。这个结果有力地支持高等植物叶绿体和线粒体在结构和功能上以及发生上存在同源性的观点,在理论上也为两种换能器的起源和演化上存在同源性提供了一些依据。  相似文献   

5.
通过原生质体融合与培养获得小麦与羊草的体细胞杂种,其核基因组成以羊草(供体)为主,用线粒体特异探针atp6与叶绿体特异探针rbcL进行的RFLP分析结果表明,胞质基因组成偏向羊草并发生了重组.讨论了受体核基因组消减对杂种再生及对受体胞质基因组消减的影响.  相似文献   

6.
从水稻(Oryza sativa L.)、烟草(Nicotiana tabacum L.)和黑松(Pinus thunbergiiParl.)等植物的22对叶绿体SSR引物中筛选出 5对能用于柑橘叶绿体SSR分析的引物,应用这5对引物对9个组合的柑橘体细胞杂种的叶绿体遗传进行了分析.结果表明:这些组合再生的杂种中叶绿体都呈现随机分离,该现象与以前报道的RFLP分析结果一致,而且其可靠性已被CAPS分析所证实.表明柑橘叶绿体SSR同RFLP及CAPS一样可靠,并且更简单高效、易于操作,特别适合对柑橘等植物体细胞杂种进行早期胞质遗传组成分析.  相似文献   

7.
从水稻(Oryza sativa L.)、烟草(Nicotiana tabacum L.)和黑松(Pinus thunbergii Parl.)等植物的22对叶绿体SSR引物中筛选出5对能用于柑橘叶绿体SSR分析的引物,应用这5对引物对9个组合的柑橘体细胞杂种的叶绿体遗传进行了分析。结果表明:这些组合再生的杂种中叶绿体都呈现随机分离,该现象与以前报道的RFLP分析结果一致,而且其可靠性已被CAPS分析所证实。表明柑橘叶绿体SSR同RFLP及CAPS一样可靠,并且更简单高效、易于操作,特别适合对柑橘等植物体细胞杂种进行早期胞质遗传组成分析。  相似文献   

8.
本文报道水稻“三系”叶绿体和大豆叶绿体希尔反应(光还原DCIP)的互补作用的结果。水稻(或大豆)杂交双亲叶绿体在体外等量混合时,其希尔反应活性大于两亲本叶绿体的平均值。实验结果表明:(1)水稻不育系+恢复系或保持系+恢复系的混合叶绿体有明显的互补作用;而不育系+保持系的混合叶绿体无互补作用。(2)提取叶绿体后的上清液与叶绿体混  相似文献   

9.
CO2和O3浓度倍增及其交互作用对大豆叶绿体超微结构的影响   总被引:17,自引:4,他引:17  
赵天宏  史奕  黄国宏 《应用生态学报》2003,14(12):2229-2232
应用透射电镜观察了模拟大气CO2和O3浓度倍增及其交互作用(开顶箱法)对大豆叶肉细胞叶绿体超微结构的影响。结果表明,CO2浓度倍增促进了大豆叶绿体的发育,内含淀粉粒积累明显增多、体积增大;叶绿体被膜保持完好;叶绿体基粒片层排列整齐,而O3浓度倍增抑制了叶绿体内淀粉粒的累积,并导致叶绿体被膜破碎,片层解体,严重地破坏了叶绿体的结构和功能CO2和O3浓度倍增的交互作用对叶绿体超微结构有不同程度的破坏,但二者浓度呈梯度增加对叶绿体的损害作用要大于二者浓度持续倍增对叶绿体的影响,进一步表明CO2正效应对O3负效应的补偿作用。  相似文献   

10.
以小麦(TriticumaestivumL.)与高冰草(Agropyronelongatum(Host)Nevski)体细胞杂种同一个克隆来源的F2-F6自交系Ⅱ-2、Ⅱ-Ⅰ-8以及由Ⅱ-Ⅰ-8F2分离形成的8-1(F3-F6)为材料,利用小麦叶绿体基因组的微卫星(Microsatellite)特异引物及随机扩增多态性DNA(RAPD)引物进行分析。结果表明,杂种株系的叶绿体基因组组成一致,均以小麦叶绿体基因组为主,仅在rpl14和rpl16基因的间隔序列中检测到双亲的特征带,表明有高冰草的叶绿体DNA在杂种中存在,并稳定遗传至第六代。RAPD分析表明,不同杂种株系中存在不同的高冰草核DNA片段,核基因组在传代中基本稳定。  相似文献   

11.
以小麦(Triticum aestivum L.)与高冰草(Agropyron elongatum(Host)Nevski)体细胞杂种同一个克隆来源的F2-F6自交系Ⅱ-2、Ⅱ-Ⅰ-8以及由Ⅱ-Ⅰ-8 F2分离形成的8-1(F3-F6)为材料,利用小麦叶绿体基因组的微卫星(Microsatellite)特异引物及随机扩增多态性DNA(RAPD)引物进行分析.结果表明,杂种株系的叶绿体基因组组成一致,均以小麦叶绿体基因组为主,仅在rpl14和rpl16基因的间隔序列中检测到双亲的特征带,表明有高冰草的叶绿体DNA在杂种中存在,并稳定遗传至第六代.RAPD分析表明,不同杂种株系中存在不同的高冰草核DNA片段,核基因组在传代中基本稳定.  相似文献   

12.
叶绿体是绿色植物进行光合作用的细胞器。研究杂种F_1离体叶绿体的光化学活性和同工酶的表现,是杂种优势理论研究的一个重要方面。 我们选用玉米杂种及其亲本系共9个杂交组合、16个自交系作为研究材料。材料分三期播种,同一杂交组合及其亲本系取样时生育状态是一致的。叶绿体提取按Anderson和Boardmen的方法进行。叶绿体Hill反应活性(DCIP光还原)、叶绿体互补的测定应  相似文献   

13.
本文对3个杂交水稻及其亲本灌浆期叶绿体诱导荧光动力学光谱、活体叶片光合放氧速率、叶绿体低温(77k)荧光发射光谱与二磷酸核酮糖羧化酶的活性研究结果表明:强优势的杂种均表现出高活性和高效率,而弱优势的杂种则相反。并对光合优势的生理机制进行了分析。  相似文献   

14.
豌豆叶绿体脂氧合酶(LOX)活性在连体叶片衰老过程中变化不大。ABA处理离体叶片2d叶绿体LOX活性升高,处理时间延长活性下降。抗氧化剂α-生育酚、谷胱甘肽、没食子酸丙酯抑制豌豆叶绿体LOX活性。脂质过氧化产物丙二醛对豌豆叶绿体LOX和大豆纯LOX-1的活性均有抑制作用,大豆LOX-1能促进离体豌豆叶绿体膜脂过氧化作用。因此,豌豆叶绿体LOX可能参与叶片衰老过程中叶绿体膜结构和功能的改变,又受膜脂过氧化产物的制约。  相似文献   

15.
对高CO_2浓度下生长的大豆(Glycine max(L.)Merr.)不同叶位的叶片进行了电镜观察,揭示出大豆不同叶位叶片的叶绿体对倍增的CO_2浓度反应不一。其显著的超微结构差异特征是:1.叶位居中的叶片叶绿体积累的淀粉粒不仅很大,而且最多,有的叶绿体中的淀粉粒可达20个,几乎充满着叶绿体的基质空间。2.下位叶叶绿体的淀粉粒积累较多,通常为2~5个;3.上位叶叶绿体所含淀粉粒既小又少,虽然有的叶绿体中也积累有3~4个淀粉粒,但大多数叶绿体中所含淀粉粒仅有1~2个。以上结果联系到大豆中位叶的光合作用速率较高及对籽粒产量起作用最大来讨论是很有意义的。  相似文献   

16.
问题解答     
问为什么花斑枝条的紫茉莉会产生绿色、白色花斑三种植株? 答紫茉莉的花斑枝条是因含叶绿素的正常质体(叶绿体)和不含叶绿素的败育质体在枝条的细胞间分布不匀造成的.叶绿体位于细胞质中,它的遗传属于细胞质遗传.花斑枝条的绿色部分的细胞中含有正常的叶绿体,因而表现绿色;白色部分的细胞中含有败育的叶绿体,因而表现白色;白绿组织交界区域的某些细胞中,则同时含有正常叶绿体的败育叶绿体. 花斑枝条上的杂种能出现绿色、白色和花斑三种植株,是由于接受花粉的花在花斑枝条上着生的位置不同造成的.位于绿色部分的花,卵细胞质里含有正常的叶绿体,其杂种必然是绿色的植株;位于白色部分的花,卵细胞质里只含败育叶绿体,其杂种一定是白色的植株;位于白绿交界位置的花,它的卵细胞质中既有正常叶绿体又有败育叶绿体,所以受精卵细胞质里同  相似文献   

17.
为满足高通量二代测序要求,本研究采用大豆黄花苗为试材,结合差速离心、蔗糖密度梯度离心及超速离心方法提取高纯度大豆线粒体基因组DNA(mt DNA)。结果表明,差速离心能够有效去除核基因组掺杂;超速离心与蔗糖密度梯度离心结合能够有效去除叶绿体污染。提取的mt DNA经琼脂糖凝胶电泳、紫外光度计检测及叶绿体和细胞核特异性引物检测表明,该方法提取的大豆mt DNA无叶绿体DNA及核DNA污染,且纯度高,可满足测序等对线粒体高纯度的要求,为研究大豆线粒体相关性状的机理奠定了坚实基础。  相似文献   

18.
杂交水稻苗期叶绿体希尔反应活性研究   总被引:5,自引:0,他引:5  
本文利用薄膜氧电极法,测定了五套杂交水稻组合的杂种和亲本的叶绿体破碎膜的悬浮液(以下简写作叶绿体液)和细胞匀浆液(简写作细胞液)的光下放氧活性及其亲本间的互补效应,发现具有优势的杂种其叶绿体液和细胞液的希尔反应活性都较其亲本的平均值为高,即有叶绿体希尔反应活性杂种优势表现;另外将两亲本叶绿体液或细胞液等量混合后测定,也较其亲本的平均值要高,即有互补作用表现。且细胞匀浆互补效应较叶绿体液的互补效应要明显。我们认为,叶绿体希尔反应活性的杂种优势和互补作用表现,无论是叶绿体液还是细胞液,都可以作为杂种优势预测的一个参考指标;在杂种优势机理探讨方面有一定的价值。而且应用细胞匀浆互补比用叶绿体互补稳定可靠,简便易行。  相似文献   

19.
采用盆栽试验和田间小区试验方法,研究了低浓度施Se对重茬胁迫下大豆叶绿体超微结构及大豆叶片中Mg、Fe、Mn含量的影响.结果表明,当盆栽试验施Se量小于0.50mg.kg^-1,田间小区试验施Se量小于300g.hm^-2时,施Se都不同程度地提高了大豆叶片的Mg、Fe和Mn含量.在盆栽试验中,施Se量与大豆叶片中Mg、Fe的含量呈正比,而施Se量与大豆叶片中Mn含量之间的关系很难确定.同时,透射电镜照片显示,盆栽试验中重茬胁迫下,施se可使大豆叶绿体膜结构保持完好,而不施se对照的叶绿体发生膨胀,基粒消失,甚至转化成了黄化体.可以认为,低浓度施Se能缓解大豆重茬胁迫所造成的过氧化损伤,使大豆生长较为正常.  相似文献   

20.
高CO2浓度对大平不同叶位叶片叶绿体淀粉粒积累的效应   总被引:3,自引:0,他引:3  
对高CO2浓度下生长的大豆不同叶位的叶片进行电镜观察,揭示出大豆不同叶位叶片的叶绿体对倍增的CO2浓度反应不一。其显的超微结构差异特征是:1.叶位居中的叶片叶绿体积累的淀粉粒不仅很大,而且最多,有的叶绿体中的分粒可达20个,几种充满着叶绿体的基质空间。2.下位叶叶绿体的淀粉粒积累较多,通常为2 ̄5个;3.上位叶叶绿体所含淀粉粒既小又少,虽然有的叶绿体中也积累有3 ̄4个淀粉粒,但大多叶绿体中所含淀  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号