首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
2.
3.
Nicotinic acetylcholine receptors (nAChRs) are the members of the cys-loop ligand-gated ion channel superfamily and are formed by five subunits arranged around a central ion channel. Each subunit is encoded by a separate gene and is classified as either α or non-α depending on the presence or absence, respectively, of two adjacent cysteine residues which are important for acetylcholine binding. Here, we report for the first time a single nAChR gene encoding both α and non-α subunits. Specifically, alternative splicing of the Anopheles gambiae nAChR subunit, previously called Agamα9 and renamed here Agamαβ9, generates two variants, one possessing the two cysteines (denoted Agamαβ9α) and the other lacking the cysteine doublet (Agamαβ9β). Attempts to heterologously express functional nAChRs consisting of the Agamαβ9 splice variants in Xenopus laevis oocytes were unsuccessful. Our findings further characterise a potential target to control the malaria mosquito as well as provide insights into the diversification of nAChRs.  相似文献   

4.
5.
The 1C subunit is the pore-forming protein for the L-type calcium channel. Previous studies indicate that there is possible tissue-specific alternative splicing of this gene. In this study we cloned the entire open reading frame of the 1C subunit cDNA from adult rat cardiac myocytes in a single piece (6.64 kb). Using 75 positive clones that were identified by restriction enzyme mapping, we tested the alternative splicing patterns of the Cav1.2 gene that encodes the 1C subunit protein and focused on five loci: IS6, post-IS6, IIIS2, IVS3, and the c-terminus. The results indicate that: (1) alternative splicing occurs in most of the loci, giving rise to two or three different isoforms at those sites; (2) there is a predominant form for each splicing site, (3) there does not appear to be consistent coordination of splicing at multiple loci of this gene. Alternative splicing is not tissue-specific in most regions. (Mol Cell Biochem 269: 153–163, 2005)  相似文献   

6.
The hyperthermophilic archaeon Thermococcus sp. strain KS-1 (T. KS-1) expresses two different chaperonin subunits, α and β, for the folding of its proteins. The composition of the subunits in the hexadecameric double ring changes with temperature. The content of the β subunit significantly increases according to the increase in temperature. The homo-oligomer of the β subunit, Cpnβ, is more thermostable than that of the α subunit, Cpnα. Since Cpnα and Cpnβ also have different protein folding activities and interactions with prefoldin, the hetero-oligomer is thought to exhibit different characteristics according to the content of subunits. The hetero-oligomer of the T. KS-1 chaperonin has not been studied, however, because the α and β subunits form hetero-oligomers of varying compositions when they are expressed simultaneously. In this study, we characterized the T. KS-1 chaperonin hetero-oligomer, Cpnαβ, containing both α and β in the alternate order, which was constructed by the expression of α and β subunits in a coordinated fashion and protease digestion. Cpnαβ protected citrate synthase from thermal aggregation, promoted the folding of acid-denatured GFP in an ATP-dependent manner, and exhibited an ATP-dependent conformational change. The yield of refolded GFP generated by Cpnαβ was almost equivalent to that generated by Cpnβ but lower than that generated by Cpnα. In contrast, Cpnαβ exhibited almost the same level of thermal stability as Cpnα, which was lower than that of Cpnβ. The affinity of Cpnαβ to prefoldin was found to be between those of Cpnα and Cpnβ, as expected.  相似文献   

7.
8.
9.
10.
11.
12.
We used immunoprecipitation with subunit-specific antibodies to examine the distribution of heteromeric neuronal nicotinic acetylcholine receptors (nAChRs) that contain the α5 subunit in the adult rat brain. Among the regions of brain we surveyed, the α5 subunit is associated in ∼37% of the nAChRs in the hippocampus, ∼24% of the nAChRs in striatum, and 11–16% of the receptors in the cerebral cortex, thalamus, and superior colliculus. Sequential immunoprecipitation assays demonstrate that the α5 subunit is associated with α4β2* nAChRs exclusively. Importantly, in contrast to α4β2 nAChRs, which are increased by 37–85% after chronic administration of nicotine, the α4β2α5 receptors are not increased by nicotine treatment. These data thus indicate that the α4β2α5 nAChRs in rat brain are resistant to up-regulation by nicotine in vivo , which suggests an important regulatory role for the α5 subunit. To the extent that nicotine-induced up-regulation of α4β2 nAChRs is involved in nicotine addiction, the resistance of the α4β2α5 subtype to up-regulation may have important implications for nicotine addiction.  相似文献   

13.
14.
Sarcosine oxidase (SOX) catalyzes the oxidation of the methyl group in sarcosine and transfer of the oxidized methyl group into the one-carbon metabolic pool. Here, we separately cloned and expressed α and β subunit of SOX from Thermococcus kodakarensis KOD1 (TkSOX) in Escherichia coli and the recombinant proteins were purified to homogeneity. Gel filtration chromatography and transmission electron microscopy analysis showed that the α subunit formed a dimeric structure and behaved as an NADH dehydrogenase; β subunit was a tetramer that had sarcosine oxidase and l-proline dehydrogenase activity. The TkSOX complex assembled into the hetero-octameric (αβ)4 form and had NADH dehydrogenase activity. Gold-label analysis indicated that α and β subunits were oriented in the alternative form. Based on these results, we suggested that TkSOX was a multifunctional enzyme and that each subunit and (αβ)4 complex may separately exist as a function enzyme in different conditions.  相似文献   

15.
16.
17.
GABAA receptors are pentameric ligand-gated ion channels that are major mediators of fast inhibitory neurotransmission. Clinically relevant GABAA receptor subtypes are assembled from α5(1-3, 5), β1-3 and the γ2 subunit. They exhibit a stoichiometry of two α, two β and one γ subunit, with two GABA binding sites located at the α/β and one benzodiazepine binding site located at the α/γ subunit interface. Introduction of the H105R point mutation into the α5 subunit, to render α5 subunit-containing receptors insensitive to the clinically important benzodiazepine site agonist diazepam, unexpectedly resulted in a reduced level of α5 subunit protein in α5(H105R) mice. In this study, we show that the α5(H105R) mutation did not affect cell surface expression and targeting of the receptors or their assembly into macromolecular receptor complexes but resulted in a severe reduction of α5-selective ligand binding. Immunoprecipitation studies suggest that the diminished α5-selective binding is presumably due to a repositioning of the α5(H105R) subunit in GABAA receptor complexes containing two different α subunits. These findings imply an important role of histidine 105 in determining the position of the α5 subunit within the receptor complex by determining the affinity for assembly with the γ2 subunit.  相似文献   

18.
Abstract : In α1, β2, and γ2 subunits of the γ-aminobutyric acid A (GABAA) receptor, a conserved lysine residue occupies the position in the middle of the predicted extracellular loop between the transmembrane M2 and M3 regions. In all three subunits, this residue was mutated to alanine. Whereas the mutation in α1 and β2 subunits results each in about a sixfold shift of the concentration-response curve for GABA to higher concentrations, no significant effect by mutation in the γ subunit was detected. The affinity for the competitive inhibitor bicuculline methiodide was not affected by the mutations in either the α1 subunit or the β2 subunit. Concentration-response curves for channel activation by pentobarbital were also shifted to higher concentrations by the mutation in the α and β subunits. Binding of [3H]Ro 15-1788 was unaffected by the mutation in the α subunit, whereas the binding of [3H]muscimol was shifted to lower affinity. Mutation of the residue in the α1 subunit to E, Q, or R resulted in an about eight-, 10-, or fivefold shift, respectively, to higher concentrations of the concentration-response curve for GABA. From these observations, it is concluded that the corresponding residues on the α1 and β2 subunits are involved more likely in the gating of the channel by GABA than in the binding of GABA or benzodiazepines.  相似文献   

19.
Abstract: The expression of six mRNA species (α2, α3, α5, β2, β3, and γ2) encoding for GABAA receptor subunits was followed in cultured early postnatal cortical neurons by in situ hybridization histochemistry. In untreated control cultures it was found that these subunit mRNA expression profiles closely follow those seen during development in vivo. α3, α5, and β3 subunit expression declined, α2 expression increased, whereas β2 and γ2 subunit mRNA expression remained relatively constant. To test the hypothesis that GABAA receptor stimulation regulates these expression profiles, we tested the effect of a GABAA receptor positive modulator, allopregnanolone, and a GABAA receptor noncompetitive antagonist, tert -butylbicyclophosphorothionate (TBPS). It was found that allopregnanolone augmented the rate at which the α3, α5, or β3 subunit mRNA expression declined and prevented the increase in α2 subunit mRNA expression. As well, allopregnanolone down-regulated β2 subunit mRNA expression. TBPS, on the other hand, up-regulated α3, α5, β2, and β3 subunit mRNA expression. It also down-regulated the expression of α2 subunit mRNA. Both allopregnanolone and TBPS had no effect on γ2 subunit mRNA expression. These results imply that the developmental switchover of GABA receptor subunit mRNA expression is regulated by GABAA receptor activity.  相似文献   

20.
Fu BH  Wu ZZ  Qin J 《Molecular biology reports》2011,38(5):3271-3276
In this study, we applied specific blocking antibodies for integrin α6 or β1 subunit, and evaluated the in vitro effects of integrins α6β1 on the adhesion, chemotaxis and migration of hepatocellular carcinoma (HCC) cell line SMMC-7721 to type IV collagen. The adhesion force and cell migration, as measured by a micropipette aspiration system and Boyden chamber assay respectively, was dramatically reduced when either integrin subunits was blocked. The chemotaxis, as determined using a dual-micropipette system, was only affected by the antibody against β1 subunit. This study suggests that integrin α6β1 is an important cell surface receptor that mediates the adhesion of SMMC-7721 to type IV collagen. But the α6 subunit has minimal effect on pseudopod formation in response to type IV collagen. Therefore, the integrin α6β1-mediated cell migration is, at least in part, through the regulation on the cell adhesion step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号