首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
These experiments were designed to study skeletal muscle pathology resulting from eccentric-biased exercise in rats. The effects on the muscles of running on a treadmill on a 0 degrees incline (similar amounts of concentric and eccentric contractions), down a 16 degrees incline (primarily eccentric contractions), and up a 16 degrees incline (primarily concentric contractions) at 16 m . min-1 for 90 min were assessed by following postexercise changes in 1) plasma creatine kinase and lactate dehydrogenase activities, 2) glucose-6-phosphate dehydrogenase (G-6-PDase) activity (bio- and histochemically) in the physiological extensor muscles, and 3) histological appearance of the muscles. The data indicate the following. 1) Whereas all exercise protocols resulted in elevations of plasma enzymes immediately after running, only eccentric exercise caused late phase elevations 1.5-2 days postexercise. 2) Significant increases in muscle G-6-PDase activity, which were always associated with accumulations of mononuclear cells, always occurred within some muscles of each extensor group 1-3 days following downhill and uphill running and did not occur following level running; the increases in activity were usually of lower magnitude in the muscles of uphill runners than in those of downhill runners; the deeply located, predominantly slow-twitch muscles were most affected by both down- and uphill running. 3) Muscle histology demonstrated localized disruption of normal banding patterns of some fibers immediately after exercise and accumulations of macrophages in the interstitium and in some (less than 5%) muscle fibers by 24 h postexercise in the deep slow muscles of the antigravity groups. Although the data generally indicated that eccentric exercise causes greater injury to the muscles, questions remain.  相似文献   

2.
Segmental muscle fiber lesions after repetitive eccentric contractions   总被引:11,自引:0,他引:11  
Immunohistochemical and electron-microscopic techniques were used to analyze the extensor digitorum longus muscles of New Zealand White rabbits 1 h, 1 day, 3, 7, and 28 days after repetitive eccentric contractions. Loss of the cytoskeletal protein desmin was the earliest manifestation of injury. Apart from 1 h post-exercise, all desmin-negative fibers stained positively with antibody to plasma fibronectin, indicating loss of cellular integrity accompanying cytoskeletal disruption. Fiber sizes were significantly increased from 1–7 days after exercise. The large (hyaline) fibers found in histological sections after repetitive eccentric contractions resulted from segmental hypercontraction of the fiber. This phenomenon occurred proximally and distally to plasma membrane lesions of the muscle fiber and necrosis and manifested itself as very short sarcomere lengths. Thus, in serial sections, staining characteristics, sizes and shapes of one and the same fiber often varied dramatically. We conclude that the following sequence of events occurs: cytoskeletal disruptions, loss of myofibrillar registry, i.e., Z-disk streaming and A-band disorganization, and loss of cell integrity as manifested by intracellular plasma fibronectin stain, hypercontracted regions, and invasion of cells. When a fiber is disrupted, the remaining intact fibers apparently take up the tension put on the muscle and later fewer fibers are subjected to eccentric contractions.  相似文献   

3.
Calcitonin gene-related peptide (CGRP) is present in some spinal cord motoneurons and at neuromuscular junctions in skeletal muscle. We previously reported increased numbers of CGRP-positive (CGRP+) motoneurons supplying hindlimb extensors after downhill exercise (Homonko DA and Theriault E, Inter J Sport Med 18: 1-7, 1997). The present study identifies the responding population with respect to muscle and motoneuron pool and correlates changes in CGRP with muscle fiber type-identified end plates. Twenty seven rats were divided into the following groups: control and 72 h and 2 wk postexercise. FluoroGold was injected into the soleus, lateral gastrocnemius, and the proximal (mixed fiber type) or distal (fast-twitch glycolytic) regions of the medial gastrocnemius (MG). Untrained animals ran downhill on a treadmill for 30 min. The number of FluoroGold/CGRP+ motoneurons within proximal and distal MG increased by 72 h postexercise (P<0.05). No significant changes were observed in soleus or lateral gastrocnemius motoneurons postexercise. The number of alpha-bungarotoxin/CGRP+ motor end plates in the MG increased exclusively at fast-twitch glycolytic muscle fibers 72 h and 2 wk postexercise (P<0.05). One interpretation of these results is that unaccustomed exercise preferentially activates fast-twitch glycolytic muscle fibers in the MG.  相似文献   

4.
Eccentric exercise is known to disrupt sarcolemmal integrity and induce damage of skeletal muscle fibers. We hypothesized that L-arginine (L-Arg; nitric oxide synthase (NOS) substrate) supplementation prior to a single bout of eccentric exercise would diminish exercise-induced damage. In addition, we used N-nitro-L-arginine methyl ester hydrochloride (L-NAME; NOS inhibitor) to clarify the role of native NOS activity in the development of exercise-induced muscle damage. Rats were divided into four groups: non-treated control (C), downhill running with (RA) or without (R) L-Arg supplementation and downhill running with L-NAME supplementation (RN). Twenty four hours following eccentric exercise seven rats in each group were sacrificed and soleus muscles were dissected and frozen for further analysis. The remaining seven rats in each group were subjected to the exercise performance test. Our experiments showed that L-Arg supplementation prior to a single bout of eccentric exercise improved subsequent exercise performance capacity tests in RA rats when compared with R, RN and C rats by 37%, 27% and 13%, respectively. This outcome is mediated by L-Arg protection against post-exercise damage of sarcolemma (2.26- and 0.87-fold less than R and RN groups, respectively), reduced numbers of damaged muscle fibers indicated by the reduced loss of desmin content in the muscle (15% and 25% less than R and RN groups, respectively), and diminished µ-calpain mRNA up-regulation (42% and 30% less than R and RN groups, respectively). In conclusion, our study indicates that L-Arg supplementation prior to a single bout of eccentric exercise alleviates muscle fiber damage and preserves exercise performance capacity.  相似文献   

5.
Our aim was to study how mouse skeletal muscle membranes are altered by eccentric and isometric contractions. A fluorescent dialkyl carbocyanine dye (DiOC18(3)) was used to label muscle membranes, and the membranes accessible to the dye were observed by confocal laser scanning microscopy. Experiments were done on normal mouse soleus muscles and soleus muscles injured by 20 eccentric or 20 isometric contractions. Longitudinal optical sections of control muscle fibers revealed DiOC18(3) staining of the plasmalemma and regularly spaced transverse bands corresponding in location to the T-tubular system. Transverse optical sections showed an extensive reticular network with the DiOC18(3) staining. Injured muscle fibers showed distinctively different staining patterns in both longitudinal and transverse optical sections. Longitudinal optical sections of the injured fibers revealed staining in a longitudinally-oriented pattern. No correlations were found between the abnormal DiOC18(3) staining and the reductions in maximal isometric tetanic force or release of lactate dehydrogenase (P0.32). Additionally, no difference in the extent of abnormal staining was found between muscles performing eccentric contractions and those performing the less damaging isometric contractions. However, many fibers in muscles injured by eccentric contractions showed swollen regions with marked loss of membrane integrity and an elevated free cytosolic calcium concentration as observed in Fluo-3 images. In conclusion, a loss of cell membrane integrity results from contractile activity, enabling DiOC18(3) staining of internal membranes. The resulting staining pattern is striking and fibers with damaged cell membranes are easily distinguished from uninjured ones.  相似文献   

6.
To study the effect of downhill running on glycogen metabolism, 94 rats were exercised by running for 3 h on the level or down an 18 degrees incline. Muscle and liver glycogen concentrations were measured before exercise and 0, 48 and 52 h postexercise. Rats were not fed during the first 48 h of recovery but ingested a glucose solution 48 h postexercise. Downhill running depleted glycogen in the soleus muscle and liver significantly more than level running (P less than 0.01). The amount of glycogen resynthesized in the soleus muscle and liver in fasting or nonfasting rats was not altered significantly by downhill running (P greater than 0.05). On every day of recovery the rats were injected with dexamethasone, which induced similar increases in glycogen concentration in the soleus muscle and liver after the 52nd h of the postexercise period in the case of downhill and level running. The glycogen depletion and repletion results indicated that, under our experimental conditions, downhill running in the rat, a known model of eccentric exercise, affected muscle glycogen metabolism differently from eccentric cycling in humans.  相似文献   

7.
Caveolae are abundant in skeletal muscle and their coat contains a specific isoform of caveolin, caveolin-3. It has been suggested that during muscle development, caveolin-3 is associated with the T-tubules, but that in adult muscle it is found on the plasma membrane only. We have studied the distribution of caveolin-3 in single skeletal muscle fibers from adult rat soleus by confocal immunofluorescence and by immunogold electron microscopy. We found that caveolin-3 occurs at the highest density on the plasma membrane but is also present in the core of the fibers, at the I-band/A-band interface where it is associated with the T-tubules. In neither domain of the muscle surface does caveolin-3 colocalize with the glucose transporter GLUT4 and there is no evidence for internalization of the caveolae in muscle.  相似文献   

8.
Experiments were conducted to test the hypothesis that injury to skeletal muscle in rats resulting from prolonged downhill running is prevented to a greater extent by prior downhill training than by either uphill or level training. Changes in plasma creatine phosphokinase (CPK) activity and glucose-6-phosphate dehydrogenase (G-6-PDase) activity in the soleus (S), vastus intermedius (VI), and medial head of triceps brachii (TM) muscles were evaluated as markers of muscle injury 48 h after 90 min of intermittent downhill running (16 m . min -1). Prior to this acute downhill run, groups of rats were trained by either downhill (-16 degrees), level (0 degrees), or uphill (+16 degrees) running (16 m . min -1) for 30 min/day. Training duration was either 5 days or 1 day. A training effect (i.e., reduced muscle injury) was indicated if muscle G-6-PDase or plasma CPK activity in a trained group following the 90-min downhill run was not different from that of nonexercised control animals and/or if it was lower than that of nontrained runners. A significant training effect was achieved in all three muscles with 5 days of either downhill or level training, but only in S after 5 days of uphill training. Elevation of plasma CPK activity was prevented by 5 days of training on all three inclines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
High force eccentric muscle contractions can result in delayed onset muscle soreness (DOMS), prolonged loss of muscle strength, decreased range of motion, muscle swelling and an increase of muscle proteins in the blood. At the ultrastructural level Z-line streaming and myofibrillar disruptions have been taken as evidence for muscle damage. In animal models of eccentric exercise-induced injury, disruption of the cytoskeleton and the sarcolemma of muscle fibres occurs within the first hour after the exercise, since a rapid loss of staining of desmin, a cytoskeletal protein, and the presence of fibronectin, a plasma and extracellular protein, are observed within the muscle fibres. In the present study, biopsies from subjects who had performed different eccentric exercises and had developed DOMS were examined. Our aim was to determine whether eccentric exercise leading to DOMS causes sarcolemmal disruption and loss of desmin in humans. Our study shows that even though the subjects had DOMS, muscle fibres had neither lost staining for desmin nor contained plasma fibronectin. This study therefore does not support previous conclusions that there is muscle fibre degeneration and necrosis in human skeletal muscle after eccentric exercise leading to DOMS. Our data are in agreement with the recent findings that there is no inflammatory response in skeletal muscle following eccentric exercise in humans. In combination, these findings should stimulate the search for other mechanisms explaining the functional and structural alterations in human skeletal muscle after eccentric exercise.  相似文献   

10.
This article investigates how the internal structure of muscle and its relationship with tendon and even skeletal structures influence the translation of muscle fiber contractions into movement of a limb. Reconstructions of the anatomy of the human soleus muscle from the Visible Human Dataset (available from the National Library of Medicine), magnetic resonance images (MRI), and cadaver studies revealed a complex 3D connective tissue structure populated with pennate muscle fibers. The posterior aponeurosis and the median septum of the soleus form the insertion of the muscle and are continuous with the Achilles tendon. The distal extremities of the pennate muscle fibers attach to these structures. The anterior aponeurosis is located intramuscularly, between the posterior aponeurosis and the median septum. It forms the origin of the muscle and contacts the proximal extremities of the soleus muscle fibers. MRI measurements of in vivo tissue velocities during isometric contractions (20% and 40% maximum voluntary contractions) revealed a similarly complex 3D distribution of tissue movements. The distribution of velocities was similar to the distribution of major connective tissue structures within the muscle. During an isometric contraction, muscle fiber contractions move the median septum and posterior aponeurosis proximally, relative to the anterior aponeurosis. The pennate arrangement of muscle fibers probably amplifies muscle fiber length changes but not sufficiently to account for the twofold difference in muscle fiber length changes relative to excursion of the calcaneus. The discrepancy may be accounted for by an additional gain mechanism operating directly on the Achilles tendon by constraining the posterior movement of the tendon, which would otherwise occur due to the increasingly posterior location of the calcaneus in plantarflexeion.  相似文献   

11.
Rat skeletal muscle mitochondrial [Ca2+] and injury from downhill walking   总被引:7,自引:0,他引:7  
The purpose of this study was to evaluate the relationship between mitochondrial Ca2+ concentration (MCC) and the extent of muscle injury in rats that have performed prolonged downhill walking (eccentric exercise). MCC was used as an indicator of elevated [Ca2+] in the muscles, and injury was estimated from histochemical analysis of muscle cross sections by determining the numbers of intact fibers per unit area in the muscles. Elevations in MCC in the soleus and vastus intermedius muscles over time postexercise were inversely related (P less than 0.05) to the number of intact fibers per square millimeter in the respective muscles after downhill walking. Verapamil administration attenuated the elevation in MCC and injury in histochemical sections resulting from the downhill walking in soleus muscle, but intraperitoneal injection of the chelators EDTA or ethylene glycol-bis(beta-aminoethylether)-N,N,N',N'- tetraacetic acid significantly attenuated the increases in MCC and injury to both the vastus intermedius and soleus muscles in the downhill walkers. The chelators appear to exert their "protective" effects within the specific muscles that show the injury and do not significantly affect serum [Ca2+]. It is concluded that increases in MCC occur during exercise-induced fiber injury and that elevations in cellular Ca2+ may have a role in the etiology of the injury process.  相似文献   

12.
Repeated eccentric contractions can injure skeletal muscle and result in functional deficits that take several weeks to fully recover. The 70-kDa heat shock protein (Hsp70) is a stress-inducible molecular chaperone that maintains protein quality and plays an integral role in the muscle’s repair processes following injury. Here, we attempted to hasten this recovery by pharmacologically inducing Hsp70 expression in mouse skeletal muscle with 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) (40 mg/kg) both prior to and throughout the first 7 days after an injurious bout of 150 maximal eccentric contractions. Hsp70 content in the injured skeletal muscle was strongly induced following the eccentric contractions and remained elevated over the next 7 days as the muscle underwent repair. Treatment with 17-AAG increased Hsp70 content ~fivefold; however, this was significantly less than that induced by the injury. Moreover, 17-AAG treatment did not recover the decrements to in vivo isometric torque production following the bout of eccentric contractions. Together, these findings demonstrate that although Hsp70 content was induced in the uninjured skeletal muscle, treatment of 17-AAG (40 mg/kg) was not a preventive measure to either reduce the severity of skeletal muscle damage or enhance functional recovery following a bout of maximal eccentric contractions.  相似文献   

13.
Physicalexercise and contraction increase c-Jun NH2-terminal kinase(JNK) activity in rat and human skeletal muscle, and eccentriccontractions activate JNK to a greater extent than concentric contractions in human skeletal muscle. Because eccentric contractions include a lengthening or stretch component, we compared the effects ofisometric contraction and static stretch on JNK and p38, the stress-activated protein kinases. Soleus and extensor digitorum longus(EDL) muscles dissected from 50- to 90-g male Sprague-Dawley rats weresubjected to 10 min of electrical stimulation that produced contractions and/or to 10 min of stretch (0.24 N tension, 20-25% increase in length) in vitro. In the soleus muscle, contraction resulted in a small, but significant, increase in JNK activity (1.8-fold above basal) and p38 phosphorylation (4-fold). Static stretchhad a much more profound effect on the stress-activated proteinkinases, increasing JNK activity 19-fold and p38 phosphorylation 21-fold. Increases in JNK activation and p38 phosphorylation in response to static stretch were fiber-type dependent, with greater increases occurring in the soleus than in the EDL. Immunohistochemistry performed with a phosphospecific antibody revealed that activation ofJNK occurred within the muscle fibers. These studies suggest that thestretch component of a muscle contraction may be a major contributor tothe increases in JNK activity and p38 phosphorylation observed afterexercise in vivo.

  相似文献   

14.
Repetitive low frequency stimulation results in potentiation of twitch force development in fast-twitch skeletal muscle due to myosin regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent skeletal muscle myosin light chain kinase (skMLCK). We generated transgenic mice that express an skMLCK CaM biosensor in skeletal muscle to determine whether skMLCK or CaM is limiting to twitch force potentiation. Three transgenic mouse lines exhibited up to 22-fold increases in skMLCK protein expression in fast-twitch extensor digitorum longus muscle containing type IIa and IIb fibers, with comparable expressions in slow-twitch soleus muscle containing type I and IIa fibers. The high expressing lines showed a more rapid RLC phosphorylation and force potentiation in extensor digitorum longus muscle with low frequency electrical stimulation. Surprisingly, overexpression of skMLCK in soleus muscle did not recapitulate the fast-twitch potentiation response despite marked enhancement of both fast-twitch and slow-twitch RLC phosphorylation. Analysis of calmodulin binding to the biosensor showed a frequency-dependent activation to a maximal extent of 60%. Because skMLCK transgene expression is 22-fold greater than the wild-type kinase, skMLCK rather than calmodulin is normally limiting for RLC phosphorylation and twitch force potentiation. The kinase activation rate (10.6 s(-1)) was only 3.6-fold slower than the contraction rate, whereas the inactivation rate (2.8 s(-1)) was 12-fold slower than relaxation. The slower rate of kinase inactivation in vivo with repetitive contractions provides a biochemical memory via RLC phosphorylation. Importantly, RLC phosphorylation plays a prominent role in skeletal muscle force potentiation of fast-twitch type IIb but not type I or IIa fibers.  相似文献   

15.
The aim of this study was to determine whether or not over-activation of calpains during running exercise or tetanic contractions was a major factor to induce sarcomere lesions in atrophic soleus muscle. Relationship between the degrees of desmin degradation and sarcomere lesions was also elucidated. We observed ultrastructural changes in soleus muscle fibers after 4-week unloading with or without running exercise. Calpain activity and desmin degradation were measured in atrophic soleus muscles before or after repeated tetani in vitro. Calpain-1 activity was progressively increased and desmin degradation was correspondingly elevated in 1-, 2-, and 4-week of unloaded soleus muscles. Calpain-1 activity and desmin degradation had an additional increase in unloaded soleus muscles after repeated tetani in vitro. PD150606, an inhibitor of calpains, reduced calpain activity and desmin degradation during tetanic contractions in unloaded soleus muscles. The 4-week unloading decreased the width of myofibrils and Z-disk in soleus fibers. After running exercise in unloaded group, Z-disks of adjacent myofibrils were not well in register but instead were longitudinally displaced. Calpain inhibition compromised exercise-induced misalignment of the Z-disks in atrophic soleus muscle. These results suggest that tetanic contractions induce an over-activation of calpains which lead to higher degrees of desmin degradation in unloaded soleus muscle. Desmin degradation may loose connections between adjacent myofibrils, whereas running exercise results in sarcomere injury in unloaded soleus muscle.  相似文献   

16.
During lengthening of an activated skeletal muscle, the force maintained following the stretch is greater than the isometric force at the same muscle length. This is termed residual force enhancement (RFE), but it is unknown how muscle damage following repeated eccentric contractions affects RFE. Using the dorsiflexors, we hypothesised muscle damage will impair the force generating sarcomeric structures leading to a reduction in RFE. Following reference maximal voluntary isometric contractions (MVC) in 8 young men (26.5±2.8y) a stretch was performed at 30°/s over a 30° ankle excursion ending at the same muscle length as the reference MVCs (30° plantar flexion). Surface electromyography (EMG) of the tibialis anterior and soleus muscles was recorded during all tasks. The damage protocol involved 4 sets of 25 isokinetic (30°/s) lengthening contractions. The same measures were collected at baseline and immediately post lengthening contractions, and for up to 10min recovery. Following the lengthening contraction task, there was a 30.3±6.4% decrease in eccentric torque (P<0.05) and 36.2±9.7% decrease in MVC (P<0.05) compared to baseline. Voluntary activation using twitch interpolation and RMS EMG amplitude of the tibialis anterior remained near maximal without increased coactivation for MVC. Contrary to our hypothesis, RFE increased (~100-250%) following muscle damage (P<0.05). It appears stretch provided a mechanical strategy for enhanced muscle function compared to isometric actions succeeding damage. Thus, active force of cross-bridges is decreased because of impaired excitation-contraction coupling but force generated during stretch remains intact because force contribution from stretched sarcomeric structures is less impaired.  相似文献   

17.
Sarcomerogenesis, or the addition of sarcomeres in series within a fiber, has a profound impact on the performance of a muscle by increasing its contractile velocity and power. Sarcomerogenesis may provide a beneficial adaptation to prevent injury when a muscle consistently works at long lengths, accounting for the repeated-bout effect. The association between eccentric exercise, sarcomerogenesis and the repeated-bout effect has been proposed to depend on damage, where regeneration allows sarcomeres to work at shorter lengths for a given muscle-tendon unit length. To gain additional insight into this phenomenon, we measured fiber dynamics directly in the vastus lateralis (VL) muscle of rats during uphill and downhill walking, and we measured serial sarcomere number in the VL and vastus intermedius (VI) after chronic training on either a decline or incline grade. We found that the knee extensor muscles of uphill walking rats undergo repeated active concentric contractions, and therefore they suffer no contraction-induced injury. Conversely, the knee extensor muscles during downhill walking undergo repeated active eccentric contractions. Serial sarcomere numbers change differently for the uphill and downhill exercise groups, and for the VL and VI muscles. Short muscle lengths for uphill concentric-biased contractions result in a loss of serial sarcomeres, and long muscle lengths for downhill eccentric-biased contractions result in a gain of serial sarcomeres.  相似文献   

18.
Dammarane steroids (DS) are a class of chemical compounds present in Panax ginseng. Here, we evaluated the effect of 10 weeks of DS supplementation on inflammatory modulation in the soleus muscle following eccentric exercise (EE)-induced muscle damage (downhill running). Eighty rats were randomized into 4 groups of DS supplementation (saline, 20, 60, 120 mg/kg body weight). Inflammatory markers were measured at rest and again 1 h after EE. At rest, NFκB signaling, TNF-alpha and IL-6 mRNAs, 3-nitrotyrosine, glutathione peroxidase, and GCS (glutamylcysteine synthetase) levels were significantly elevated in the skeletal muscle of DS-treated rats in a dose-dependent manner. Additionally, there were no detectable increases in the number of necrotic muscle fibers or CD68+ M1 macrophages. However, muscle strength, centronucleation, IL-10 mRNA expression, and the number of CD163+ M2 macrophages increased significantly over controls with DS treatment in rat soleus muscle. Under EE-challenged conditions, significant increases in muscle fiber necrosis, CD68+ M1 macrophage distribution, and 3-nitrotyrosine were absent in rats that received low and medium doses (20 and 60 mg/kg) of DS treatment, suggesting that DS possess anti-inflammatory action protecting against a muscle-damaging challenge. However, this protective activity was diminished when a high dose of DS (120 mg/kg) was administered, suggesting that DS possess hormetic properties. In conclusion, our study provides new evidence suggesting that DS is an ergogenic component of ginseng that potentiate inflammation at baseline but that produce anti-inflammatory effects on skeletal muscle following muscle-damaging exercise. Furthermore, high doses should be avoided in formulating ginseng-based products.  相似文献   

19.
Although various exercise paradigms have been tested, none has completely prevented muscle atrophy during non-weight bearing. Because loaded eccentric contractions occur during normal daily activity but are absent during non-weight bearing, this investigation tested whether eccentric resistance training could prevent soleus muscle atrophy during non-weight bearing. Adult female rats were randomly assigned to either weight bearing +/- intramuscular electrodes or non-weight bearing +/- intramuscular electrodes groups. Electrically stimulated maximal eccentric contractions (4 sets of 6 repetitions at approximately 0.2 fiber lengths/s, 128 degrees range of motion) were performed on anesthetized animals at 48-h intervals during the 10-day experiment. Non-weight bearing significantly reduced soleus muscle wet weight (28-31%) and noncollagenous protein content (30-31%) compared with controls. Eccentric exercise training during non-weight bearing attenuated but did not prevent the loss of soleus muscle wet weight and noncollagenous protein by 77 and 44%, respectively. The potential of eccentric exercise training as an effective and highly efficient counter-measure to non-weight-bearing atrophy is demonstrated in the 44% attenuation of soleus muscle noncollagenous protein loss by eccentric exercise during only 0.035% of the total non-weight-bearing time period.  相似文献   

20.
The effects of a single series of high-force eccentric contractions involving the quadriceps muscle group (single leg) on plasma concentrations of muscle proteins were examined as a function of time, in the context of measurements of torque production and magnetic resonance imaging (MRI) of the involved muscle groups. Plasma concentrations of slow-twitch skeletal (cardiac beta-type) myosin heavy chain (MHC) fragments, myoglobin, creatine kinase (CK), and cardiac troponin T were measured in blood samples of six healthy male volunteers before and 2 h after 70 eccentric contractions of the quadriceps femoris muscle. Screenings were conducted 1, 2, 3, 6, 9, and 13 days later. To visualize muscle injury, MRI of the loaded and unloaded thighs was performed 3, 6, and 9 days after the eccentric exercise bout. Force generation of the knee extensors was monitored on a dynamometer (Cybex II+) parallel to blood sampling. Exercise resulted in a biphasic myoglobin release profile, delayed CK and MHC peaks. Increased MHC fragment concentrations of slow skeletal muscle myosin occurred in late samples of all participants, which indicated a degradation of slow skeletal muscle myosin. Because cardiac troponin T was within the normal range in all samples, which excluded a protein release from the heart (cardiac beta-type MHC), this finding provides evidence for an injury of slow-twitch skeletal muscle fibers in response to eccentric contractions. Muscle action revealed delayed reversible increases in MRI signal intensities on T2-weighted images of the loaded vastus intermedius and deep parts of the vastus lateralis. We attributed MRI signal changes due to edema in part to slow skeletal muscle fiber injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号